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Abstract

It is widely accepted that there is a risk of fluctuating volatility. There is some evidence,
analogously to long-term consumption risk literature or central tendency in interest rates,
that there exists a slowly varying component in volatility. Volatility literature concentrates
on investigation of two-factor volatility process, with one factor being very persistent.
I propose a different parametrization of volatility process that includes this persistent
component as a stochastic central tendency. The reparametrization is observationally
equivalent but has compelling economic interpretation. I estimate the historical and risk-
neutral parameters of the model jointly using GMM with the data on realized volatility
and VIX volatility index and treating central tendency as completely unobservable. The
main empirical result of the paper is that on average the volatility premium is mainly due
to the premium on highly persistent shocks of the central tendency.
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1 Introduction

It is widely accepted that there is a risk of fluctuating volatility. There is some evidence, analo-
gously to long-term consumption risk literature (Bansal & Yaron, 2004) or central tendency in
interest rates (Balduzzi et al., 1998)1, that there exists a slowly varying component in volatility.
Bollerslev & Mikkelsen (1996) and Andersen & Bollerslev (1997) find strong evidence of high
volatility persistence. Volatility literature concentrates on investigation of two-factor volatility
process, with one factor being very persistent. I propose a different parametrization of volatil-
ity process that includes this persistent component as a stochastic drift or central tendency of
market volatility. The reparametrization is likely observationally equivalent but has compelling
economic interpretation. With this model I am able to price two volatility components sepa-
rately.2 I estimate the historical and risk-neutral parameters of the model jointly using GMM
with the data on realized volatility and VIX volatility index and treating central tendency as
completely unobservable.

The main result of the paper is that on average the volatility premium is at large extent
comes from the premium on highly persistent shocks of the central tendency. Additional short
lived but very volatile shocks bear a small but statistically significant premium. The volatility
premium in most part compensates for the shocks in stochastic volatility drift rather than shocks
of fast mean reversion to this central tendency. Hence, the role of shock persistence is crucial
in determining the compensation for volatility risks.

The model I propose is very similar in structure to Duffie et al. (2000) and Bollerslev et al.
(2010)3 who are generally concerned with memory patterns in stock market volatility and volatil-
ity premium. They employ continuous-time general equilibrium approach together with Epstein
& Zin (1989) time non-separable preferences. These preferences are a crucial feature of the
model that allows to separate volatility and volatility of volatility risk premia. In my model
the second priced factor is central tendency, or stochastic drift of market volatility. Although
the stochastic discount factor in my model does not come from the particular assumption on
investor preference structure, it implies a similar compensation structure for different sources
of volatility risk.

Analogously to continuous time interest rate model of Cox et al. (1985) it became wide
spread in financial literature to model stochastic volatility as a mean-reverting process around
constant mean level. The seminal work in this direction is done by Heston (1993) who proposed
stochastic volatility continuous-time option pricing model. It is also well known that market

1See also Andersen & Lund (1997); Reschreiter (2010, 2011).
2Adrian & Rosenberg (2008) find some evidence that volatility components risk, both short and long-run,

are priced by analyzing a cross-section of portfolio returns.
3For analogous discrete time approach see Tauchen (2005) and Bollerslev et al. (2009).
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volatility is highly persistent and has a thick tailed stationary distribution. Moreover, it is
widely accepted that one-factor stochastic volatility models do not fit well and can not capture
high persistence and thick tails at the same time. The idea of multi-factor volatility model
dates back to Engle & Lee (1996) who consider several specifications of continuous stochastic
volatility model. One of the specifications includes two additive volatility factors one of them
being very persistent. The models are discretized using Euler approximation to match GARCH
form and estimated with QML.

I propose a continuous-time model of market volatility where drift is not constant but rather
stochastic and is driven by a separate mean-reverting stochastic process with its own random
innovation. Andersen & Lund (1997) develop a continuous-time model of interest rates that
has a stochastic drift instead of constant mean level inside of the interest rate dynamics. In
this paper I do the same for stochastic volatility of the return. The appealing interpretation of
such modeling approach, in contrast to additive component representation, is the interpretation
of central tendency as a stochastic mean of volatility which determines the average level of
volatility for a prolonged period of time.

Engle & Lee (1999) propose GARCH-like specification of stochastic volatility with uncondi-
tional mean replaced with slowly varying second GARCH component. In this specification the
difference between two components is interpreted as transitory volatility component. One of the
key limitations of this model is that only one innovation term drives both volatility components
which does not play well with an idea of several sources of volatility risk. In a similar modeling
approach Christoffersen et al. (2008) stress the result that a two-component model fits better
than a one-component model with jumps.

The disadvantage of GARCH models is that they are not closed under temporal aggregation
(Drost & Nijman, 1993) and parameter estimates are critically dependent on sampling interval.
In this paper I derive exact discretization of the model with stochastic drift. Discretized joint
model of volatility and central tendency is a vector autoregression of the order one with moving
average heteroscedastic error structure of order one. The error structure is also kept in explicit
form of stochastic integrals.

Gallant et al. (1999) estimate two-factor additive stochastic volatility model using Efficient
Method of Moments and find that this model may successfully account for long memory ef-
fect. Chernov et al. (2003) evaluate empirically several continuous-time model specifications of
stochastic volatility. In particular, some specifications include two additive volatility factors.
One factor is responsible for tail thickness of returns, the other reflects volatility persistence.
Corsi (2009) propose an additive cascade model of several volatility components that have dif-
ferent effect depending on the time horizon. He shows that despite the absence of genuine long
memory the model is very successful in reproducing empirical characteristics of the returns.
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Duffie et al. (2000) in conclusion to the paper propose a two-factor model of stochastic volatil-
ity model where one factor plays a role of stochastic trend rather than just an additional additive
factor. They argue that given sufficiently small speed of mean reversion this factor may capture
long memory in volatility which is argued to be evident in the data. Bates (2000) employ the
continuous-time model of S&P500 index options with two-factor additive stochastic volatility.
Volatility risk premium is assumed to be exogenous and proportional to current volatility. This
assumption is consistent with simple log utility. Model parameters are estimated implicitly
through minimization of option pricing errors.

When estimating stochastic volatility models the question of measurement is critical. Clearly,
point-in-time volatility in continuous-time model is unobservable. Instead one has to use some
approximations or implied measures. Andersen & Bollerslev (1998) give theoretical justification
for approximation of integrated volatility using high-frequency return data. Bollerslev & Zhou
(2002)4 propose an elegant approach to estimate parameters of structural continuous-time model
of returns with stochastic volatility. The main idea is to express moment conditions in terms of
integrated volatility rather than point-in-time values. Historical integrated volatility is measured
as realized volatility or standard deviation of high frequency returns over daily period. Jiang &
Oomen (2007) approach the problem of latent variable estimation from a different perspective
but also on the basis of high-frequency data and GMM.

Joint estimation of the model parameters requires not only historical observation of market
volatility but also a risk-neutral expectation of volatility. Risk-neutral measure relative to
objective measure provides a link to investor preference parameters. Britten-Jones & Neuberger
(2000) provide the theoretical justification for the model-free measure of integrated volatility
which only requires current option prices. Carr & Wu (2009) generalize this approach and use it
to analyze historical dynamics of variance risk premia of multiple indexes and individual stocks.
The general idea of model-free measurement is to use a large set of option prices to construct a
volatility measure. This measure is represented by a VIX volatility index.5

Given a particular stochastic discount factor (SDF) I link parameters of risk-neutral dynam-
ics of volatility to its historical evolution. Theoretical model implies that risk-neutral volatility
measure depends not only on historical structural parameters but also on risk prices. This con-
nection logically requires joint estimation using both volatility measures. Garcia et al. (2011)
estimate parameters of a continuous-time stochastic volatility model both for objective and
risk-neutral distributions jointly. Risk-neutral measure of volatility is based on option price
series expansion. In this paper I estimate joint model using the VIX index which is a broader
and likely less noisy measure of volatility. Chernov & Ghysels (2000) use efficient method of

4See also Renault (2009)
5See also Jiang & Tian (2007) for detailed justification.
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moments to estimate jointly historical and risk-neutral distribution parameters and filter out
spot volatility. Bollerslev et al. (2011) also estimate joint volatility model but it lacks above
mentioned multi-factor volatility specification.

Another contribution relative to methodology of Bollerslev & Zhou (2002) is that I keep
the explicit definitions of model innovations in terms of stochastic integrals. This allows me to
account for all possible interaction between the variables and innovations in analytical form.
In particular, Bollerslev & Zhou (2002) rely on unbiased estimator of squared volatility (see
Renault, 2009).

Inclusion of the stochastic drift in volatility model somewhat complicates econometric ap-
proach. First of all, integrated trend which shows up in discretized model is unobservable and
there is no convenient proxy for it. Hence, I integrate it out which results in higher order ARMA
structure for integrated volatility. But at the same time it preserves identification of structural
model parameters and allows for the use of standard GMM procedure (Hansen, 1982).

The rest of the paper is organized as follows. Section 2 states the continuous-time stochastic
volatility model of the market return both for historical and risk-neutral distributions. Section 3
shows how to discretize continuous-time model and represent it in terms of integrated variables.
Section 4 presents the decomposition of volatility premia and shows theoretical contribution of
central tendency premia. Section 5 outlines estimation strategy. Section 6 describes empirical
results. Section 7 concludes.

2 The Model

In this section I present the continuous-time model of the stochastic volatility with the drift that
is also stochastic. This drift represents the persistent central tendency of volatility or its slowly
varying average level. The continuous-time diffusion is basically the extension of the square-
root process used by Heston (1993) for option pricing. I show that with such a modification
my model has a potential of matching the high persistence of volatility observed in the data as
evident from the theoretical autocorrelation function of the spot volatility.

I assume a matching square-root form of stochastic discount factor (SDF) that assigns prices
for shocks both in central tendency and volatility itself. Given the SDF it is easy to bridge
historical distribution of returns, volatility, and central tendency with its equivalent risk-neutral
distribution used for standard no-arbitrage pricing. Under this equivalent distribution the model
form remains intact but most of the parameters are altered. In particular, assuming negative
prices for volatility and central tendency risk, both processes become more persistent and have
a higher unconditional mean level.

Consider the probability space (Ω,F , P ) which is a fundamental space of the stochastic
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market price St. Assume that the log of stock price pt = logSt evolves according to the
following stochastic differential equation:

dpt = (µr + µπ) dt+ σtdW
r
t ,

where constant parameters µr, µπ and stochastic variablesσ2
t , yt to be explained later. Here σ2

t

plays a role of instantaneous variance of the market return. Define the integrated variance of
the return over the h time interval,

ˆ t+h

t

d [p, p]u =
ˆ t+h

t

σ2
udu ≡ Vt,h.

Also assume that this instantaneous volatility mean reverts to a stochastic central tendency
which in turn mean reverts to a constant long-term mean of volatility. This volatility structure
is similar in spirit to what is suggested by Duffie et al. (2000) in the end of the paper. These
assumptions may be written in diffusion form as follows:

dσ2
t =κσ

(
yt − σ2

t

)
dt+ ησσtdW

σ
t ,

dyt =κy (µ− yt) dt+ ηy
√
ytdW

y
t ,

(2.1)

where W r
t , W σ

t , and W
y
t are three standardized independent Brownian motion processes under

the historical probability measure P . Under the suitable regularity conditions (see Karatzas
& Shreve, 1997) the above multivariate diffusion has a unique strong solution on R+. The
parameter vector θ is assumed to lie within some compact set Θ ⊂ Rd. Provided that 2µκy ≥ η2

y

the process yt has a stationary Gamma distribution.
The reason I can call yt a central tendency is the following. As I show in Section B.2 the

autocorrelation of the spot volatility is given by

Corr
(
σ2
t+h, σ

2
t

)
= e−κσh +

(
e−κyh − e−κσh

) κσ
κσ − κy

η2
y

κy

(
η2
y

κy
+ κσ + κy

κσ

η2
σ

κσ

)−1

.

This formula shows that if mean reversion speed of yt is much smaller than the mean reversion
speed of spot volatility itself, then the autocorrelation function in the long horizons will be
mainly due to component e−κyh which decays very slowly with small κy.

Now let the log stochastic discount factor (SDF) process mt = logMt be represented by the
following SDE:

dmt = −µrdt−
µπ
σt
dW r

t + λσσtdW
σ
t + λy

√
ytdW

y
t . (2.2)

Here the vector
[
µπ
σt
,−λσσt,−λy

√
yt
]
is interpreted as a vector of risk prices arising from different
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sources of uncertainty. The first element of the vector is the price of equity risk, the second is
the price of volatility risk, and the third is the price of risk related to persistent stochastic mean
of volatility.

Applying Girsanov’s theorem to the model at hand I can define the new set of Brownian
motion processes that are equivalent to the original

dW̃ r
t = dW r

t + µπ
σt
dt,

dW̃ σ
t = dW σ

t − λσσtdt,

dW̃ y
t = dW y

t − λy
√
ytdt.

This adjustment in Brownian innovations provides a new set of standard uncorrelated Brownian
motions under risk-neutral probability measure Q on (Ω,F).

Under this new probability measure the model may be written as

dpt = µrdt+ σtdW̃
r
t ,

dσ2
t = κ̃σ

(
ỹt − σ2

t

)
dt+ ησσtdW̃

σ
t , (2.3)

dỹt = κ̃y (µ̃− ỹt) dt+ η̃y
√
ỹtdW̃

y
t ,

where the rescaled central tendency is

ỹt = κσ
κ̃σ
yt,

and the modified parameters are

κ̃σ = κσ − λσησ, κ̃y = κy − λyηy, µ̃ = µ
κy
κ̃y

κσ
κ̃σ
, η̃y = ηy

√
κσ
κ̃σ
.

Note that in general according to Girsanov’s theorem the shift in drift does not alter the
instantaneous diffusion parameters (in this case ησ and ηy). It may seem that this rule is broken
as the instantaneous diffusion parameter for the central tendency is a multiple of ηy. This
modification is only due to rescaling of yt itself. This rescaling preserves the interpretation of
modified ỹt as a central tendency under the risk-neutral measure.

3 Exact discretization

Clearly, the continuous-time model is a convenient theoretical construct. But in all of the
empirical work we only deal with discretely observed data. In this section I show how continuous-
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time stochastic volatility model with stochastic mean may be exactly discretized. Even after
discretization the financial literature does not give a fool-proof recipe to measure spot volatility.
It became a de facto standard that we can reliably measure only integrated volatility using high
frequency data. Hence, I proceed in this section by deriving the dynamic discrete model where
state variables are integrated volatility and central tendency. Besides, for further considerations
of premia it is crucial to look at figures accumulated over some meaningful amount of time
rather than instantaneous values.

It is well known that the exact discretization of continuous-time square-root process is a
heteroscedastic first order autoregression. Since I have two interacting spot variables, the dis-
cretized system is likely to be of vector autoregressive form of order one. To make a transfer
to the integrated state variables I also integrate the innovations which leads to the same order
one vector autoregression but with more complicated moving average innovations of order one.

One more complication which will become evident later is the necessity to build the discrete
model for variable integrated over a larger period of time than the lag in the autoregression.
In this section I show that the model is not straight vector autoregression anymore but for
estimation method of my choice it does not present a significant problem.

As Section B.1 shows in more detail the spot volatility model is discretized as

σ2
t+h = Aσhσ

2
t +Bσ

hyt + Cσ
h + εσt,h,

yt+h = Ayhyt + Cy
h + εyt,h,

(3.1)

where I define coefficients as

Aσh = exp (−κσh) , Bσ
h = κσ

κσ − κy
(Ayh − Aσh) , Cσ

h = µ (1− Aσh −Bσ
h) ,

and
Ayh = exp (−κyh) , Cy

h = µ (1− Ayh) .

Note that Ayh and Aσh are multiplicative functions of time interval, that is AyuAyv = Ayu+v. Sub-
scripted notation for the error terms means that they are amalgamations of continuous Brow-
nian innovations starting from the moment zero to h. In particular, the error structure of the
discretized model is given as

εσt,h = ησ

ˆ t+h

t

σuA
σ
t+h−udW

σ
u + ηy

ˆ t+h

t

√
yuB

σ
t+h−udW

y
u ,

εyt,h = ηy

ˆ t+h

t

√
yuA

y
t+h−udW

y
u .
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Note that the volatility innovation accumulates Brownian terms from both central tendency
diffusion, and volatility diffusion itself. Also observe that the system in (3.1) is actually a
bivariate vector autoregression of order one with state variables (σ2

t , yt) and heteroscedastic
errors adapted to Ft+h = σ (W σ

u ,W
y
u |u ≤ t+ h).

Clearly, the same discretization technique may be applied to the risk-neutral model in (2.3).
So I have

σ2
t+h = Ãσhσ

2
t + B̃σ

h ỹt + C̃σ
h + ε̃σt,h,

ỹt+h = Ãyhỹt + C̃y
h + ε̃yt,h,

(3.2)

with
Ãσh = exp (−κ̃σh) , B̃σ

h = κ̃σ
κ̃σ − κ̃y

(
Ãyh − Ãσh

)
, C̃σ

h = µ̃
(
1− Ãσh − B̃σ

h

)
,

and
Ãyh = exp (−κ̃yh) , C̃y

h = µ̃
(
1− Ãyh

)
.

The error structure in the risk-neutral model is

ε̃σt,h = ησ

ˆ t+h

t

σuÃ
σ
t+h−udW̃

σ
u + η̃y

ˆ t+h

t

√
ỹuB̃

σ
t+h−udW̃

y
u ,

ε̃yt,h = η̃y

ˆ t+h

t

√
ỹuÃ

y
t+h−udW̃

y
u .

At this stage we already have exactly discretized model of spot volatility and central ten-
dency, but my final target is the model for integrated volatility and central tendency. It is also
argued later that instead of working with instantaneous variables it is more feasible to work
with integrated variables. In order to make a transfer from instantaneous (σ2

t , yt) to integrated
analog (Vt,h,Yt,h) I integrate equations in (3.1) over the reference point in time as a dummy.
Integrated volatility and integrated central tendency are defined as

Vt,h ≡
1
h

ˆ t+h

t

σ2
udu, Yt,h ≡

1
h

ˆ t+h

t

yudu.

Here the first subscripted value denotes the beginning of the time interval, and the second
denotes the length of this interval. In this particular case the integration interval starts at t
and ends at t+ h.

Integrate the linear system in (3.1) over t as a dummy of integration in the interval [0, h]:

Vt+h,h = AσhVt,h +Bσ
hYt,h + Cσ

h + 1
h

ˆ h

0
εσt+s,hds,

Yt+h,h = AyhYt,h + Cy
h + 1

h

ˆ h

0
εyt+s,hds.

(3.3)
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This system of equations is again a bivariate vector autoregression of order one with respect
to state vector (Vt,h,Yt,h). But the error structure is a bit more complicated than it was for
instantaneous state vector. Here the errors aggregate Brownian shocks not only over the period
[t+ h, t+ 2h] but also from the previous period [t, t+ h]. This fact makes the error structure a
moving average of order one. These errors are measurable with respect to Ft+2h but completely
unpredictable with respect to Ft. Hence the system in (3.3) is of almost VARMA(1,1) form.
The error is a composition of shocks over the period [t, t+ h] and over [t+ h, t+ 2h]. But error
terms over both of these periods do not have the same distribution. That is why the system
does not comply with the strict definition of VARMA(1,1).

Now before writing the integrated version for the risk-neutral model I have to clarify a more
general approach to be used. For reasons to be seen in the estimation methodology section it
is necessary to integrate the instantaneous discrete system in (3.2) over a larger time interval
than h. So, denote another positive time variable H ≥ h. the integration gives

Vt+h,H = ÃσhVt,H + B̃σ
h Ỹt,H + C̃σ

h + 1
H

ˆ H

0
ε̃σt+s,hds,

Ỹt+h,H = ÃyhỸt,H + C̃y
h + 1

H

ˆ H

0
ε̃yt+s,hds.

Note the obvious notation Ỹt,H = κσ
κ̃σ
Yt,H . This system looks very similar to historical version in

(3.3) but with the following important distinctions. First, integration time intervals on the left
[t+ h, t+ h+H] and on the right [t, t+H] clearly overlap. In other words, Vt+h,H and Vt,H
have some common integrated volatility dynamics in the interval [t+ h, t+H].

4 Volatility premia

In this section I derive theoretical implications of the model for the premia related to different
sources of risk. In general, a risk premium is defined as a difference between the objective and
risk-neutral forecasts of the integrated risk factor. There is a large literature dealing with the
premium associated with stochastic volatility. In this paper I hypothesized another source of
risk, the shocks in slowly varying average level of volatility. Naturally, I define the premium for
this risk as an excess forecast of the integrated central tendency under objective and risk-neutral
probability measures. The most interesting question now is how this central tendency premium
relates to volatility premium itself.

Thanks to Andersen & Bollerslev (1998) I have a reliable measurement instrument for in-
tegrated volatility. At this point it is beyond the scope of this paper to propose an analogous
measure for the integrated central tendency. Hence, I will treat this factor as completely unob-
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servable across the whole paper. Even though it is beyond my reach to quantify the dynamics of
the volatility central tendency or its premium, I can still say a lot on the basis of the theoretical
model. The information I have access to are unconditional moments of volatility and central
tendency premia such as mean, standard deviation, cross-correlations, and autocorrelations. In
this section I outline the methodology to derive these moments analytically. The method is
based on the representation of time series as infinite integrals with respect to Brownian incre-
ments only. This approach together with stochastic calculus makes it very straightforward to
derive the moments of interest.

Define two premia corresponding to both stochastic volatility and central tendency:

V Pt,H = EQ
t [Vt,H ]− EP

t [Vt,H ] ,

CPt,H = EQ
t

[
Ỹt,H

]
− EP

t [Yt,H ] .

This means that a volatility risk premium is any excess expected integrated volatility under the
risk-neutral measure over the expectation under the historical probability measure. In fact, the
premium is always considered to be the negative of this quantity. It is also widely accepted that
most of the times the premium associated with stochastic volatility is a negative value. Hence,
just for exposition purposes I will consider the negative of this value.

The second premium above corresponds to the stochastic central tendency of volatility. Note
that the genuine integrated central tendency under the risk-neutral measure is Ỹt,H = κσ

κ̃σ
Yt,H .

This rescaling is done to justify the use of term “central tendency” in application to the process
under the risk-neutral measure.

With this definition it becomes clear how to quantify the importance of the premium as-
sociated with shocks in stochastic volatility drift. Define the difference between two premia
as

TPt,H = V Pt,H − CPt,H .

This value may be interpreted as a transient premium.
The problem now is to characterize these three premia. In the estimation section I will

argue that the only two values we observe or at least can find convincing proxies for are realized
volatility and VIX volatility index. The first value proxies integrated volatility Vt,h over period
h, and the second proxies risk-neutral expectation of integrated volatility over some larger
period H. In this paper I eliminate any possibility of an error by leaving these values intact
and not doing any forecasting of historical volatility. Forecasting approach was taken by Eraker
(2009) with a very simple lagged realized volatility, Bollerslev et al. (2010) with HAR-RV, or
Todorov (2010) with VAR-based forecast. This limitation immediately moves all premia into
the rank of unobservables. On the other hand, my model allows for analytical expressions for
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various analytical moments of premia. Below I briefly outline the approach I take to derive
these moments. The proof with all necessary details is given in Section B.4.

First of all I represent both spot volatility and central tendency as an infinite stochastic
integrals with respect to Brownian motions only. Under the historical measure the model
becomes

yt = µ+ ηy

ˆ t

−∞

√
yvA

y
t−vdW

y
v ,

σ2
t = µ+ ηy

ˆ t

−∞

√
yvB

σ
t−vdW

y
v + ησ

ˆ t

−∞
σvA

σ
t−vdW

σ
v .

Note that spot volatility accumulates shocks of both Brownian motions. Integrating this ex-
pression over the period [t, t+H] I obtain another representation of integrated volatility and
central tendency as infinite integrals:

HYt,H =µH + ηy

ˆ t+H

t

√
yv

(ˆ t+H

v

Ayu−vdu

)
dW y

v + ηy

ˆ t

−∞

√
yv

(ˆ t+H

t

Ayu−vdu

)
dW y

v ,

HVt,H =µH + ηy

ˆ t

−∞

√
yv

(ˆ t+H

t

Bσ
u−vdu

)
dW y

v + ηy

ˆ t+H

t

√
yv

(ˆ t+H

v

Bσ
u−vdu

)
dW y

v

+ ησ

ˆ t

−∞
σv

(ˆ t+H

t

Aσu−vdu

)
dW σ

v + ησ

ˆ t+H

t

σv

(ˆ t+H

v

Aσu−vdu

)
dW σ

v .

Note that each expression above naturally breaks down into two parts. One accumulates random
all shocks up to time t and the other shocks from t to t + H only. Hence, taking expectations
with respect to historical measure and information up to time t leaves only the first part of
stochastic integrals intact. The second part is completely unpredictable with respect to Ft.

The representation under the risk-neutral measure is very similar except to slight change
of notation. Similarly, after taking expectation with respect to the measure Q I obtain the
infinite integrals up to time t with respect to Brownian motions W̃ σ and W̃ y. In order to have
a meaningful expression for the risk premia I have to measure these Brownian motions under
that same measure I used for W σ and W y. This means that I have replace Brownian shocks
under the risk-neutral measure by their equivalents under the physical measure. At this point
it becomes meaningful to take the difference between risk-neutral and historical expectations of
volatility and central tendency.
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In the end I can show that the three above defined premia may be represented as

CPt,H = EP [CPt,H ] +
ˆ t

−∞

√
yv$

C
v,tdW

y
v ,

V Pt,H = EP [V Pt,H ] +
ˆ t

−∞
σvωv,tdW

σ
v +
ˆ t

−∞

√
yv$

V
v,tdW

y
v ,

TPt,H = EP [TPt,H ] +
ˆ t

−∞
σvωv,tdW

σ
v +
ˆ t

−∞

√
yv$

T
v,tdW

y
v .

The first term in each expression above is an unconditional mean of the corresponding premium.
The rest are stochastic integrals with respect to Brownian motion increments. Functions $v,t

and ωv,t are completely deterministic and only depend on structural parameters of the model.
Unconditional means are

EP [V Pt,H ] = (µ̃− µ)− µ

H

ˆ t

−∞

ˆ t+H

t

(
λyηy

κσ
κ̃σ
B̃σ
u−v + λσησÃ

σ
u−v

)
dudv,

EP [CPt,H ] = (µ̃− µ)− µ

H

ˆ t

−∞

ˆ t+H

t

λyηy
κσ
κ̃σ
Ãys−vdsdv,

EP [TPt,H ] = − µ
H

ˆ t

−∞

ˆ t+H

t

(
λyηy

κσ
κ̃σ

(
B̃σ
s−v − Ã

y
s−v

)
+ λσησÃ

σ
s−v

)
dsdv.

Note that both volatility and central tendency premia have one component in common, (µ̃− µ)H.
If I normalize all premia by the length of the time interval, the common component is simply
the difference between long-term mean of volatility, both spot and integrated, under two equiv-
alent measures. This means that on average the volatility premium is not simply the difference
between unconditional means of realized volatility and risk-neutral volatility measure.

Finally, using the representation above it is quite simple to compute unconditional moments
of the three premia. For example, the variance of the premia are the following deterministic
integrals:

V P [CPt,H ] = µ

ˆ t

−∞

(
$C
v,t

)2
dv,

V P [V Pt,H ] = µ

ˆ t

−∞

[
(ωv,t)2 +

(
$V
v,t

)2
]
dv,

V P [TPt,H ] = µ

ˆ t

−∞

[
(ωv,t)2 +

(
$T
v,t

)2
]
dv.

Correlations between premia and autocorrelations are derived analogously.
Since the above moments are hard to analyze analytically I will proceed to analyze them em-

pirically by substituting estimates of structural parameters and using their variance-covariance
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matrix to compute standard errors by delta method.

5 Estimation

In this section I describe how to jointly estimate parameters of continuous-time stochastic
volatility model under the historic distribution in (2.1) and under the risk-neutral distribution
in (2.3) with limited information.

The first subsection deals with a substantial hurdle for a financial econometrics, namely the
measurement of unobservable factors such as volatility and introduced here central tendency.
The first problem is how to measure volatility itself under two different probability measures.
Under the historical measure Andersen & Bollerslev (1998) suggested6 to use intra-day high
frequency data on the returns. They show that with an interval going to zero the almost sure
limit of sum of squared returns is an integrated volatility. The daily realized volatility measure
is readily reported and accessible from multiple sources. Under the risk-neutral measure the
volatility is one of the main factors determining option prices. Using this fact Britten-Jones
& Neuberger (2000) theoretically justify the use of a large set of option prices to construct a
risk-neutral measure of volatility manifested in VIX volatility index.

A slight technical problem with these two data series is that they do not match with respect
to the integration horizon of volatility. Realized volatility is a proxy for daily integrated volatil-
ity, and VIX is based on options with maturity of one month (22 business days). Moreover,
realized volatility is a genuine volatility measure while VIX is a risk-neutral expectation of fu-
ture integrated volatility. It is easy to synchronize these data by aggregating realized volatility
over a month period but it is far more speculative to form its forecast. Different approaches
lead to slightly different results (see Eraker, 2009; Todorov, 2010). For this paper I will stay out
of this debate and will only use what I reliably have in the data and adjust econometric model
appropriately. This adjustment amount to augmenting the model innovation with the forecast
error of conditional expectation of volatility and central tendency. This approach reformulates
the model in terms of conditional forecasts as state variables.

In Section 3 I have already derived the vector autoregression model for both historical and
risk-neutral distributions where two factors are integrated volatility and central tendency. As I
already stated I do not propose to measure the central tendency but rather treat it as unobserv-
able and work around this complication. The trick to get rid of the integrated central tendency
in the model is to marginalize it. By doing so with VAR(1,1) type of model I marginalize it into
ARMA(2,2) model. This trick works for the realized volatility which is measured over one day
and is lagged one day in the model. For the risk-neutral model the exact order of the moving

6See also Meddahi (2002)
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average component is a bit hard to pin but, again, it does not play a significant role as long as
I know the analytical structure of the innovations.

In the second part of this section I present the conditional moment I use to set up Generalized
Method of Moments estimator (Hansen, 1982). It turns out that the GMM estimation of
ARMA-type models is very unstable if used to estimate all structural parameters including the
unconditional mean. To circumvent this problem I use the two step approach. First, I estimate
the unconditional means of both historical and risk-neutral measures of volatility. This approach
is known as variance targeting in GARCH literature and justified by Horvath et al. (2006) and
Francq et al. (2009). On the second step I treat the mean as given and estimate the rest of
the parameters by GMM. For that I compute analytically conditional mean and conditional
second moment of integrated volatility explicitly taking into account all possible correlations
between model innovations. The first moment only identifies speed of mean reversion parameter.
The second moment is necessary to identify instantaneous diffusion parameters. In total this
approach gives me four moments, two for each probability measure. As instruments I use lagged
realized volatility, VIX, daily market return, and squared return.

5.1 Measurement

Clearly, the first problem an econometrician faces with these types of models is that they
are formulated for the variables that are observed at best over discrete time intervals. To
overcome this first obstacle I have derived the exact discretization of the same model. Since I
am interested in estimating parameters under both historical and risk-neutral distributions, I
have two discretized models, (3.1) and (3.2).

Now the next problem is that volatility σ2
t and its stochastic mean yt are not observable

variables even in discrete time intervals. Since point-in-time volatility is unobserved Andersen &
Bollerslev (1998) suggested to estimate integrated volatility using high frequency observed return
data. In particular, the following convergence result provides the basis for such estimation:

RVt,h ≡
n∑
j=1

r2
t+ j−1

n
h,t+ j

n
h

a.s.−→
ˆ t+h

t

σ2
udu ≡ Vt,h.

Since we can more or less reliably observe only integrated volatility, but not its point-in-time
value, I have to resort to the methodology of Bollerslev & Zhou (2002). They transform all
known results into relations between integrated volatility and apply GMM for estimation. Once
again, I will adopt the measurement of integrated volatility under the physical measure P by
the realized volatility.

Given discrete time observations on the theoretically reliable proxy of integrated volatility
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it becomes natural to transform the model into (3.3) which is of VARMA(1,1) form with het-
eroscedastic errors and state vector [Vt,h,Yt,h]. Another difficulty is that in the VARMA(1,1)
model (3.3) the integrated central tendency Yt,h is not observable. Even worse, there is no
good proxy for this variable that I am aware of. Besides, the purpose of this paper is not to
suggest a measure for this unobservable component but to circumvent this problem all together
and estimate the model with what we reliably have in the data. To circumvent the absence of
a good proxy for a latent variable I marginalize the observable and compute the moments in
terms of what is known in the data. For more details see the following Section 5.2.

At this point I have formulated the model under the objective measure P for the integrated
volatility which may be accurately proxied by the realized volatility. Realized volatility is
normally constructed from the intra-day data to obtain a measure on a daily frequency, that is
h = 1.

In order to estimate the risk-neutral model parameters I need the data on integrated volatility
under the measure Q. Britten-Jones & Neuberger (2000) provide the result that connects option
data with risk-neutral volatility forecast. Specifically,

V IXt,H = 2
ˆ ∞

0

C (t+H,K)−max (St −K, 0)
K2 dK = EQ

t [Vt,H ] ,

where C (t+H,K) is the price of call option maturing at time t+H with strike price K, and
max (St −K, 0) is the intrinsic value of this option at time t. If H is set at one month or 22
days period, then this expression is well proxied by the VIX index of volatility.

Note that I deliberately used time length H rather than h to stress the point that VIX is a
forecast of integrated volatility over a period of 22 days rather than one days in case of realized
volatility. So, even though VIX as a proxy for EQ

t [Vt,H ] is observed on a daily basis, it gives a
prediction of volatility over 22 days in the future. In order to account for that in the theoretical
model I integrate discrete point-in-time risk-neutral model in (3.2) over a period of time H
rather than h as in the case of historical model. Even though this discrete-time model is not of
simple familiar structure it is still manageable in terms of computing analytical moments and
applying GMM procedure.

5.2 Moment conditions

In this section I compute analytically the first two moment conditions both for objective and
risk-neutral measures of integrated volatility.

The first step is to eliminate unobservables from econometric model or, in other words,
marginalize the observed variable represented by integrated volatility. Using the lag operator L
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and taking the conditional expectation this system may be represented as

(1− AσhL)EP
t [Vt+h,h] = Bσ

hE
P
t [Yt,h] + Cσ

h ,

(1− AyhL)EP
t [Yt+h,h] = Cy

h.

Multiply the first equation by (1− AyhL), shift the time by h, and make a substitution from the
second equation to obtain

(1− AyhL) (1− AσhL)EP
t [Vt+2h,h] = Bσ

hC
y
h + (1− Ayh)Cσ

h ,

or, in more common form,

EP
t [Vt+2h,h − (Aσh + Ayh)Vt+h,h + AσhA

y
hVt,h −Bσ

hC
y
h − (1− Ayh)Cσ

h ] = 0.

Analogously to the historical model I can marginalize integrated volatility and formulate
the first moment completely analogously with a simple change in notation. One more problem
I see here is that integrated volatility Vt,H under the risk-neutral distribution is not directly
observable. What we have in the data is only a proxy for its risk-neutral forecast EQ

t [Vt,H ]
given by VIX volatility index. So, introduce a new observable variable VQt,H which is a good
proxy for the risk-neutral conditional expectation:

VQt,H ≈ EQ
t [Vt,H ] .

In this paper I do not argue for the accuracy of this measure but take it as given. Applying the
law of iterated expectations this replacement of the latent variable does not actually change the
moment:

EQ
t

[
VQt+2h,H −

(
Ãσh + Ãyh

)
VQt+h,H + ÃσhÃ

y
hV

Q
t,H − B̃σ

h C̃
y
h −

(
1− Ãyh

)
C̃σ
h

]
= 0.

The first moments identify only mean and speed parameters of diffusion. In order to identify
instantaneous variance and price of shocks one has to compute additional moments. As I show
in Section B.3, the second conditional moments of integrated volatility and spot variables may
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be written as

EP
t

[
(hVt,h)2

]
= A1σ

2
t + A2yt + A3 +

(
aσhσ

2
t + bσhyt + cσh

)2
,

EP
t

[
σ4
t+h

]
= a1σ

2
t + a2yt + a3 +

(
Aσhσ

2
t +Bσ

hyt + Cσ
h

)2
,

EP
t

[
σ2
t+hyt+h

]
= c2yt + c3 +

(
Aσhσ

2
t +Bσ

hyt + Cσ
h

)
(Ayhyt + Cy

h) ,

EP
t

[
y2
t+h

]
= b2yt + b3 + (Ayhyt + Cy

h)2 ,

EP
t

[
σ2
t+h

]
= Aσhσ

2
t +Bσ

hyt + Cσ
h ,

EP
t [yt+h] = Ayhyt + Cy

h.

The only observable here is integrated volatility V2
t,h. The rest are latent variables which can

be eliminated by taking appropriate lags and making substitutions. For example, the spot
volatility and central tendency equations may be written as

EP
t [(1− AyhL) yt+h] = Cy

h,

Et
[
(1− AσhL)σ2

t+h

]
= Bσ

hyt + Cσ
h .

Multiply the last equation by (1− AyhL), shift the time by h using the law of iterated expecta-
tions, and finally substitute the first equation in to get

EP
t

[
(1− AyhL) (1− AσhL)σ2

t+2h

]
= Bσ

hC
y
h + (1− Ayh)Cσ

h .

The expression for the second moment of integrated volatility includes spot variables σ4
t , σ2

t yt,
y2
t , σ2

t , and yt. Using the above approach each one of these variables is eliminated with the end
result of

EP
t

[(
1− (Aσh)2 L

)
(1− AσhA

y
hL)

(
1− (Ayh)

2 L
)

(1− AyhL) (1− AσhL)V2
t+5h,h

]
= M,

where constant M is defined in Section B.3 and its definition involves instantaneous variance
parameters.

Parameters in the first and second moments of integrated volatility under two probability
measures are implicitly given by the vectors (µ, κσ, κy, ησ, ηy) and (µ, κ̃σ, κ̃y, ησ, ηy), respectively.
The connection between these parameters is

κ̃σ = κσ − λσησ, κ̃y = κy − λyηy, µ̃ = µ
κy
κ̃y

κσ
κ̃σ
, η̃y = ηy

√
κσ
κ̃σ
.
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If I estimate parameters of the two models jointly, then the parameter vector becomes

θ = (µ, κσ, κy, ησ, ηy, λσ, λy) ,

which differs from historical set of parameters only by risk prices of volatility and central ten-
dency innovations, λσ and λy.

Both first and second moments are expressed given fine information set Ft which contains
all past observations of point-in-time volatility σ2

t and yt. Clearly, this information is not
available to econometrician. Hence, an additional technical step of reduction in information set
is necessary (Meddahi & Renault, 2004). Coarser information set includes only observations on
past integrated volatilities.

Finally, the applicability of GMM is argued in Section B.5. There I claim that the moment
restrictions, model innovations, integrated variables, their interactions are reducible to a simple
stochastic integral. Consequently, for this variable I show the existence of finite fourth moment
and central limit theorem.

6 Results

In this section I will describe the data I use for my empirical exercise. Then I will outline the
results of estimation of continuous-time model parameters. The rest of the section is dedicated
to analyzing the main result of the paper. This result states that for forecasting horizon of
several days and more the volatility premium is mostly composed of the premium on central
tendency. Part of it is composed of the premium on shocks that are relatively more volatile but
short-lived. In other words, the additional source of risk, the one that drives volatility around its
persistent stochastic drift, does bear some small but statistically significant premium. It is also
interesting to note that the instantaneous variance of a central tendency is only a small fraction
of instantaneous variance of additional volatility shocks. Hence, small shocks that preserve its
effect long into the future are priced and make the largest portion of compensation.

In this study I use the following data. Daily volatility index, VIX, is constructed by CBOE7

for the period starting from 1990. This index proxies the integrated volatility forecast over the
future 22 business days. Daily S&P500 index prices, SPX, and realized volatility measure, RV,
are reported by Oxford-Man Institute8 for the period starting from 1996. The data for market
index and log daily return are shown in Figure 1 on page 29. Both volatility indexes are shown
in Figure 2 on page 30. I report descriptive statistics of the data in Table 1 on page 30. In
addition, estimates of autocorrelation function are shown in Figure 3 on page 31.

7CBOE, VIX Historical Price Data, http://www.cboe.com/micro/vix/historical.aspx
8Oxford-Man Institute’s “realized library”, http://realized.oxford-man.ox.ac.uk/home
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The results of several models estimation are given in Table 2 on page 31. The first four
columns in this table correspond to a benchmark estimation of the univariate square-root dif-
fusion to the daily realized volatility and VIX separately. The next four columns correspond to
estimation of bivariate diffusion model with central tendency to RV and VIX separately. The
last column is main estimation result of the paper as it fits the model with central tendency
jointly to RV and VIX volatility measures. I used heteroscedasticity and autocorrelation robust
estimator of moments covariance matrix (Newey & West, 1987) with Bartlett kernel and 5 lags
for univariate models, and 50 lags for bivariate models. The instruments for the estimation in
benchmark models are lagged variables themselves. For the main model estimation I used lags
of realized volatility, VIX volatility index, and squared daily log-return.

First of all from Table 2 on page 31 it is clear that none of the models is not rejected by the
J-test with p-value varying from 37% to 95% for benchmark cases, and 51% for the main model.
In all benchmark cases the parameters are highly significant with an exception of diffusion
parameter of central tendency.

The very first column suggests that the mean reversion of realized volatility is 0.0793. This
number corresponds to half-life of a shock to a little under 4 days. This does not seem to lie
close to roughly 30 days evident from estimated autocorrelation function in Figure 3 on page 31.
The estimated mean reversion speed of VIX is 0.0152 which corresponds to half-life of 20 days
which and also does not match well above 60 days evident from the figure. This observation
clearly makes univariate models inadequate in view of the real data.

One can see that the modeling of the central tendency is relevant since both κy and ηy are
significantly different from zero. Bivariate models bring an additional degree of freedom by
introducing and additional shock which should cover the fat tails feature of the data. This is
the most clearly seen in case of realized volatility. There the speed of mean reversion of the
central tendency is estimated as 0.0218 which corresponds to almost 14 days of half-life. Even
though it still does not reach the level seen in the data, is a certain improvement in the fit of
the model. The central tendency mean reversion estimate for the VIX series went slightly up
in comparison to the univariate model which is not a good sign.

Besides mean reversion, one can note some interesting patterns in diffusion parameter esti-
mates. In univariate case the diffusion parameter of realized volatility is estimated as 0.1424,
while in bivariate case two diffusion estimates are 0.1923 and 0.0258. This means that the
shocks changing the persistent drift are much less volatile than shocks changing the movement
of volatility around its long-term drift. The univariate estimate is somewhere in the middle.
The same picture is observed in the case of VIX. Besides, diffusion parameter estimates are
somewhat smaller for VIX than they are for RV. This together with higher estimated persis-
tence of VIX is a reflection of smaller excess kurtosis but almost the same standard deviation of
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VIX. Smaller diffusion parameter drives both second and fourth moment down, while smaller
mean reversion speed increases standard deviation but does not seem to comparable increase
the kurtosis.

The estimation of the joint model for RV and VIX does not improve standard errors of
parameter estimates but rather somewhat decreases them. In particular, mean reversion pa-
rameter of volatility itself is not as precise as others. Central tendency estimates are still very
significant. The main benefit of joint model estimation though are the risk prices. Here the
prices of both shocks are significant at 5% level. Point estimates are very close to ech other,
0.2714 and 0.2032, respectively. This means that central tendency shocks are slightly more
expensive.

The model estimates imply that the risk-neutral speed of mean reversion of central tendency
is .0215−.2714×.0279 = .0139, and .9040−.2032×.1742 = .8686 which are not far from estimates
of VIX model. The speed of mean reversion of 0.9040 corresponds to 0.35 days of half-life. Hence,
the shock on top of the central tendency is very very short lived but several time more volatile.
Both of these factors contribute to a higher unconditional mean of volatility in the risk-neutral
world, 21% against 13% daily. This observation is due to the identity µ̃κ̃yκ̃σ = µκyκσ which
says that all else equal the higher unconditional mean of risk-neutral volatility requires higher
persistence of either central tendency or volatility or both.

Given the estimates of model parameters I plug them in to analytical expressions for un-
conditional moments of volatility premium, central tendency premium, and their difference. By
plugging in the estimates of these parameters I obtain point estimates of unconditional moments
of unobservable risk premia. Standard errors for these estimates are computed using the delta
method. Having the estimates θ̂ of structural parameters and their covariance matrix Ω̂ it is
easy to compute estimates of γ = f (θ) and their standard errors. Point estimates are γ̂ = f

(
θ̂
)

and the covariance matrix is computed through delta method and given by

V (γ̂) =
[
∂f

∂θ

(
θ̂
)]

Ω̂
[
∂f

∂θ′

(
θ̂
)]
.

Implications for unconditional moments of volatility are given in Figure 4 on page 32 through
Figure 6 on page 33. Risk premia mean and standard deviation are given in Figure 7 on page 33
and Figure 8 on page 34. These graphs, except for autocorrelations, plot unconditional moments
over forecasting horizon H which I vary from 1 to 22 business days. The last number is the
same as used in computing VIX volatility index. Everything below that is a shorter interval
for volatility integration and is used to reveal the relative importance of central tendency over
different forecasting horizons.

Figure 4 on page 32 shows that standard deviation of volatility, central tendency, and their
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difference. There is no need for unconditional mean picture since it is known to be a constant
given in Table 2 on page 31. The plot shows standard deviation normalized by a period length.
There we see that the volatility and central tendency standard deviations are very close to each
other across all horizons and vary slightly below 5% daily. It is interesting to note that with
increase in aggregation interval the standard deviation decreases only marginally. This is due
to high persistence of both series. The standard deviation of the difference is above 2% for 1
day of aggregation and below 0.5% for the upper end. This says that the transitory shocks
in volatility are much more evident on the short forecasting horizons although still by order
smaller than the effects of persistent component.

Figure 6 on page 33 shows the estimates of correlations between volatility and its components
over different aggregation intervals. The most evident result is that the volatility itself is highly
correlated with its central tendency. On the longer horizons the point estimate is very close to
one but the estimate is much less precise. This explains close similarity in the second moment of
volatility and central tendency. The correlation between volatility and its transitory innovations
is much more pronounced at shorter aggregation intervals, above 50%, where transitory shocks
are more noticeable as judged by its daily standard deviation. As expected due to assumption
of uncorrelated Brownian innovations, the correlation between central tendency and transitory
shocks is virtually zero.

Figure 6 on page 33 plots autocorrelations of three series for lags up to 60 days and one day
of aggregation. The most interesting observation is that the integrated volatility autocorrelation
somewhat understates the empirical estimates of autocorrelation of realized volatility given in
Figure 3 on page 31. This observation is a positive reality check of the estimation results. Nat-
urally, the autocorrelation of central tendency is even higher. And there is not much persistence
in the difference between the two series.

Figure 7 on page 33 shows the most striking result. On this plot I present the comparison
between unconditional means of volatility premium, central tendency premium, and their differ-
ence. The point estimates unambiguously suggest that the implied central tendency premium
is actually larger on average than the volatility premium itself over all considered forecasting
horizons. Volatility premium point estimate goes from 0.5% per day to roughly 1.5% per day
for 22 days of integration. Central tendency point estimates are everywhere above. Confidence
intervals (95%) for these two premia are approximately plus minus 0.5% daily.

The actual test for significant difference between the two premia is given by analyzing
confidence intervals of the mean transitory premium. Point estimate goes from -0.3% for one day
of forecasting to -0.1% for month long forecasting. In spite of relatively wide confidence intervals
for the volatility and central tendency premia, the confidence interval for their difference is
roughly plus minus 0.1-0.5% daily. This interval includes zero only at small aggregation intervals.
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This suggests that the difference between the two premia is significant for forecasting horizons
of several days and above. Hence, I can say that the unconditional means of the two premia
are distinguishable for more than few days in the future. This also implies that the transitory
shocks contribute a statistically significant though small weight into risk compensation. The
basis for this result is evident from the previously considered graphs and estimation results.
There it was clear that volatility and central tendency are very similar to each other. But the
shocks that come on top of the central tendency are very volatile even though very short lived.
This seems to be enough to make a contribution to the volatility premium unconditional level.

The next graph I want to analyze is given in Figure 8 on page 34. This plot represents
daily unconditional standard deviation of the two premia and their difference over different
forecasting horizons. Here we see monotonically increasing standard deviation of volatility and
central tendency premia. Point estimates go smoothly from 0.1% for volatility and 0.2% for
central tendency to 0.3-0.4% for 22 days forecast. This observation is natural simply because
forecast is expected to deteriorate in efficiency with an increase in forecasting horizon. Moreover,
doing rough calculation suggests that 95% of the times the volatility premium for the standard
22 days of volatility integration should stay inside of the interval of 1.5± 0.4% daily. This does
not rule out the possibility of the volatility premium being negative. This goes in line with
other studies that employ different forecasting techniques to characterize dynamic behavior
of volatility premium and find it negative from time to time. The standard deviation of the
difference between two premia is around 0.1% for one day to almost zero for 22 days. This
means that the difference between the two premia is almost constant, especially on the longer
horizons.

To conclude this section I want to stress the main result which says that the volatility
premium on intervals longer than a few days is mainly due to compensation of highly persistent
shocks that drive stochastic drift of volatility.

7 Conclusion

In this paper I proposed the continuous-time stochastic volatility model with varying central
tendency. As a main result of the paper I argue that the major part of volatility risk premium is
due to compensation for highly persistent shocks in volatility, those that drive central tendency.
Additional short lived but very volatile shocks that drive volatility around its central tendency
are associated with a small but significant negative premium.

My approach has several very conservative limitations. First, I treat central tendency as
completely unobservable and for the purposes of estimation integrate it out. It would be a very
promising avenue of future research to devise a reliable measure of integrated central tendency
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analogous to integrated volatility. The second limitation is that I do not take a risk of speculation
and do not propose a specific methodology to form a conditional forecast of historical volatility.
This forecast could allow me to identify explicitly volatility premium. On the other hand, if I
leave central tendency as unobservable the value of computing volatility premium by itself is
doubtful. Hence, in order to gain insight into joint dynamics of volatility and central tendency
premia it would take a substantial theoretical work. In spite of these limitations my approach
does not preclude analytical computation of unconditional moments of different premia and
their difference.
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Figure 1: Daily S&P500 index (SPX) and market log return (logR).
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Figure 2: Daily option-based volatility index (VIX), and realized volatility (RV).

Min Max Mean Std Skewness Exc. Kurtosis
100*log(R) -9.47 10.96 0.019 1.31 -0.20 7.42
VIX 9.89 80.86 22.03 8.62 1.98 6.87
RV 2.38 118.75 13.34 8.36 3.34 19.87

Table 1: Descriptive statistics for market log returns (logR), option-based volatility index (VIX),
realized volatility (RV), and their difference, volatility risk premium (VRP).
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Figure 3: Autocorrelation function for option-based volatility index (VIX), realized volatility
(RV), and log market return (logR).

θ RV VIX RV VIX RV,VIX

µ 0.1323 (0.0059) 0.2209 (0.0142) 0.1268 (0.0119) 0.2111 (0.0124) 0.1259 (0.0082)

κσ 0.0793 (0.0164) 0.0152 (0.0036) 0.9452 (0.0515) 0.9234 (0.0158) 0.9040 (0.0229)

ησ 0.1424 (0.0141) 0.0552 (0.0029) 0.1923 (0.0037) 0.0509 (0.0049) 0.1742 (0.1216)

λσ 0.2032 (0.0686)

κy 0.0218 (0.0084) 0.0132 (0.0032) 0.0215 (0.0056)

ηy 0.0258 (0.0281) 0.0055 (0.0486) 0.0279 (0.0094)

λy 0.2714 (0.1212)

J 0.51 0.01 3.09 3.21 6.49

p 0.47 0.95 0.39 0.36 0.26

df 1 1 3 3 5

Table 2: Estimation results of the model with stochastic trend. The parameters have the
following interpretation: µ is the unconditional mean of historical volatility; κσ and κy are mean
reversion speed parameters for volatility and central tendency, respectively, under historical
measure; ησ and ηy are instantaneous diffusion parameters; λσ and λy are risk prices. Risk-
neutral speeds of mean reversion are κ̃σ = κσ−λσησ and κ̃y = κy−λyηy. Risk-neutral volatility
mean is given by µ̃ = κσ

κ̃σ

κy
κ̃y
µ.
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Figure 4: Implied standard deviations of daily volatility, V[V], central tendency, V[Y], and their
difference, V[V-Y]. Implied 95% confidence intervals are given by dashed lines.

5 10 15 20
−0.5

0

0.5

1

Forecast horizon, days

C
o
rr

e
la

ti
o
n

 

 

V and Y

V and T

Y and T

Figure 5: Implied correlations between volatility (V), central tendency (Y), and their difference
(T). Implied 95% confidence intervals are given by dashed lines.
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Figure 6: Implied autocorrelations of volatility (V), central tendency (Y), and their difference
(T). Implied 95% confidence intervals are given by dashed lines.
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Figure 7: Implied means of daily volatility premium (VP), central tendency premium (CP), and
their difference transitory premium (TP). Implied 95% confidence intervals are given by dashed
lines.
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Figure 8: Implied standard deviations of daily volatility premium (VP), central tendency pre-
mium (CP), and their difference transitory premium (TP). Implied 95% confidence intervals are
given by dashed lines.
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B Proofs

B.1 Discretization of objective model

Given the model in (2.1) simple integration of yt gives

yt+h =yte−κyh + µκy

ˆ t+h

t

e−κy(t+h−v)dv + ηy

ˆ t+h

t

√
yve
−κy(t+h−v)dW y

v

=yte−κyh + µ
(
1− e−κyh

)
+ ηy

ˆ t+h

t

√
yve
−κy(t+h−v)dW y

v

=ytAyh + µ (1− Ayh) + ηy

ˆ t+h

t

√
yvA

y
t+h−vdW

y
v .

For more compact notation I replaced e−κyh with Ayh.
Now write the volatility process

σ2
t+h =σ2

t e
−κσh + κσ
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yue
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√
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where it can be easily seen that
ˆ t+h

t

Aσt+h−udu = 1
κσ

(1− Aσh) ,
ˆ t+h

t

Ayu−tA
σ
t+h−udu = 1

κσ − κy
(Ayh − Aσh) ,

ˆ t+h

v

Ayu−vA
σ
t+h−udu = 1

κσ − κy

(
Ayt+h−v − Aσt+h−v

)
.

Also denote
Bσ
h = κσ

κσ − κy
(Ayh − Aσh) .

So the original process can be written as

σ2
t+h =µ (1− Aσh −Bσ

h) + σ2
tA

σ
h + ytB

σ
h

+ ηy

ˆ t+h

t

√
yvB

σ
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y
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σ
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as well as stochastic trend:

yt+h = µ (1− Ayh) + ytA
y
h + ηy

ˆ t+h

t

√
yvA

y
t+h−vdW

y
v .

So, the discretized model is represented by the following two equations:

σ2
t+h = Aσhσ

2
t +Bσ

hyt + Cσ
h + εσt,h,

yt+h = Ayhyt + Cy
h + εyt,h.

(B.1)

The coefficients for volatility are

Aσh = exp (−κσh) , Bσ
h = κσ

κσ − κy
(Ayh − Aσh) , Cσ

h = µ (1− Aσh −Bσ
h) ,

and
Ayh = exp (−κyh) , Cy

h = µ (1− Ayh) .

Note that Ayh and Aσh are multiplicative functions of time interval, that is Ayh1A
y
h2 = Ayh1+h2 .

The error structure is represented by
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u .
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Clearly, EP
t

[
εσt,t+h

]
= 0, and EP

t

[
εyt,t+h

]
= 0.

Note that the same processes may be represented as infinite stochastic integrals with respect
to Brownian motion only:

yt = µ+ ηy
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−∞

√
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v .

(B.2)

B.2 Autocorrelation

Recall from (B.2) the representation of spot volatility and central tendency as infinite stochastic
integrals with respect to Brownian motions only. Compute the autocovariance of spot volatility
over the period h:

Cov
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One more integral is
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Plugging in this leads to the following covariance:

Cov
(
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2
t
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y

(
µη2

y

2κy
Ayh −

µη2
y

2κσ
Aσh

)
+ µη2

σ

2κσ
Aσh

= κ2
σ

κ2
σ − κ2

y

µη2
y

2κy
(Ayh − Aσh) +

(
µη2

σ

2κσ
+ κσ
κσ + κy

µη2
y

2κy

)
Aσh.

Taking h = 0 I obtain the unconditional variance of spot volatility:
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Hence, the autocorrelation is

Corr
(
σ2
t+h, σ

2
t

)
=Aσh + (Ayh − Aσh) κ2

σ

κ2
σ − κ2

y

µη2
y

2κy

(
κσ

κσ + κy

µη2
y

2κy
+ µη2

σ

2κσ

)−1

=Aσh + (Ayh − Aσh) κσ
κσ − κy

η2
y

κy

(
η2
y

κy
+ κσ + κy

κσ

η2
σ

κσ

)−1

.

B.3 Second moment

In (B.1) replace h by another time indicator s and integrate from 0 to h which leads to the
following expression for integrated volatility in terms of spot variables

hVt,h = aσhσ
2
t + bσhyt + cσh +
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0
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where I denote
aσh =
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and analogously other coefficients. In particular, the error terms may be represented as
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ans
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The conditional variance of integrated volatility is
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To make the notation shorter,
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Also, the conditional variance of future spot volatility is
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The conditional variance of future spot central tendency is
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ˆ t+h

t

EP
t [yu]

(
Ayt+h−u

)2
du

=η2
y

ˆ t+h

t

(Ayu−tyt + Cy
u−t)

(
Ayt+h−u

)2
du

=ytη2
y

ˆ h

0
Ayu

(
Ayh−u

)2
du+ η2

y

ˆ h

0
Cy
u

(
Ayh−u

)2
du.

The conditional covariance of future spot volatility and central tendency is

CovPt
[
σ2
t+hyt+h

]
=EP

t

[
εσt,hε

y
t,h

]
=η2

y

ˆ t+h

t

EP
t [yu]Ayt+h−uBσ

t+h−udu

=η2
y

ˆ t+h

t

(Ayu−tyt + Cy
u−t)Ayt+h−uBσ

t+h−udu

=ytη2
y

ˆ h

0
AyuA

y
h−uB

σ
h−udu+ η2

y

ˆ h

0
Cy
uA

y
h−uB

σ
h−udu.
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These expressions can be compactly written as

V P
t

[
σ2
t+h

]
= a1σ

2
t + a2yt + a3,

V P
t [yt+h] = b2yt + b3,

CovPt
[
σ2
t+hyt+h

]
= c2yt + c3,

with obvious notation for parameters.
Now, the second conditional momets may be written as

EP
t

[
(hVt,h)2

]
= A1σ

2
t + A2yt + A3 +

(
aσhσ

2
t + bσhyt + cσh

)2
,

EP
t

[
σ4
t+h

]
= a1σ

2
t + a2yt + a3 +

(
Aσhσ

2
t +Bσ

hyt + Cσ
h

)2
,

EP
t

[
σ2
t+hyt+h

]
= c2yt + c3 +

(
Aσhσ

2
t +Bσ

hyt + Cσ
h

)
(Ayhyt + Cy

h) ,

EP
t

[
y2
t+h

]
= b2yt + b3 + (Ayhyt + Cy

h)2 ,

EP
t

[
σ2
t+h

]
= Aσhσ

2
t +Bσ

hyt + Cσ
h ,

EP
t [yt+h] = Ayhyt + Cy

h.

The only observable here is integrated volatility V2
t,h. The rest are latent variables which can

be eliminated by taking appropriate lags and making substitutions. For example, the spot
volatility and central tendency equations may be written as

EP
t [(1− AyhL) yt+h] = Cy

h,

Et
[
(1− AσhL)σ2

t+h

]
= Bσ

hyt + Cσ
h .

Multiply the last equation by (1− AyhL), shift the time by h using the law of itetrated expec-
tations, and finally substitute the first equation in to get

EP
t

[
(1− AyhL) (1− AσhL)σ2

t+2h

]
= Bσ

hC
y
h + (1− Ayh)Cσ

h .

The expression for teh second moment of integrated volatilty includes spot variables σ4
t , σ2

t yt,
y2
t , σ2

t , and yt. using the above approach each one of these variables is eliminated with the end
result of

EP
t

[(
1− (Aσh)2 L

)
(1− AσhA

y
hL)

(
1− (Ayh)

2 L
)

(1− AyhL) (1− AσhL)V2
t+5h,h

]
= M.

The constant M may be obtained from computing the unconditional expectation of integrated
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volatility

(
1− (Aσh)2

)
(1− AσhA

y
h)
(
1− (Ayh)

2
)

(1− Ayh) (1− Aσh)EP
[
(hVt,h)2

]
= M,

and other spot variables:

EP
[
(hVt,h)2

]
= (aσh)2 EP

[
σ4
t

]
+ 2aσhbσhEP

[
σ2
t yt
]

+ (bσh)2 EP
[
y2
t

]
+ (A1 + 2aσhcσh)µ+ (A2 + 2bσhcσh)µ+

(
A3 + (cσh)2

)
,(

1− (Aσh)2
)
EP

[
σ4
t+h

]
= 2AσhBσ

hE
P
[
σ2
t yt
]

+ (Bσ
h)2 EP

[
y2
t

]
+ (a1 + 2AσhCσ

h )µ+ (a2 + 2Bσ
hC

σ
h )µ+

(
a3 + (Cσ

h )2
)
,

(1− AσhA
y
h)E

[
σ2
t+hyt+h

]
= AyhB

σ
hE

P
[
y2
t

]
+ AσhC

y
hµ+ (c2 +Bσ

hC
y
h + AyhC

σ
h )µ+ (c3 + Cσ

hC
y
h) ,(

1− (Ayh)
2
)
E
[
y2
t+h

]
= (b2 + 2AyhC

y
h)µ+

(
b3 + (Cy

h)2
)
.

B.4 Unconditional moments of the premia

Recall from (B.2) the representation of spot volatility and central tendency as infinite stochastic
integrals with respect to Brownian motions only. Integrating it over time interval H I get

HYt,H =
ˆ t+H

t

yudu

=µH + ηy

ˆ t+H

t

ˆ u

−∞

√
yvA

y
u−vdW

y
v du

=µH + ηy

ˆ t+H

t

ˆ u

t

√
yvA

y
u−vdW

y
v du+ ηy

ˆ t+H

t

ˆ t

−∞

√
yvA

y
u−vdW

y
v du

=µH + ηy

ˆ t+H

t

√
yv

(ˆ t+H

v

Ayu−vdu

)
dW y

v + ηy

ˆ t

−∞

√
yv

(ˆ t+H

t

Ayu−vdu

)
dW y

v .
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And for integrated stochastic volatility:

HVt,H =
ˆ t+H

t

σ2
udu

=µH + ηy

ˆ t+H

t

ˆ u

−∞

√
yvB

σ
u−vdW

y
v du+ ησ

ˆ t+H

t

ˆ u

−∞
σvA

σ
u−vdW

σ
v du

=µH + ηy

ˆ t+H

t

ˆ t

−∞

√
yvB

σ
u−vdW

y
v du+ ηy

ˆ t+H

t

ˆ u

t

√
yvB

σ
u−vdW

y
v du

+ ησ

ˆ t+H

t

ˆ t

−∞
σvA

σ
u−vdW

σ
v du+ ησ

ˆ t+H

t

ˆ u

t

σvA
σ
u−vdW

σ
v du

=µH + ηy

ˆ t

−∞

√
yv

(ˆ t+H

t

Bσ
u−vdu

)
dW y

v + ηy

ˆ t+H

t

√
yv

(ˆ t+H

v

Bσ
u−vdu

)
dW y

v

+ ησ

ˆ t

−∞
σv

(ˆ t+H

t

Aσu−vdu

)
dW σ

v + ησ

ˆ t+H

t

σv

(ˆ t+H

v

Aσu−vdu

)
dW σ

v .

Define

τCt,t+H = 1
H
ηy

ˆ t+H

t

Ayu−vdu,

τVt,t+H = 1
H
ηy

ˆ t+H

t

Bσ
u−vdu,

ςt,t+H = 1
H
ησ

ˆ t+H

t

Aσu−vdu.

With this notation,

Yt,H = µ+
ˆ t+H

t

√
yvτ

C
v,t+HdW

y
v +
ˆ t

−∞

√
yvτ

C
t,t+HdW

y
v ,

Vt,H = µ+
ˆ t

−∞

√
yvτ

V
t,t+HdW

y
v +
ˆ t+H

t

√
yvτ

V
v,t+HdW

y
v

+
ˆ t

−∞
σvςt,t+HdW

σ
v +
ˆ t+H

t

σvςv,t+HdW
σ
v ,

Vt,H − Yt,H =
ˆ t

−∞

√
yv
(
τVt,t+H − τCt,t+H

)
dW y

v +
ˆ t+H

t

√
yv
(
τVv,t+H − τCv,t+H

)
dW y

v

+
ˆ t

−∞
σvςt,t+HdW

σ
v +
ˆ t+H

t

σvςv,t+HdW
σ
v .

Under the risk-neutral measure the integrated central tendency is

HỸt,H = µ̃H + ηy
κσ
κ̃σ

ˆ t+H

t

√
yv

(ˆ t+H

v

Ãyu−vdu

)
dW̃ y

v + ηy
κσ
κ̃σ

ˆ t

−∞

√
yv

(ˆ t+H

t

Ãyu−vdu

)
dW̃ y

v ,
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and integrated volatility is

HVt,H =µ̃H + ηy
κσ
κ̃σ

ˆ t

−∞

√
yv

(ˆ t+H

t

B̃σ
u−vdu

)
dW̃ y

v + ηy
κσ
κ̃σ

ˆ t+H

t

√
yv

(ˆ t+H

v

B̃σ
u−vdu

)
dW̃ y

v

+ ησ

ˆ t

−∞
σv

(ˆ t+H

t

Ãσu−vdu

)
dW̃ σ

v + ησ

ˆ t+H

t

σv

(ˆ t+H

v

Ãσu−vdu

)
dW̃ σ

v .

Now, define two kinds of premia, volatility and central tendency:

V Pt,H = EQ
t [Vt,H ]− EP

t [Vt,H ] ,

CPt,H = EQ
t

[
Ỹt,H

]
− EP

t [Yt,H ] .

In order to compute these premia, find the respective conditional expectations. First, the
historical expectation of central tendency:

EP
t [HYt,H ] = µH + ηy

ˆ t

−∞

√
yv

(ˆ t+H

t

Ayu−vdu

)
dW y

v ,

and the risk-neutral expectation:

EQ
t

[
HỸt,H

]
=µ̃H + ηy

κσ
κ̃σ

ˆ t

−∞

√
yv

(ˆ t+H

t

Ãyu−vdu

)
dW̃ y

v

=µ̃H + ηy
κσ
κ̃σ

ˆ t

−∞

√
yv

(ˆ t+H

t

Ãyu−vdu

)
(dW y

v − λy
√
yvdv)

=µ̃H + ηy
κσ
κ̃σ

ˆ t

−∞

√
yv

(ˆ t+H

t

Ãyu−vdu

)
dW y

v − λyηy
κσ
κ̃σ

ˆ t

−∞
yv

(ˆ t+H

t

Ãyu−vdu

)
dv.

Now find the conditional expectations of integrated volatility under the P measure:

EP
t [HVt,H ] = µH + ηy

ˆ t

−∞

√
yv

(ˆ t+H

t

Bσ
s−vds

)
dW y

v + ησ

ˆ t

−∞
σv

(ˆ t+H

t

Aσs−vds

)
dW σ

v ,

and under the Q measure:

EQ
t [HVt,H ] =µ̃H + ηy

κσ
κ̃σ

ˆ t

−∞

√
yv

(ˆ t+H

t

B̃σ
s−vds

)
dW̃ y

v + ησ

ˆ t

−∞
σv

(ˆ t+H

t

Ãσs−vds

)
dW̃ σ

v

=µ̃H + ηy
κσ
κ̃σ

ˆ t

−∞

√
yv

(ˆ t+H

t

B̃σ
s−vds

)
(dW y

v − λy
√
yvdv)

+ ησ

ˆ t

−∞
σv

(ˆ t+H

t

Ãσs−vds

)
(dW σ

v − λσσvdv) .
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By taking the difference between two expectations of the central tendency I find the premium
related to central tendency shocks:

CPt,H =EQ
t

[
Ỹt,H

]
− EP

t [Yt,H ]

= (µ̃− µ) + 1
H
ηy

ˆ t

−∞

√
yv

(ˆ t+H

t

(
κσ
κ̃σ
Ãyu−v − Ayu−v

)
du

)
dW y

v

− 1
H
λyηy

κσ
κ̃σ

ˆ t

−∞
yv

(ˆ t+H

t

Ãyu−vdu

)
dv.

Write one of the terms separately and represent it as a sum of purely deterministic and purely
stochastic integrals:

ˆ t

−∞
yv

(ˆ t+H

t

Ãys−vds

)
dv =

ˆ t

−∞

(
µ+ ηy

ˆ v

−∞

√
yuA

y
v−udW

y
u

)(ˆ t+H

t

Ãys−vds

)
dv

=µ
ˆ t

−∞

(ˆ t+H

t

Ãys−vds

)
dv

+ ηy

ˆ t

−∞

(ˆ v

−∞

√
yuA

y
v−u

(ˆ t+H

t

Ãys−vds

)
dW y

u

)
dv

=µ
ˆ t

−∞

(ˆ t+H

t

Ãys−vds

)
dv

+ ηy

ˆ t

−∞

√
yu

(ˆ t

u

Ayv−u

(ˆ t+H

t

Ãys−vds

)
dv

)
dW y

u .

Making the substitution leads to the following expression for the central tendency premia:

CPt,H = (µ̃− µ)− 1
H
µλyηy

κσ
κ̃σ

ˆ t

−∞

ˆ t+H

t

Ãys−vdsdv

+ 1
H
ηy

ˆ t

−∞

√
yv

(ˆ t+H

t

(
κσ
κ̃σ
Ãyu−v − Ayu−v

)
du

)
dW y

v

− 1
H
λyη

2
y

κσ
κ̃σ

ˆ t

−∞

√
yv

(ˆ t

v

Ayu−v

(ˆ t+H

t

Ãys−uds

)
du

)
dW y

v .
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Now compute the volatility premium:

V Pt,H =EQ
t [Vt,H ]− EP

t [Vt,H ]

= (µ̃− µ)− 1
H
λyηy

κσ
κ̃σ

ˆ t

−∞
yv

(ˆ t+H

t

B̃σ
s−vds

)
dv − 1

H
λσησ

ˆ t

−∞
σ2
v

(ˆ t+H

t

Ãσs−vds

)
dv

+ 1
H
ηy

ˆ t

−∞

√
yv

(ˆ t+H

t

(
κσ
κ̃σ
B̃σ
s−v −Bσ

s−v

)
ds

)
dW y

v

+ 1
H
ησ

ˆ t

−∞
σv

(ˆ t+H

t

(
Ãσs−v − Aσs−v

)
ds

)
dW σ

v .

Represent next to last term as a sum of purely deterministic and purely stochastic integrals:
ˆ t

−∞
yv

(ˆ t+H

t

B̃σ
s−vds

)
dv =µ

ˆ t

−∞

(ˆ t+H

t

B̃σ
s−vds

)
dv

+ ηy

ˆ t

−∞

√
yu

(ˆ t

u

Ayv−u

(ˆ t+H

t

B̃σ
s−vds

)
dv

)
dW y

u .

Do the same for the last term in volatility premium:
ˆ t

−∞
σ2
v

(ˆ t+H

t

Ãσs−vds

)
dv =

ˆ t

−∞

(
µ+ ηy

ˆ v

−∞

√
yuB

σ
v−udW

y
u

+ησ
ˆ v

−∞
σuA

σ
v−udW

σ
u

)(ˆ t+H

t

Ãσs−vds

)
dv

=µ
ˆ t

−∞

ˆ t+H

t

Ãσs−vdsdv

+ ηy

ˆ t

−∞

ˆ v

−∞

√
yuB

σ
v−u

(ˆ t+H

t

Ãσs−vds

)
dW y

udv

+ ησ

ˆ t

−∞

ˆ v

−∞
σuA

σ
v−u

(ˆ t+H

t

Ãσs−vds

)
dW σ

u dv

=µ
ˆ t

−∞

ˆ t+H

t

Ãσs−vdsdv

+ ηy

ˆ t

−∞

√
yu

(ˆ t

u

Bσ
v−u

(ˆ t+H

t

Ãσs−vds

)
dv

)
dW y

u

+ ησ

ˆ t

−∞
σu

(ˆ t

u

Aσv−u

(ˆ t+H

t

Ãσs−vds

)
dv

)
dW σ

u .
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Making the substitution leads to the following representation of volatility premium:

V Pt,H = (µ̃− µ)− 1
H
µ

ˆ t

−∞

ˆ t+H

t

(
λyηy

κσ
κ̃σ
B̃σ
s−v + λσησÃ

σ
s−v

)
dsdv

+ 1
H
ησ

ˆ t

−∞
σv

(ˆ t+H

t

(
Ãσs−v − Aσs−v

)
ds

)
dW σ

v

− 1
H
λση

2
σ

ˆ t

−∞
σv

(ˆ t

v

Aσu−v

(ˆ t+H

t

Ãσs−uds

)
du

)
dW σ

v

+ 1
H
ηy

ˆ t

−∞

√
yv

(ˆ t+H

t

(
κσ
κ̃σ
B̃σ
s−v −Bσ

s−v

)
ds

)
dW y

v

− 1
H
λyη

2
y

κσ
κ̃σ

ˆ t

−∞

√
yv

(ˆ t

v

Ayu−v

(ˆ t+H

t

B̃σ
s−uds

)
du

)
dW y

v

− 1
H
λσησηy

ˆ t

−∞

√
yv

(ˆ t

v

Bσ
u−v

(ˆ t+H

t

Ãσs−uds

)
du

)
dW y

v .

Taking into account that the unconditional means of three premia are

EP [V Pt,H ] = (µ̃− µ)− 1
H
µ

ˆ t

−∞

ˆ t+H

t

(
λyηy

κσ
κ̃σ
B̃σ
u−v + λσησÃ

σ
u−v

)
dudv,

EP [CPt,H ] = (µ̃− µ)− 1
H
µ

ˆ t

−∞

ˆ t+H

t

λyηy
κσ
κ̃σ
Ãys−vdsdv,

EP [TPt,H ] = −µ
ˆ t

−∞

ˆ t+H

t

(
λyηy

κσ
κ̃σ

(
B̃σ
s−v − Ã

y
s−v

)
+ λσησÃ

σ
s−v

)
dsdv,

all in all the premia may be represented as

CPt,H = EP [CPt,H ] +
ˆ t

−∞

√
yv$

C
v,tdW

y
v ,

V Pt,H = EP [V Pt,H ] +
ˆ t

−∞
σvωv,tdW

σ
v +
ˆ t

−∞

√
yv$

V
v,tdW

y
v ,

TPt,H = EP [TPt,H ] +
ˆ t

−∞
σvωv,tdW

σ
v +
ˆ t

−∞

√
yv$

T
v,tdW

y
v ,
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where

Hωv,t = ησ

ˆ t+H

t

(
Ãσs−v − Aσs−v

)
ds− λση2

σ

ˆ t

v

Aσu−v

(ˆ t+H

t

Ãσs−uds

)
du,

H$C
v,t = ηy

ˆ t+H

t

(
κσ
κ̃σ
Ãyu−v − Ayu−v

)
du− λyη2

y

κσ
κ̃σ

ˆ t

v

Ayu−v

(ˆ t+H

t

Ãys−uds

)
du,

H$V
v,t = ηy

ˆ t+H

t

(
κσ
κ̃σ
B̃σ
s−v −Bσ

s−v

)
ds

−
ˆ t

v

ˆ t+H

t

(
λyη

2
y

κσ
κ̃σ
Ayu−vB̃

σ
s−uds+ λσησηyB

σ
u−vÃ

σ
s−u

)
dsdu,

H$T
v,t = ηy

ˆ t+H

t

(
κσ
κ̃σ

(
B̃σ
s−v − Ã

y
s−v

)
−
(
Bσ
s−v − A

y
s−v

))
ds

−
ˆ t

v

ˆ t+H

t

(
λyη

2
y

κσ
κ̃σ
Ayu−v

(
B̃σ
s−u − Ã

y
s−u

)
+ λσησηyB

σ
u−vÃ

σ
s−u

)
dsdu.

With the introduced notation it is actually quite easy to compute second moments. In
particular, the variances are

V P [CPt,H ] = µ

ˆ t

−∞

(
$C
v,t

)2
dv,

V P [V Pt,H ] = µ

ˆ t

−∞

[
(ωv,t)2 +

(
$V
v,t

)2
]
dv,

V P [TPt,H ] = µ

ˆ t

−∞

[
(ωv,t)2 +

(
$T
v,t

)2
]
dv.

The covariances are

CovP [CPt,H , V Pt,H ] = µ

ˆ t

−∞
$C
v,t$

V
v,tdv,

CovP [CPt,H , TPt,H ] = µ

ˆ t

−∞
$C
v,t$

T
v,tdv,

CovP [V Pt,H , TPt,H ] = µ

ˆ t

−∞

[
(ωv,t)2 +$V

v,t$
T
v,t

]
dv.
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The autocovariances are

CovP [CPt,H , CPt−h,H ] = µ

ˆ t−h

−∞
$C
v,t$

C
v,t−hdv,

CovP [V Pt,H , V Pt−h,H ] = µ

ˆ t−h

−∞

[
ωv,tωv,t−h +$V

v,t$
V
v,t−h

]
dv,

CovP [TPt,H , TPt−h,H ] = µ

ˆ t−h

−∞

[
ωv,tωv,t−h +$T

v,t$
T
v,t−h

]
dv.

In addition I can compute unconditional moments of the integrated volatility and central
tendency. The means are clearly both equal to µH. The variances are

V P [Yt,H ] = µ

ˆ t+H

t

(
τCv,t+H

)2
dv + µ

ˆ t

−∞

(
τCt,t+H

)2
dv,

V P [Vt,H ] = µ

ˆ t+H

t

[(
τVv,t+H

)2
+ (ςv,t+H)2

]
dv + µ

ˆ t

−∞

[(
τVt,t+H

)2
+ (ςt,t+H)2

]
dv,

V P [Vt,H − Yt,H ] = µ

ˆ t+H

t

[(
τVv,t+H − τCv,t+H

)2
+ (ςv,t+H)2

]
dv

+µ
ˆ t

−∞

[(
τVt,t+H − τCt,t+H

)2
+ (ςt,t+H)2

]
dv.

The covariances are

CovP [Vt,H ,Yt,H ] = µ

ˆ t

−∞
τVt,t+Hτ

C
t,t+Hdv + µ

ˆ t+H

t

τVv,t+Hτ
C
v,t+Hdv,

CovP [Vt,H ,Vt,H − Yt,H ] = V P [Vt,H ]− CovP [Vt,H ,Yt,H ] ,

CovP [Yt,H ,Vt,H − Yt,H ] = CovP [Yt,H ,Vt,H ]− V P [Yt,H ] .
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For h < H the autocovariances are

CovP [Yt,H ,Yt−h,H ] = µ

ˆ t−h+H

t

τCv,t+Hτ
C
v,t−h+Hdv

+µ
ˆ t

t−h
τCt,t+Hτ

C
v,t−h+Hdv + µ

ˆ t−h

−∞
τCt,t+Hτ

C
t−h,t−h+Hdv,

CovP [Vt,H ,Vt−h,H ] = µ

ˆ t−h+H

t

(
τVv,t+Hτ

V
v,t−h+H + ςv,t+Hςv,t−h+H

)
dv

+µ
ˆ t

t−h

(
τVt,t+Hτ

V
v,t−h+H + ςt,t+Hςv,t−h+H

)
dv

+µ
ˆ t−h

−∞

(
τVt,t+Hτ

V
t−h,t−h+H + ςt,t+Hςt−h,t−h+H

)
dv,

CovP [Vt,H − Yt,H ,Vt−h,H − Yt−h,H ] =

= µ

ˆ t−h+H

t

(
τVv,t+H − τCv,t+H

) (
τVv,t−h+H − τCv,t−h+H

)
dv

+µ
ˆ t−h+H

t

ςv,t+Hςv,t−h+Hdv

+µ
ˆ t

t−h

(
τVt,t+H − τCt,t+H

) (
τVv,t−h+H − τCv,t−h+H

)
dv

+µ
ˆ t

t−h
ςt,t+Hςv,t−h+Hdv

+µ
ˆ t−h

−∞

(
τVt,t+H − τCt,t+H

) (
τVt−h,t−h+H − τCt−h,t−h+H

)
dv

+µ
ˆ t−h

−∞
ςt,t+Hςt−h,t−h+Hdv.
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For h ≥ H the autocovariances are

CovP [Yt,H ,Yt−h,H ] = µ

ˆ t−h+H

t−h
τCt,t+Hτ

C
v,t−h+Hdv + µ

ˆ t−h

−∞
τCt,t+Hτ

C
t−h,t−h+Hdv,

CovP [Vt,H ,Vt−h,H ] = µ

ˆ t−h+H

t−h

(
τVt,t+Hτ

V
v,t−h+H + ςt,t+Hςv,t−h+H

)
dv

+µ
ˆ t−h

−∞

(
τVt,t+Hτ

V
t−h,t−h+H + ςt,t+Hςt−h,t−h+H

)
dv,

CovP [Vt,H − Yt,H ,Vt−h,H − Yt−h,H ] =

= µ

ˆ t−h+H

t−h

(
τVt,t+H − τCt,t+H

) (
τVv,t−h+H − τCv,t−h+H

)
dv

+µ
ˆ t−h+H

t−h
ςt,t+Hςv,t−h+Hdv

+µ
ˆ t−h

−∞

(
τVt,t+H − τCt,t+H

) (
τVt−h,t−h+H − τCt−h,t−h+H

)
dv

+µ
ˆ t−h

−∞
ςt,t+Hςt−h,t−h+Hdv.

The covariances of the three premia with the central tendency are

CovP [CPt,H ,Yt,H ] = µ

ˆ t

−∞
$C
v,tτ

C
t,t+Hdv,

CovP [V Pt,H ,Yt,H ] = µ

ˆ t

−∞
$V
v,tτ

C
t,t+Hdv,

CovP [TPt,H ,Yt,H ] = µ

ˆ t

−∞
$T
v,tτ

C
t,t+Hdv.

The covariances of the three premia with the volatility are

CovP [CPt,H ,Vt,H ] = µ

ˆ t

−∞
$C
v,tτ

V
t,t+Hdv,

CovP [V Pt,H ,Vt,H ] = µ

ˆ t

−∞

(
$V
v,tτ

V
t,t+H + ωv,tςt,t+H

)
dv,

CovP [TPt,H ,Vt,H ] = µ

ˆ t

−∞

(
$T
v,tτ

V
t,t+H + ωv,tςt,t+H

)
dv.

Finally, the covariances of the three premia with the difference between the volatility and central

51



tendency are

CovP [CPt,H ,Vt,H − Yt,H ] = µ

ˆ t

−∞
$C
v,t

(
τVt,t+H − τCt,t+H

)
dv,

CovP [V Pt,H ,Vt,H − Yt,H ] = µ

ˆ t

−∞

(
$V
v,t

(
τVt,t+H − τCt,t+H

)
+ ωv,tςt,t+H

)
dv,

CovP [TPt,H ,Vt,H − Yt,H ] = µ

ˆ t

−∞

(
$T
v,t

(
τVt,t+H − τCt,t+H

)
+ ωv,tςt,t+H

)
dv.

B.5 CLT for model innovations

Suppose that σ2
t adapted to Ft = σ {σ2

τ , τ ≤ t} is a solution of the following square-root SDE:

dσ2
t =

(
µ− σ2

t

)
dt+ σtdWt,

where Wt is a standard Brownian motion on (Ω,F , P ) probability space. The solution may be
written in recursive form as

σ2
t+h = µ

(
1− e−h

)
+ e−hσ2

t +
ˆ t+h

t

σve
v−t−hdWv, (B.3)

or in infinite stochastic integral representation

σ2
t = µ+

ˆ t

−∞
σve

v−tdWv. (B.4)

Also define a variable t
Xt =

ˆ t

t−1
σue

u−tdWu > 0,

I argue that the above representation is general enough for the model in my paper. All inno-
vations, integrated variables, and their interactions may be reduced to the above form with a
appropriate change of parameters and consequitive recursive substitutions.

It is true that Xt is a martingale difference sequence since trivially Et−1 [Xt] = 0. Also, Xt is
L1-mixingale since unconditional expectation is equal to zero and I can take ct = 0 and ξm = 0
so that

E |Et−m [Xt]| ≤ ctξm

for all t and m ≥ 0.

Lemma 1. Xt is uniformly integrable.
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Proof. Define

Yt =
ˆ t

−∞
σue

u−tdWu.

Use Ito’s Lemma (Karatzas & Shreve, 1997) for Y 2
t :

Y 2
t = 2

ˆ t

−∞

(ˆ s

−∞
σue

u−sdWu

)
σse

s−tdWs +
ˆ t

−∞
σ2
se

2s−2tds.

Take the expectation:
E
[
Y 2
t

]
= 1

2µ <∞

for all t. Hence, E [X2
t ] < E [Y 2

t ] <∞.

Lemma 2. Define XT = T−1∑T
t=1 Xt. Then, XT

p→ 0.

Proof. By Theorem 1 (Andrews, 1988, p.460) with the choice of ct = 0 and taking into account
uniform integrability of Xt I immediately have T−1∑T

t=1 Xt
p→ 0.

Lemma 3. E [X2
t ] = µ (1− e−2) <∞.

Proof. Write

E
[
X2
t

]
=µ− 2E

[ˆ t−1

−∞
σue

u−tdWu

ˆ t−1

−∞
σue

u−tdWu

]

=µ− 2E
[ˆ t−1

−∞
σ2
ue

2u−2tdu

]

=µ− 2µ
ˆ t−1

−∞
e2u−2tdu

=µ
(
1− e−2

)
.

Remark. It follows trivially from the previous Lemma that T−1∑T
t=1 E [X2

t ] = µ (1− e−2) > 0.

Lemma 4. The fourth moment of Xt is finite, E [X4
t ] < E [Y 4

t ] = 3µ <∞.

Proof. Using the Ito Lemma for Y 4
t where Yt =

´ t
−∞ σue

u−tdWu I obtain

Y 4
t = 4

ˆ t

−∞

(ˆ s

−∞
σue

u−sdWu

)3

σse
s−tdWs + 6

ˆ t

−∞

(ˆ s

−∞
σue

u−sdWu

)2

σ2
se

2s−2tds.
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The unconditional expectation of this variable is

E
[
Y 4
t

]
=6E

ˆ t

−∞

(ˆ s

−∞
σue

u−sdWu

)2

σ2
se

2s−2tds


=6
ˆ t

−∞
E

(ˆ s

−∞
σuσse

u−sdWu

)2
 e2s−2tds

=6
ˆ t

−∞

(ˆ s

−∞
E
[
σ2
uσ

2
s

]
e2u−2sdu

)
e2s−2tds.

Write the expectation of the product of σ2
u and σ2

s separately using the representation in (B.3):

E
[
σ2
uσ

2
s

]
=E

[
σ2
uEu

[
σ2
s

]]
=E

[
σ2
u

(
µ
(
1− es−u

)
+ es−uσ2

u +
ˆ s

u

σve
s−vdWv

)]

=E
[
µ2
(
1− es−u

)
+ es−uσ4

u + σ2
u

ˆ s

u

σve
s−vdWv

]

=µ2
(
1− es−u

)
+ es−uE

[
σ4
u

]
+ E

[
σ2
uEu

[ˆ s

u

σve
s−vdWv

]]
.

The last expectation above is zero. The second moment of σ2
u is

E
[
σ4
u

]
=E

(ˆ t

−∞
σve

v−tdWv

)2


=E
[ˆ t

−∞
σ2
ve

2v−2tdv

]

=µ
ˆ t

−∞
e2v−2tdv = 1

2µ.

Hence,
E
[
σ2
uσ

2
s

]
=µ2

(
1− es−u

)
+ 1

2µe
s−u

=µ2 +
(1

2 − µ
)
µes−u.
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Plug this back to the expression of the fourth moment of Yt:

E
[
Y 4
t

]
=6
ˆ t

−∞

(ˆ s

−∞

(
µ2 +

(1
2 − µ

)
µes−u

)
e2u−2sdu

)
e2s−2tds

=6
ˆ t

−∞

(ˆ s

−∞

(
µ2e2u−2s +

(1
2 − µ

)
µeu−s

)
du

)
e2s−2tds

=6
ˆ t

−∞

(
µ2 +

(1
2 − µ

)
µ
)
e2s−2tds

=3µ.

Hence, E [Y 4
t ] = 3µ <∞.

Remark. It follows from Lemma 4 that all moments below the fourth exist, hence part of the
Lemma 3 is redundant.

Lemma 5. It is true that T−1∑T
t=1 X

2
t

p→ µ (1− e−2).

Proof. Write Xt as a following difference:

Xt =
ˆ t

t−1
σue

u−tdWu

=
ˆ t

−∞
σue

u−tdWu − e−1
ˆ t−1

−∞
σue

u−t+1dWu

=Zt − e−1Zt−1.

The martingale Zt may be represented recursively as

Zt =
ˆ t

−∞
σue

u−tdWu

=e−1Zt−1 +
ˆ t

t−1
σue

u−tdWu

=e−1Zt−1 + ηt.

Using Ito’s Lemma for Zt I can represent it as an SDE:

dZt = −Ztdt+ σtdWt.

Using Ito’s Lemma once again for Z2
t I can show that

dZ2
t =2ZtdZt + 2d [Z,Z]t

=2
(
σ2
t − Z2

t

)
dt+ 2ZtσtdWt.
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Plug in the infinite representation of σ2
u given in (B.4):

dZ2
t =2

(
µ+
ˆ t

−∞
σve

v−tdWv − Z2
t

)
dt+ 2ZtσtdWt

=2
(
µ− Z2

t

)
dt+ 2

(ˆ t

−∞
σve

v−tdWv

)
dt+ 2ZtσtdWt.

Integrate this SDE from t− 1 to t

Z2
t =e−2Z2

t−1 + µ
(
1− e−2

)
+ 2
ˆ t

t−1
e−2(t−s)

(ˆ s

−∞

(
σv

ˆ s

v

ev−udu

)
dWv

)
ds+ 2

ˆ t

t−1
e−2(t−s)

(ˆ s

−∞
ZuσudWu

)
ds

=e−2Z2
t−1 + µ

(
1− e−2

)
+ εt

Take the square of Xt and substitute recursive expressions for Zt and Zt−1:

X2
t =Z2

t − 2e−1ZtZt−1 + e−2Z2
t−1

=2e−2Z2
t−1 + µ

(
1− e−2

)
+ εt − 2e−2Z2

t−1 − 2e−1ηtZt−1

=µ
(
1− e−2

)
+ εt − 2e−1ηtZt−1.

The first term above is the second moment of Xt. The variables εt and ηt can be shown to
be mds and L1-mixingale analogously to Xt itself. The term ηtZt−1 is also a martingale and
L1-mixingale simply by the fact that Zt−1 is measurable with respect to Ft−1. This implies
that both T−1∑T

t=1 εt and T−1∑T
t=1 ηtZt−1 converge to zero in probability. This concludes the

proof.

Proposition. It is true that
√
TXT

d→ N (0, µ (1− e−2)).

Proof. There are four conditions to be checked. The first, that the second moment is finite for
all t is proven in Lemma 3. The second condition that the average of second moments converges
to some positive constant holds trivially since the second moment is the same constant for all t.
The condition that E |Xt|r <∞ for some r > 2 and all t is shown in Lemma 4 for r = 4. The
last condition, that the average of Xt sqaured converges in probability to the avergae of second
moments, is proven in Lemma 5. Hence, all conditions of Corollary 5.25 (White, 1984, p.130)
are checked.
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