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1 Introduction

Often an instrumental variables regression contains many exogenous regressors. These
variables are not of interest, but are included primarily as a guard against model mis-
specification and omitted variables bias, in order to approximate as closely as possible an
important but unobservable factor by throwing in many observable characteristics, or in
order to capture possible non-linearities in a semi-nonparametric manner. As a result,
if the sample is not too large, the proportion of such regressors to the number of obser-
vations may be perceptible. This may adversely affect the inference because a part of
information in the sample has to be spent on estimation of a large number of nuisance
parameters. Hahn and Hausman (2002, Section 6) in their illustrative application to a
demand function compute a number of estimators and run a number of tests where they
include 134 predetermined variables, the sample size being 1459. The coefficients of these
variables are of no interest, and the authors even do not mention what they are, while of
interest is the price elasticity only. The concern that the ratio of the number of exogenous
variables to the sample size may be non-negligible is relevant for estimation of a demand
function for various products (e.g., for water, see Billings, 1987, or for electricity, see
Kamerschen and Porter, 2004), estimation of the hedonic price model (e.g., see Witte,
Sumka and Erekson, 1979), or estimation of the household production function (e.g., see
Rosenzweig and Schultz, 1983), to name a few.

In this paper we analyze the impact of a large number of exogenous regressors on exist-
ing estimators and tests for a linear model estimated by instrumental variables methods.
For a standard instrumental variables regression with few or many instruments we con-
sider an asymptotic framework where the number of exogenous regressors and possibly
instruments is proportional to the sample size. The literature on estimation and infer-
ence in the presence of many (possibly weak) instruments is rapidly growing (see, among
others, Chao and Swanson, 2005, 2006; Hansen, Hausman and Newey, 2008; van Hasselt,
2010; Anderson, Kunimoto and Matsushita, 2010; Hausman, Newey, Woutersen, Chao,
and Swanson, 2010; Anatolyev and Gospodinov, 2011; Lee and Okui, 2012; Chao, Swan-
son, Hausman, Newey, and Woutersen, 2012), and the present paper aims to contribute to
this literature. Among the estimators we consider are conventional 2SLS, bias corrected
2SLS, LIML and K-class estimators. Among the tests we consider are conventional t and J
tests, as well as those recently proposed in the context of weak or many instruments, such
as Anderson—-Rubin (Anderson and Rubin, 1949) and Kleibergen (Kleibergen, 2002) tests
for parameter restrictions, and the Wald test with variance estimates of Hansen, Hausman
and Newey (2008). In those cases when the presence of many exogenous regressors in-
validates the estimators or tests under consideration, we propose their modified versions.

We do not assume error normality; all modifications are constructed in the general case



of possibly non-normal model errors. Some of our results are new in the literature even
for the special case when the exogenous regressors are not many.

A brief preview of results follows. When the instruments are few, the inference us-
ing the conventional 2SLS estimator and associated t and J statistics, as well as the
Anderson—Rubin and Kleibergen tests, is still valid. When the instruments are many,
the LIML estimator remains consistent, but the presence of many exogenous regressors
changes its asymptotic variance. Moreover, the conventional bias correction of the 2SLS
estimator is no longer appropriate. We provide asymptotically correct versions of bias
correction for the 2SLS estimator, derive its asymptotically correct variance estimator,
extend the Hansen—-Hausman—Newey LIML variance estimator to the case of many exoge-
nous regressors, and propose asymptotically valid modifications of the J overidentification
tests based on the LIML and bias corrected 2SLS estimators. A small Monte-Carlo ex-
periment shows good performance of proposed modifications in moderately sized samples
in a model with non-normal errors.

The paper is structured as follows. Section 2 describes the model and states the
assumptions. Section 3 analyzes behavior of conventional estimators and tests when ex-
ogenous regressors are many but instruments are few. Sections 4 and 5 discuss the bias
corrected 2SLS and LIML estimators as well as their variance estimators and associated
tests when instruments and exogenous regressors are numerous. Section 6 presents sim-
ulation results in finite samples. Some useful computational remarks are contained in

Section 7. Finally, Section 8 concludes. All proofs are relegated to the Appendix.

2 The setup

2.1 Model

We are interested in estimating and testing the structural equation with p endogenous

and m included exogenous regressors:
Y = XBy+ Wi + e,

where Y = (y1,...,yn) isn x 1, X = (z1,...,2,) is n x p, W = (w1, ...,w,)" is n x m,
and e = (ey,...,e,) is n x 1. The object of primary interest is the vector of structural
parameters [3,, while the vector dy contains nuisance parameters. There is additionally
an n x £ matrix of instruments (‘excluded exogenous variables’) Z = (21, ..., 2,) , £ > p.
For convenience, the data on instruments Z and exogenous regressors W will be treated
as nonrandom. Because the column dimensions of Z and W will grow with sample size

n, their elements implicitly depend on n.



Let the reduced form be

where YT xz + Txw = ZII; + W1l is the linear projection on the space of (Z, W), and
U = (uy,...,u,) is n x p. We assume throughout that (Z,W) has full column rank:
tk (Z,W) = ¢ + m. This excludes redundant columns from data on instruments and

exogenous regressors. It also means that ¢ + m does not exceed n.

2.2 Notation and assumptions

Let us denote by Py and My, the orthogonal projection matrices associated with W
Py =W (WW)'W' My =1I,— Py,

by Pzw and Mzy the projection matrices associated with (Z, W), and by Pz. and
M. the projection matrices associated with Z+ = My, Z. Note that P,. = Py — Py
(see Lemma Al in the Appendix). Similarly, denote X+ = My X and Y+ = MyY.

Additionally, let us introduce the following notation to be used throughout:
Pr = Py. — (My

for any real number (.

Lower index i will point at the row number of a matrix, e.g. (Mw7Yxz), is the

h

transposed " row of My T xz. Upper indexes will denote corresponding elements of a

matrix, e.g. Pé{} is the (3, j)th element of Py,. Next, a bar will denote taking an average

over the index present, e.g. P is n~! times the trace of Py and ) ; Pé{} is n~! times the
sum of all elements of Py,. Also, let n-vector d contain diagonal elements of an n X n
matrix A.

We adapt the following asymptotic framework.

Assumption 1 Asymptotically, as n — oo, m/n = p+ o(1/y/n) with 0 < p < 1, and
either ¢ is fized, or £/n =X+ o0 (1/y/n) with0 < A <1— p.

Assumption 1 is reminiscent of the classical many instruments asymptotic framework
of Bekker (1994). It is critical that the number of exogenous regressors and possibly
instruments grows proportionately with the sample size rather than slower than that. We
associate the word ‘many’ with such proportional growth, the qualifier ‘moderately many’
with a slower growth, and the word ‘few’ with a fixed number. We exclude the case of few
or moderately many exogenous regressors p = 0 here, but some classical textbook results
can be considered as limiting cases of ours when p is put to zero. Let us also introduce a

fundamental quantity



which is (asymptotically) a number of instruments per degrees of freedom. Note that
0 < a < 1 given the restrictions on A and p.

Next we make assumptions about data generation.

Assumption 2 The errors (e;,u;) are zero mean IID across i having finite eighth mo-

ments, with E [e?] = 0%, E [u;u}] = X, and E [u;e;] = Dye.
Henceforth, by ‘lim’ we understand taking a limit under Assumption 1.

Assumption 3 When ( is fized, limn=Y(Z1)Z+ = Q4., where Q1 is finite and pos-
itive definite, I1y is of full column rank p, and Y ., ||ZH|4 < o(n?). When { — oo,
limn Yy, My YTxz = Qxze, where Qx o is finite and positive definite, > i | |(Mw Y xz),
< o0(n?), and the limits p, = lim (P#)? and 7, = lim Pii (My Y x ), exist and are finite.

Assumption 3 means in particular that the excluded instruments are, as a group,
strong after controlling for the explanatory power provided by the exogenous regressors.
Other requirements in Assumption 3 are technical, they are useful for various large sample
results to go through, and also are helpful in constructing estimators of various moments.

Note that if there are no exogenous regressors (m = 0 and a = \), then P, =
Py — AL, (Pi)? = (Pg)® — A + o(1) and Pi (MwYxz);, = (P§ — ) (Txz);, hence
po = lim (PF)? = \? and 74 = lim (P} — \) (Tx2),.

Let also

~ m R 12
)\:_7 = —, a =
n n n—m

be finite sample analogs of A\, u and a. Also, put

Do = (P, 7 = Pil (P X),

to be estimates of p, and 7.

Denote also for future use .

1" — Eue
= 0_2 ,
€

the coefficients in a linear projection of reduced form errors on structural errors, and let

Ui = U; — P/Gi

be corresponding population least squares residuals, or in a matrix form,

U=U—el.

4
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3 Estimators and tests under few instruments

3.1 2SLS estimation

In this subsection we consider the standard 2SLS estimator and associated J test. The

2SLS estimator for the parameter of interest is
Basrs = (Lo Opem) (X, W) Paw (X, W)™ (X, W) PzwY.
By the partitioned matrix inverse,
BZSLS = (X/PZLX)_1 X'PyLY.
Note that the nuisance parameters can be computed as
basis = (WW) " W/(Y = XBasps),
so the 25LS residuals are then may be computed directly from Bz SIS
éasrs =Y — X Bogps

Define the residual variance

/\/ A
) €9515€2SLS

o = .
2518 = L —p

The t statistic for the j* component of 3, based on 2SLS estimation is

+9) — <B2SLS)j — (Bo);
2SLS )
fsws (05w P (X 0) ]
(BZSLS)j - (50)3’ .
V3sns (0P X))

Further, the standard J test for overidentifying restrictions is given by

JJ

"y .

7 _ éhsr5P7zweéasts

25LS — ~2 :
025Ls

A classical textbook result is that when there are few exogenous regressors (so that
p = 0) and few instruments (so that A = 0), the 2SLS estimator is consistent and asymp-
totically normal, and under the null of correct moment restrictions .Jogr.s is asymptotically
distributed as x* (¢ — p). When the instruments are many (so that A > 0), the 2SLS esti-
mator is inconsistent (Bekker, 1994; Newey, 2004). The following Proposition establishes
the asymptotic properties of 2SLS in the presence of many exogenous regressors (so that

i > 0) when the instruments are few or many.



Proposition 1: Suppose assumptions 1-3 hold. Then

Bosrs 2 Bo+ (Qxze + A%0) " Ay,

and

JasLs 2 g,
n
where the formula for the constant J* can be found in the Appendix.

Thus, the 2SLS estimator is consistent only if A\ = 0, i.e. when there are few instru-
ments. The J statistic has a random limit only when A = 0, i.e. when there are few
instruments and the 2SLS estimator is consistent. In the rest of this Section we focus on
the case of few instruments.

Theorem 1: Suppose assumptions 1-3 hold, and ¢ is fixed. Then
vn <B2SLS - 50) SN (07 o’ (HQQZLnl)_l) ;

j d .
tng?LS - N(O7 1)7 J= 17 Ry 2

and
Jasrs 5 X2 (0 —p).

Thus, the presence of many exogenous regressors does not affect the form of the
asymptotic variance of the 2SLS estimator. In the case when the exogenous regressors
are all orthogonal to the excluded instruments, the asymptotic variance does not depend
on their number (assuming that the unexplained variance of the dependent variable does
not either). However, if the excluded instruments get better and better explained by the
exogenous regressors as the number of those grows, the effect of numerosity of regressors
is to increase the asymptotic variance. The conventional standard errors, however, take
account of these variations in the asymptotic variance. The conventional J test is also
asymptotically valid.

Note that in the special case of a classical linear regression when Z = X the asymptotic
validity of t or Wald tests is consistent with results of Anatolyev (2012) who establishes,
although under more restrictive assumptions, that the classical tests are valid in the many

regressors framework when the number of restrictions is asymptotically fixed.

3.2 Anderson—Rubin and Kleibergen tests

In this subsection we consider the celebrated Anderson-Rubin (AR) and Kleibergen (K)
tests for testing parameter restrictions. In the usual circumstances these tests are robust
to the quality of instruments, and are correctly sized when the instruments are strong,
weak or irrelevant. We study the influence of the numerosity of exogenous regressors on

the asymptotics of the corresponding test statistics. We still focus on the case of fixed /.



Consider the null hypothesis Hy : § = f3,. The Anderson-Rubin AR statistic (Ander-
son and Rubin, 1949) is

n—C—m (Yt —X"8,) Py (Y* - X18,)

AR =
O (V= X4B0) Mye (VE = X45g)

and is asymptotically distributed as x? (¢) /¢ under the null. The Kleibergen K statistic
(Kleibergen, 2002) is

(Y+ = X18y) Py (Y — X15,)

(Y = XL8y) Mzo (Y4 = X150)

K=(n—-0—m)

where

Z = Py (XL — (Y = X"'8,)

(Yt = X18,) Mz X+
(VE = XEBy) Myo (VE = X15,) )

and is asymptotically distributed as x? (p) under the null regardless of the strength of the
instruments. The difference with the AR statistic is that instead of projecting Y+ — X4,
onto the ¢ columns of matrix Z, the K statistic projects onto the vector Z whose column
dimension is given by the number of endogenous variables. This reduces the number of
degrees of freedom and enhances the power properties (Kleibergen, 2002).
It turns out that both tests are robust to the presence of many exogenous regressors.
Theorem 2: Suppose assumptions 1-3 hold, and / is fixed. Then

and
K42 (p).

The conclusion also holds if the assumption of fixed I1; is replaced by II; = 11 /+/n, where
11 is fixed.

4 Bias-corrected 2SLS estimation

4.1 Construction

Consider the existing bias corrected versions of the 2SLS estimator:

Brasrs = (Lp, Opsm) <(X7 W) (Pzw — &1,) (X, W)) - (X, W) (Pzw — &1,)Y,

where either
{+m

n

£ =



where the total number of instruments is counted (e.g., Newey, 2004; van Hasselt, 2010),

or
f=—=

where the number of additional instruments only is counted (e.g., Donald and Newey,

{—2
n

2001; Hahn and Hausman, 2002). By the partitioned matrix inverse,
Brasis = (XIPEX)AXIP@K

These estimators are inconsistent because they do not account for many exogenous re-
gressors as the following proposition shows.
Proposition 2: Suppose assumptions 1-3 hold, and A > 0. Then the asymptotic

biases of the bias corrected 2SLS estimators [ pyg; ¢ are

—p (CgXZL - ,UEu)il Z]ue

and
)\,LL ((1 - )\) QXZJ- + /\,U/Eu)_l 2ue

for the two choices of é .

One can easily see that the conventional bias correction works only if either there
is no endogeneity (X, = 0) and there is no need to correct for bias, or the exogenous
regressors are not many (u = 0).

Let us instead make the following correction to the 2SLS estimator:

Brasts = (Ip Opm) (X, W) (Paw = GL) (X, W)™ (X, W) (Paw — &L) Y
= (X'PyX)"' X'P,Y.

Note that this is similar to the standard bias correction for 2SLS above, but the factor &
is different from either conventional factor é which asymptotically is equivalent to either
A+ fL or . For the bias-corrected 2SLS to be consistent, that factor should be adjusted
for the numerosity of exogenous regressors in a proper way. If there are no exogenous
regressors (m = 0 and o« = \), then 1 = 0, & = N\, Py =Py — 5\1, and the estimator is
equivalent to either version of the conventional bias corrected 2SLS.

The estimator B pasrs allows for a variety of interpretations. For example, it is an
instrumental variables estimator in the regression of Y on X only, using the instrument
7, = P, X. Or, it is an instrumental variables estimator in the regression of Y+ on X+
only, using the instrument Z, = P,X~*. Note also that, similarly to the case of 2SLS,

5 Ba2sLs may be concentrated out:

dpasrs = (WW) ' W'Y — X Bpasps)-



As a result, the B2SLS residuals then may be computed directly from 3 B2SLS:
épasis =Y — X Bpors.

Define the residual variance

52 ¢B25L5CB2SLS

o =
B2SL
SLS n—m-—p

Note the degrees of freedom adjustment.

4.2 Asymptotic properties

The following theorem establishes the asymptotic properties of the bias-corrected 2SLS
in the presence of many exogenous regressors.

Theorem 3: Suppose assumptions 1-3 hold, and A > 0. Then the bias-corrected
2SLS estimator /3 BasLs 18 consistent and zero mean asymptotically normal with the as-

ymptotic variance

Vissrs — CI)QBQSLS 4 cprSLS i @f%‘LS)
where A
(I)QB2SLS — Uz@;('lzl + EQ;(IZL (O'zzu + Euez};e) Q;(lZLa
1 _ —
@3325LS == anlzL (m E [efuﬂ +FE [e?ui} 7T:1) Qxlz¢7
and
p B _
BasLS _ ﬁ@xlﬂ (E [e?uzu;] — o2y, — 2Zuez;e) QXIZJ_.
The composition of the asymptotic variance is the same as that in van Hasselt (2010):
one term ®F25L9 ig present even under error normality, and two terms ®F25L5 and @P25LS

are responsible for possible deviations of third and fourth moments from their values
under normality. Moreover, the presence of many exogenous regressors is reflected only

in changes in the scalar factors, otherwise the forms of the components are the same.

— ®B2SLS
= (1)4

Under error normality when ®525L5 = 0, the presence of numerous ex-

ogenous regressors is reflected, apart from possible reductions in @)yz., in the factor

A (1 — «) instead of A/ (1 — \) scaling up the unconventional term in ®25%5 contributed

by the numerosity of instruments. In the case of error non-normality, the terms 22515

B2SLS
(I)4

and are inflated because of numerous exogenous regressors. Of course, these effects

may be partially offset or further exacerbated by changes in 7, and p,,.

10



4.3 Variance estimation

To estimate Vpogrg, we need to construct consistent estimates of its three components,
PP2ILS  HB2SLS and $P25LS: under error normality, consistent estimation of only ®Z25L5

suffices. Its estimate is straightforward to construct:

é2BZSLS — (1 _ O!) nUBQSLS (X P X) + 1_/]/—_5\ (X/P&X)_l D2 (X’PdX)_l )

where
Dz = (€gasr.sMzwépasLs) (XIMZWX) + (XIMZWéB%‘LS) (éIBQSLSMZWX) .

For estimation of ®£2505 and ®F25L5 it is necessary to construct various third and
fourth cross-moments of e; and u; using the B2SLS residuals and regressors. This turns

out to be not a straightforward task. Introduce

X =X — épasrsl'Basrs,

where

!
r €pasrsX
B2SLS = o e
B2SLSYB2SLS

estimates I'. Then form an estimate of ®F25L5 as

@33251:5 — 2 (1-a) (X’P&X)fl (ﬁ?ﬁ,a + ﬁaf)g) (X'PdX)*l )

where
. My X
Dy = (61325Ls)Z F’ I (€B2SLS) ( W )
5, (M) 5> (Mig)* My,

Finally, form an estimate of ®F295 as

BSLS — 25 (X'PyX) " Dy (X'P2X)7"

where

D, - (pasts) — 3(Miy )QU%QSLSF/
5, ()’
+FB2SLS(€BZSLS) (MZWX) n (épasrs)’ (MZWX) P srs
((estLs) ¢0325Ls> (Mzw X); (MZWX)

>, (M ME,)

QSLSFB2SLS

+

11



and -
. _ Mg,
1—fp—X

The variance estimator is computed as

¥ FB2SLS FB2SLS + B2SLS
VBQSLS = CI)Q + (1)3 + (1)4 .

The following theorem shows the asymptotic validity of our construct in the case of
many exogenous regressors.

Theorem 4: Suppose assumptions 1-3 hold, and A > 0. Then

& P
Vbasrs — Vpasts.

Thus, the standard errors obtained with the use of Vpagrs will be asymptotically
valid, and hypothesis testing on its basis will be asymptotically correct. Of course, the
variance estimator Vpaspg is robust to the numerosity of exogenous regressors and may
be used when their number is large, moderately large, small, or zero.

Consider the limiting case when there are no exogenous regressors (m = 0 and o = \).

~

Then fi = 0, & = A, Pa = Py — My, po = (P2 = X\ 30, (M) My = MJ =1 A,

i7\3 ij\4 ) ij a i )2 i\ 2 2 i 2
> (Mif)" =137, (Mih) =1, (Mii)* =1, 5, (M Mzy)” = (Mg)" =120+ (P§)*,
MM, = M% = 1—Xsothat ¢ = 1, and the three components of the variance estimator

can be simplified to

~ N N —1
O = (1= A) (Epas5€B25L5) (X'(PZ - /\]n)X>

A (e 02) o )

~ 2 N -1 2 3 \ -
HBSLS _ p2(1 _ §) (X/<PZ _ )\In)X> <D37Ar’a + ﬁaDg> (X’(Pz - )\[n)X) ;
-1

éf”“?_n2«?§F—nf)(X%PZ—XLQXj_1D4(X%PZ—XLJX) ,

where
Dy = (EpasrsMzénasrs) (X'MzX) + (X' Mzépasrs) (EpasrsMzX)
A~ 2 ~
a T~ 3% é (M4 X);
D3 = (€B2SLS)?FIBQSLS + ( B2SLS)Z (A z ) ’
1—A
and
D, = ((éBQSLS);l — 3&4BZSLS> ij2SLSfB2SLS

+f§325Lg(éstLs)f (MzX), + (éstLS)? (MzX)il'BasLs
11—\
N ((éBQSLS)? — 6%a515) (M X)i{(MzX),

1—2) + (P})?

12



This asymptotic variance estimator in the special case of no exogenous regressors is new

to the literature on many instruments.

4.4 Specification testing

Now consider a modified J statistic, a suitable quadratic form in the B2SLS residuals:

. o ., .

7  €pasrs (Pzw — ady) épasts  €pagrsPapasts

B2SLS = > = ~ :
O pBa2sLs 0 p2sLs

This is an adaptation of the Sargan type statistic of Lee and Okui (2012) to the case of
many exogenous regressors.!
Theorem 5: Suppose assumptions 1-3 hold, and A > 0. Then

JBasLs d
\/ﬁ — N (OaVéjzsw) )

where the asymptotic variance is

E [ef
VBIZSLSZQ)‘(l_O‘)—i_pa( 0[4]—3)-

The estimator of the asymptotic variance in the general case can be constructed as

n N 4
Pa (eBQSLS)Z— )

i 4 ( ~4 - B(MW) > 5
> (M)

0 B2SLS
while under error normality it is sufficient to use only the first term and set the second

VéjzsLs =2\ (1-a)+

term to zero.

Corollary to Theorem 5: Suppose assumptions 1-3 hold, and A > 0. Then
Vigasts = Viasis:

The J type test is one-sided (see Lee and Okui, 2012): we reject the null if the value

of
JpasLs

7 J
\ nVgasrs

O the (1 — n)-quantile of the standard normal.

N
exceeds ¢,

Note that when there are no exogenous regressors (m = 0 and a = \),

Viasis = 2A (1= A) + (Tim (P§)° — A?) <i€4] - 3) ,

4
Oc

! Among other things, Lee and Okui (2012) prove that a test based on such statistic is in fact asymp-
totically equivalent to the Hahn and Hausman (2002) test for instrument validity.

13



and the test coincides with that in Lee and Okui (2012). In this limiting case one can

simply put

/ \ \ ii {2 m
R
B2SLS

If one uses only the first term in this estimate, the test is similar to the Anatolyev and
Gospodinov (2011) J test. That is, the Anatolyev and Gospodinov (2011) J test is not
robust to the numerosity of exogenous regressors even under error normality, in contrast

to the general test presented here.

5 LIML estimation

5.1 Construction

Consider now the LIML estimator (Anderson and Rubin, 1949, Bekker 1994, Donald and
Newey 2001, Hansen, Hausman and Newey, 2008, van Hasselt 2010):

(Y = XB3) Mw (Y — Xp)

(Y — XB) Mgw (Y — XB)’

Brivr = arg mﬁln

or, equivalently,

BLIML = arg mﬁinF (B),
where (v = XB) Py (Y = XB)
F(B) = —— LA Sy

) = =Xy 2 (v — X5)

The second formulation is more convenient because the probability limit of the minimized

value of the objective function is exactly a (see the proof of Theorem 6). Note also that
the estimator /3 iy may be interpreted as a LIML estimator in a transformed equation
where the left side variable is Y+ and the right side variables are X+ using the instruments
(Z,W).

Let us write out the first order conditions for 3 LIML a8

X'Pyu (Y - XBLIML) — F(Briar) - X' M (Y - XBLIML) =0.
This implies
B = ALY
LIML = 37p oy
where
a=F (BLIML)'
It is easy to show (see the proof of Theorem 6 below) that & %+ a.. The value of &, which

provides an alternative way of calculating the LIML estimator, may be computed as the
smallest eigenvalue of the matrix (X'X) "' X'Pyy X, where X = (Y*, X1).

14



Let us define the residual variance

" .
A2 _ CrimLéLimr
Opimr = n—m—p

Note the degrees of freedom adjustment.

5.2 Asymptotic properties

The following theorem establishes the asymptotic properties of the LIML estimator in the
asymptotic framework under consideration.
Theorem 6: Suppose assumptions 1-3 hold, and A > 0. Then the corrected LIML

estimator 3 v 1s consistent and zero mean asymptotically normal with the asymptotic

variance
Virvr = (I)élML + CI)??ML + (I)fIML’
where
QLML — 201 | + szl (0250 — BueZl,) Qyges
QLIML _ ﬁQ)_(lZi (WQE [e?ﬂ;] +FE [e?ﬂi] 7T/a) Q)_(12m
and

oML = Lol B[(e? — 02) wiil] Q..

(1-a)
The effects of the numerous exogenous regressors on the asymptotic variance are
similar to those for the appropriately bias corrected 2SLS.

The difference between Vgasrs and Vi is composed of three differences, @fQSLS -

QLIML  HB2SLS _ HLIML o $B2SLS _ QLIML where
B2SLS _ GLIML  _ i@ Yue X QL
2 2 -1 Xz+ e ue v X 71
1 Eled _
(I)?)BQSLS — (I)é’IML = 1—a 02 szL ( + Eueﬂ—/a) QxlzL
B2SLS LIML __ Pa Elefu] o, E [e}u]
®4 - ®4 - (1 - O()2QXZL ( 0.2 E Eue 0-2

E [ef B
_EueE;e < 0[_4 ] + 3)) QXIZJ_-

The difference ®F2519 — @LIML js positive semidefinite, hence the LIML estimator is
asymptotically more efficient than the bias-corrected 2SLS estimator under error normal-
ity. This result has a well known analog when the number of exogenous regressors is
small (e.g., Chao and Swanson 2006; van Hasselt, 2010). Under error non-normality, the

B2SLS LIML B2SLS LIML

differences and

can potentially take any sign. Even
in the few exogenous regressors framework, van Hasselt (2010) finds it difficult (if not
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to say impossible) and unproductive to analyze the additional terms in the asymptotic
variance, while Hansen, Hausman and Newey (2008) mention that the adjustments for
non-normality ®IML and LML tend to be small, at least when \ is small, in contrast
to the second term in ®ZML responsible for numerosity of instruments. Anderson, Kuni-
moto and Matsushita (2010), Anatolyev and Gospodinov (2011), and Lee and Okui (2012)
find via simulations that the effects of deviation from normality are barely noticeable for
non-extreme error distributions. Thus, it is quite unlikely that the sum of the second and
third differences of asymptotic variance components, if negative, will overweigh the first

difference.

5.3 Variance estimation

Hansen, Hausman and Newey (2008) propose a variance estimator (HHN henceforth) in

the case of many instruments that takes into account error non-normality. Denote

X =(X,W)—épmrlrivr,

where .,
T _ (X, W)
LIML = —,
€LiMLCLIML
estimates (F, ;n><1) . The HHN estimator has the following structure:
’ _ —15 771
VL]ML =n [H xH :|1:p,1:p7
where
H= (X, W) (Paw — al,) (X,W),
_— e Paweérinvr
Crrvpfrive
and

S=30+A+ A+ B,
where the terms A and B estimate the terms related to the third and fourth moments,

respectively, that are present under error non-normality in addition to the term S that

is present under error normality. It turns out that under error normality the term
VA2 ~\2 ! v —~2 3/ "
ZO—O'LIML((]_—O[) XPZ[/VX—FCU XMsz)

given in Hansen, Hausman and Newey (2008) still correctly estimates the relevant por-
tion of the asymptotic variance when there are many exogenous regressors. However, the
terms A and B given in Hansen, Hausman and Newey (2008, p.399) do not correctly esti-

mate their corresponding portions when exogenous regressors are numerous. We therefore
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change those to

(érrar)’ (MZWX);

A=n(l—&)r, = -
55 (M) My,
and
. ((éLIML)? — (%&%IML) (MZWX)Z- (MZWX)Q
B = nlba )

>, (M MZy)°

The following proposition formalizes the asymptotic validity of our modification.

Theorem 7: Suppose assumptions 1-3 hold, and A > 0. Then the modified HHN
estimator VLIML is consistent for Viarr-

Suppose there are no exogenous regressors (m = 0 and a = A), then 1 = 0, & = A,
Pa = Py=Alu, po = (PEP =N, 53, (M) My = ME = 1=, (M) = 1-20+(P)”
Mii M7, = MJ =1— ), and it is easily seen that A and B become exactly as those in
Hansen, Hausman and Newey (2008, p.399):

A= S (PE-A) () o) (Mo X),,

i=1 i=1

R P _ 3 . ) _ _

5.4 Specification testing

Now consider a modified J statistic, a suitable quadratic form in the LIML residuals:

Al A ~ N ~

J o (Pow — aln) éurvr €ppyp Pafrive

LIML = 5 = = .
OLiML OLiML

This an adaptation of the Sargan type statistic of Lee and Okui (2012) to the case of
many exogenous regressors and LIML estimation.
Theorem 8: Suppose assumptions 1-3 hold, and A > 0. Then

JL]ML i N (07 V[:]IML) )

vn
where the asymptotic variance is
E e}
Note the equivalence to the B2SLS-based modified J test. The estimator of the

asymptotic variance in the general case can be constructed analogously as

A - 4
. . , Pa (Crimn);  S7o7ie
(M LIML
7 w
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while under error normality it is sufficient to use only the first term and set the second
term to zero.

Corollary to Theorem 8: Suppose assumptions 1-3 hold, and A > 0. Then
Ve = Vi
Note that if there are no exogenous regressors (m = 0 and « = \), then
— E e}
Vi =201 = )\) + (hm (P%’)2 — )\2> (# — 3) .

In this limiting case one can simply put

VLJIML =2\ (1 N 5‘) + (<Pg)2 - 5\2> <(éAL4[ML);1 - 3> .

OLIML

If one uses only the first term in this estimate, the test becomes similar to the Anatolyev
and Gospodinov (2011) J test. That is, the Anatolyev and Gospodinov (2011) J test
is not robust to the numerosity of exogenous regressors, in contrast to the general test
presented here.

The J type test is one-sided (see Lee and Okui, 2012): we reject the null if the value

of
Jrivr

~

J
nViruL

exceeds qi,v (0’1), the (1 — n)-quantile of the standard normal.

Another possible statistic to test for the model specification is based on the difference
between the minimized objective function & = F (B ivz) and a direct estimate & of «,
but this yields an asymptotically equivalent test. Moreover, inspection of the proofs of
Theorems 5, 6 and 8 reveals that the statistics /nJpasrs, vnJdrrr and /n (& — &) all

are based on the asymptotic behavior of the same quantity,

e'P.e
Vi

and hence the corresponding tests are asymptotically equivalent.

5.5 K-class estimation

One can also extend the notion of a K-class estimator (Nagar, 1959; Hansen, Hausman

and Newey, 2008) to the present situation with numerous exogenous regressors:

> X'PY
fOX'PX]
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where k is a constant or data-dependent quantity. From inspection of proofs it follows

that BH is consistent only if x = a. Further, as
X'Pee  X'Pse
NN

B, is asymptotically equivalent to 3 sz if /n (8 — &) 2 0. One popular choice

a—(1—-a)e/n

"I o1 —a)en

leads to the Fuller (1977) type estimator, which is asymptotically equivalent to B LIML

under many exogenous regressors.

6 Simulation experiment

In this section we carry out a small Monte-Carlo experiment. Of primary interest to us is
the amount of distortions arising from the presence of many exogenous regressors when
they play a role, and to verify for how big their proportion to the sample size may make
the distortions sizable. It is also of interest to see how well the asymptotic theory works
for a typical sample size.

The data for the Monte Carlo experiment are generated from

y = Br+Yy duwi+e,
=1

l m
r = E ﬂljzj + E ngwj + u,
j=1 j=1

Here, the parameter values are § = 1, §; = m9; = 1/y/m for j = 1,...,m, and m; =
(1,0}71)/. The local-to-zero d;’s and 7;;’s keep the information contained in included
exogenous variables fixed as m changes. The exogenous regressors w; are independent
and distributed according to the standard normal except for one exogenous regressor
which is set to unity. When the instruments z;’s are few (small ¢), they are independent
standard normal; when they are many (large ¢), they are generated as in Hausman,
Newey, Woutersen, Chao, and Swanson (2010): z = (¢,¢%,¢3,¢* ¢Dy,....,sD,_4), where
Dy, €{0,1}, Pr{Dy, =1} =3 for k=1,...,0 — 4, and ¢ is standard normal. Next, cach of
errors e and u is drawn from the skew Student’s distribution of Azzalini and Capitanio
(2003) transformed to have zero means and unit variances, with the parameters implying
the skewness coefficient 1.38 and the kurtosis coefficient 6.54.2 The covariance between e

and u is 0.9. The sample size is n = 400. The results are based on 5,000 simulations.

2We used the procedure ST from the Gauss library SKEW by Roncalli and Lagache (2004).

19



First we report the actual rejection rates at the 5% nominal level of the 2SLS based
t test and AR and K tests when there are ¢/ = 2 instruments. The last two columns
correspond to the AR and K tests when we additionally divide 7; by v/n making the set

of instruments weak.

i t-2SLS  J-2SLS AR K AR(W) K(W)
0.1 4.9% 5.3% 5.0% 4.8% 5.0% 5.3%
0.2 5.3% 4.8% 5.1% 4.7% 5.1% 4.7%
0.3 5.1% 4.9% 4.8% 4.6% 4.8% 4.9%
0.4 5.2% 4.9% 4.8% 4.5% 4.8% 4.6%
0.6 5.2% 4.8% 5.0% 4.9% 5.0% 5.0%
0.8 6.1% 5.3% 6.1% 5.8% 6.1% 5.4%

Clearly, all considered tests are robust to the numerosity of exogenous regressors
exhibiting rejection rates very close to the nominal one. When p gets very large though,
the tests acquire a slight tendency to overreject.

Now we switch to the many instrument case and look at the medians of simulated

bias corrected 2SLS estimators and the LIML estimator for some values of A\ and p.

A =pu med-B2SLS; med-B2SLS; med-B2SLS  med-LIML

0.1 —0.114 0.014 —0.002 0.001
0.2 —0.303 0.057 —0.001 0.000
0.3 —0.665 0.140 —0.003 0.000
0.4 —1.226 0.276 0.000 —0.002

The median bias is obviously present in the “inappropriately” corrected 2SLS esti-
mators, and is practically absent in the properly corrected one, as well as in the LIML
estimator. The first version of “inappropriate” correction leads to a much higher bias
than the second version, and these biases are of opposite signs.

Next, we present the actual rejection rates at the 5% nominal level of t and J tests.
The third and fourth columns of the following table show rejection rates based on the ap-
propriately corrected 2SLS estimator using the proposed standard errors, and the LIML
estimator using the modified HHN standard errors. The fifth and sixth columns show,
respectively, the null rejection rates for the Anatolyev and Gospodinov (2011, AG hence-
forth) and Lee and Okui (2012, LO henceforth) J type tests that account for the numeros-

ity of instruments but do not for the numerosity of exogenous regressors. The decision rule
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X*(6-1)
o(VI—Ae—1(a))
statistic based on LIML residuals. Finally, the seventh and eighth columns represent the

of the AG test has the following form: J > ¢ , where J is the conventional J

proposed J type tests based on the bias corrected 2SLS and LIML estimators, respectively.

A ! t-B2SLS t-LIML  J-AG J-LO J-B2SLS J-LIML
0.1 0.1 5.0% 5.2% 6.5% 5.8% 5.7% 5.3%
0.2 4.5% 5.1% 7.1% 6.2% 6.2% 5.3%
0.3 5.2% 4.9% 5.6% 6.0% 5.8% 5.0%
0.4 4.9% 5.3% 5.2% 6.0% 5.8% 5.1%
0.2 0.1 5.0% 5.1% 5.8% 5.8% 5.5% 5.0%
0.2 5.0% 5.2% 6.5% 6.7% 6.1% 5.5%
0.3 4.4% 4.8% 5.2% 6.3% 5.7% 4.9%
0.4 4.8% 4.5% 4.5% 6.6% 6.5% 5.2%
0.3 0.1 4.8% 4.5% 7.1% 6.1% 6.1% 4.9%
0.2 4.3% 5.1% 6.1% 6.7% 6.3% 5.1%
0.3 5.0% 4.4% 4.2% 6.2% 5.8% 4.5%
0.4 5.6% 5.0% 3.4% 6.4% 6.4% 4.8%
0.4 0.1 5.1% 4.7% 6.6% 5.9% 5.7% 4.5%
0.2 5.5% 5.1% 5.2% 6.6% 6.6% 4.6%
0.3 6.2% 5.4% 2.9% 6.0% 6.0% 4.3%
0.4 6.5% 4.4% 1.2% 5.2% 6.1% 3.9%

Both t tests exhibit just slight distortions even for a moderate sample size, with an
exception of the B2SLS-based one when both x and A are big. The LIML based standard
errors seem to be a bit more reliable than those based on B2SLS. The (asymptotically
incorrect) AG test behaves unstably, in some cases exhibiting perceptible overrejection,
in some cases perceptible underrejection. The (also asymptotically incorrect) LO test
behaves more stably showing consistent overrejection, which turns out non-severe for a
moderate degree of non-normality. Our J type B2SLS based test also tends to slightly
overreject, while actual rejection rates for the J type LIML based test are very close to

the nominal level, again except when both p and A are big.

7 Computational note

The tests proposed in this paper are easy and straightforward to implement. A compu-

tational difficulty may be to program various objects which are functions of elements of
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matrices P, My, Mzy and others. In GAUSS, they can be coded in the following way.
Let the matrices Py and Pz be coded as Pw and Pzw, then the matrices My, Mz and
P, are coded as Mw=eye(n)-Pw, Mzw=eye(n)-Pzw and Pa=Pzw-Pw-ahat*(eye(n)-Pw),
where scalar n contains n, and ahat contains &. The following table represents statements

for various objects, functions of elements of these matrices.

(Pg)2 meanc (diag(Pa) ~2)

(M{,}/)2 meanc (diag(Mw) ~2)

My MYy meanc (diag(Mw. *Mzw))

> (M‘Z,{,)3 meanc (sumc (Mw"3))

> (Méf,)z MY, | meanc (sumc ((Mw"2) . *Mzw) )

> (Mé{})4 meanc (sumc (Mw~4))

> (M%-M?Wf meanc (sumc ((Mw~2) . * (Mzw"2)))

Other objects of interest involving these matrices may be formed similarly. For ex-
ample, let vector ehat contain the elements of ¢, and X contain elements of X. Then the

coding table is

P (P71 X), meanc (diag(Pa) . * ((Pzw-Pw) *X) )
& (MZW)(); (ehat~2)’ (Mzw*X) /n
&2 (MzwX), (MzwX); | X’Mzw*diagrv(eye(N) ,ehat”2)*Mzw*X/n

8 Conclusion

We have considered a standard linear instrumental variables regression with few or many
instruments where the number of exogenous regressors may be large and comparable to the
sample size. Within an asymptotic framework where the number of exogenous regressors
and possibly instruments is proportional to the sample size, some existing estimators and
tests are robust to their numerosity, which is however not true for others. In those cases
when the presence of many exogenous regressors invalidates an estimator or test under
consideration, we have proposed its modified asymptotically valid version. Future research
may extend to instrumental variables models with heteroskedasticity, with the literature
for the many instrument case still being developed (e.g., Chao, Swanson, Hausman, Newey,
and Woutersen, 2012; Hausman, Newey, Woutersen, Chao, and Swanson, 2010), and

accommodate serial correlation in model errors.
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A Appendix: proofs
Lemma A1l: Suppose (Z,W) has full column rank. The following is true: P, =
PZW - PW, leMW - wazLMW — PzL, MWMzLMW - MzLMW — MW - Pzi.
Proof of Lemma Al.
By the partitioned matrix inverse Pyy = (Z, W) ((Z, W) (Z, I/V))_1 (Z,W) is

vl —w -tz

Z,W
(W) —Zw Ut (WW) + Zy U 20,

(Z,w),

where Zy = (VV’VVT1 W'Z and ¥, = Z' My, Z. Hence,
Pyw — Py = My Z (Z'MwZ) " Z' My, = Py..

Next, Pyo My = (Pyw — Pyw)Mw = Pyw — Py = Pyo, My Py My = My Py =
(PZLMW)/ = PéL = PZL . Finally, MwMZLMW = MWMW —MWpZLMW = MW —PZL.

Lemma A2: Suppose assumptions 1-3 hold. Then

lezLX lezle elsze

ﬁ) QXZL + )‘Zua i )\Zuea ﬁ) )‘Ug7
n n n
X' MwX X' M, "M,
—W ﬂ)QXZi—i_(l_:u) Zua we L (1_M)Zu€7 ‘ we i (1-,&)0’37
n n n
X'M X X'M "M
DEIWE Py NS, Y P M) B, S EYE P N o2
n n n

Proof of Lemma A2. First, by Lemma Al of Hansen, Hausman and Newey (2008)
using Assumptions 2 and 3,

U'PywU U PyU UP
— i ()\—i_/’[/) 21“ v quu, Zwe v ()\-F/L) EUS?
n
U'P 'P P
nwe P S, S ZWe Latwe? © nwe % po?.

It follows immediately that n='e/Pyie 25 Ao? and n~'e¢/Mye 2 (1 — p) o2

Now, consider n~ 'Y’ , P,1 e whose mean is zero and whose variance is

!/ / 2 /
E 2 _Jexziz X7
n n n

hence n= 'Y’y , Py.e 2 0. Similarly, one can show that n ' Y%, Mye 2 0, n 1T, , Py U 5
0 and n~ 'Yy, My U 2 0.
Now, P;1 X = P;1Yxz + Pz.U, hence

X'PpX _ (PpX)PuX  Ty,Txz TyPwYxz L YasPpU U'PpYos
n n n n n n
U' Py U
+—ZL i QXZJ- + /\Eu

n
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and . , ,
X_PzLe . TXZ_PzLe 4 Usze ﬁ) Azue

n n n
Similarly, MwX = MWTXZ + MwU, hence

X'MyX  (MyX) MyX _ Ty MwTxz N Y, My U N U'MwyYxy N U' My U

n n n n n n
5 Qxzr + (1—p)Z,

and

l / /
XMWe . TXZMWe 4 UMWe £> (1 —u) Zue.
n n n

The last three results directly follow from the previous ones.
Proof of Proposition 1. Straightforward computations using Lemma A2 yield
BQSLS = By + (n_lX/PZLX)_1 nrX'Pyie By + (Qxyr + )\Eu)_l AY e
Next, recall that éxsps = M (Y — X Byg.), OT
éasrs = Mye — My X (X' Py X) ' X'Pyue.

Then, using Lemma A2,

n n n n

g 2 -1
6/25‘LSPZW€2SLS . ePyie B P, X (X/leX) X'P,ie
n

R DY P S Y ) Y

where ¥ = (Qxze + )\Zu)_l. Next,

&)1 gf25Ls ¢Mye _¢MyX <X’PZ¢X)_1 X'Pyie

n n n n n

n n n

_’_e’PZLX (X’PZLX)l X' My X (X/PZL)()l X'Pyie

n n

= (L= p) ol =2X (1 — p) 5,55,
A (1= ) 20,8 (Qxze + (1= 1) ) S8
= (1 - :U“) (O-g + )‘E;ei (()‘ - 2) QXZJ- —A (1 + :u) Zu) i]Eue) .

Summarizing, the J statistic has the following limit:

Josrs >, 02 — A% ¥,

« - = = aJ™.
n Ug + AE;LGE ((/\ - 2) QXZL —A (1 + M) Zu) 2 e
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Proof of Theorem 1. The probability limit of the residual variance is o?. The

estimator [,q; ¢ satisfies

X'PuX\ ' X'Pyie
vnoo
As in Lemma A2, P;,. X = My ZI, + P;.U and hence n ' X'P,. X 5 II,Q .11

and

\m@ﬂywa:(

n

o (Z)e N UPyie

NG Yyn N
Because U'Pyie = n~Y2U' Z+ (n’l(ZL)’ZL)*1 n2(Z+)e = Op (1) Qz10p (1), the sec-
ond term above is op (1). Now let

vn

Note that by Assumptions 2 and 3, we have Z?:IE[HZZ*@@-”LL] < Elef] >0, HZLH
0(n?). Hence 327 | E[||Wi||"] < n20(n?) — 0. Then we have that 37" | W,W/ converges
to 02Q .. By Lemma A2 of Hansen, Hausman and Newey (2008), (Z1)'e/\/n is asymp-

totically normal with the asymptotic variance 02Q ;.. Together,

X'P
\/%le <4 N (0, 02T0,Q .1y

and
~ d
Vn(Basrs — By) = N (0 Oc (H Qz: L) )
The t statistic for the j** component based on 2SLS is

téjS)LS _ \/E(B2SLS — Bo); KN N (0’ o KH&QZLHl)?I}M) 3
\/‘%sw [(”_1X/PZLX)71}N \/Ug [(HQQZLHQA}”

Next, the numerator of the J statistic is

N(0,1).

Ny R ) ¢PuX (X' PuX\ ' X'Pyie
aspsPzweéasrs = € Pgie— NG n NG
ezt (Z1)e G ZL 1, (ZY)e
= \/— QzL \/— \/— (HllQZiHl) Hll \/ﬁ +op (1)
= Y'Y +op(1),

where
(Z+)e
vn oo

v = (I - QY M Q) ' IR ) Q1
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Taking account of the fact that the first factor in ¢ is an idempotent matrix of rank ¢ — p,
we have by the standard argumentation that 1y KR o2x? (¢ — p) . As the denominator of

the J statistic is consistent for o2, the two pieces together yield the conclusion.

Proof of Theorem 2. Note that Y+ — X138, = My (Y — Xf3,) = My (e + Wéy) =
Myye. Now, irrespective of the strength of instruments,
(YL = X18,) My (Y5 = X18)) e Mye ¢Pyie p

= — — 0
n—~0—m n—¢—m n—¥F—m

e

and
(Y= X18,) My Xt &MyX €PpX oy g
= — —
n—{—m n—¢—m n—~0—m e
using Lemmas Al and A2. By Lemma Al, (Yl — Xlﬁo)’ Py (YL — Xlﬁo) =¢e'Pyue,

and from the proof of Theorem 1 ¢'Pyie -5 022 (¢). Hence,

ePyie

1
C(YL = X180) My (Y2 = X150) [ (n— € —m)

~Y

2
o? 14

2,2 2
i%aex &) xO

AR =

Next, again using Lemma A1,

/
Z =P, (MWX My (v — X, St or )

ey ) =Py (X —e(T +op(1))).

When the instruments are strong,

7'7 X'P, X ¢€P X'P
. AN 4 eryle (F—|—0P (1)>2_2 zl€
n n n n

i HllQZiHb

(T +o0p (1))

using Lemma A2. Hence

(YL = X16,) Py (Y* = X18,) = ¢MyP;Mye
= (HQQZLHD_I Py +op (1),

where

1 '
¢1 = %(X—GF) PzLGZ

4 N (0,0%T0,Q 4 1T,

X'Pyie _F,e’PZLe
NZD NLD

using the proof of Theorem 1. To summarize,

_ i (HllQZJ-H1>_1 Yy +op(l) a o

K o2+ op (1) — X~ (p).
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Now let fixed II; be replaced by II; = 11 /+/n so that the instruments are weak or irrelevant.
Recall that U = U — eI, and note that U is uncorrelated with e. Then jointly

v= () = e ((wjﬁ)‘m <Z”j§@)

<, (50) ~ N (0,diag {E, — o2T'T, 02} @ L) .

€e
Using Lemma Al,

- -
Zzpzj_ <ZE+U)+P2L€'OP(1),

therefore

Vn
where
(ZJ_ lzj_ —-1/2 (ZJ‘)/ZJ‘ . (ZJ_)/U
vy, = [ ——-— IT +
n n vn
ZJ_ lzj_ 1/2 . d .
_ <%> M+ 0y 5 QYT+ &5 = &,
Hence,

¢ My Py Mye = W0, (W0 + 0p (1)) W40, L ¢/ P ¢,

Then, due to independence of £, and &, and idempotence of Fe,, we have P |{, ~
N (0,02P;,) and § P& [€; ~ o2x® vk (Pe,)) = o2x* (p), and hence § P&, ~ o2x* (p)
and K % 2 (p).

Proof of Proposition 2. For the first version,
Bpasts — Bo = (X/PAJWX)_I X'Pyie+op(l).

From Lemma A2(a),

X'P, X X'MwX\ '/ X'P,e X' Myre
(FE - T2 (T2 ) ) o)

BB2SLS - 50 =

L (Qxze + A8u — A+ 1) (Qxze + (1 — 1) S,)) ™
X (AZue = A+ p) (1= p) Bye) = —p (Qxzr — #EU)il Yie-
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Similarly, for the second version,

+ op (1)

X’PAX) L X'Pe
n

BBZSLS — By = (
B (Qxzr + 28w — A (Qxze + (1 — p) Zu))_l
X (AZpe = A (1 — 1) Xie)
= (1= X) Qxze + i)™ e

Lemma A3: Suppose assumptions 1-3 hold, and A > 0. Then

X'P.X X'P,
a (1 - Oé) QXZia ‘ pé 07
n n n

¢Pe p
ﬁ

0.

Proof of Lemma A3. Using Lemma A2,

X'P,X X'Pyu X X' My X
= -«
n n n
= (1 - a) Qxze

B Qxzr + A8, —a (Qxzr + (1 —p)Xy)

and similarly

X'P,
egAZue—a(l—u)Em:O.
n
Last,
/Pa /P /P /
€laC _°© Zwe—(l—oz)e We—aﬁi()\—i-,u)az—(l—oz)uag—ozag:().
n n n n

Lemma A4. Under Assumption 1, the following quantities are bounded from above
by O(n): 351y 300y (Pd)" 300y 2oy Dok (P2 (Pa)?, 300y 2oy Yok | (P)? PR P |
and tr ((P, — D4)?), where D, = diag(P!, ..., P™).

Proof. Note that |P7| < |PY, |[+a|M}| < 1+a. Using the inequality (a—b)? < 2(a®+
b*) which follgws from the inequality (a +b)* >0, we get > (P7)*> =237 | (P].)* +
207370 (My)* < 2P7, +2a My Then 350, 550, (PY)* < (14a)* 300, 35, (PY)* <
2(1+@)? (i P+ 0Ly M) = O(n) and 3700, 370, 370 (PY)*(PF)? =

n n iz n i i |2 no pii n ii
2im1 <Zj:1(Paj)2> <A (PR + o My)” < 4(1+a?) (30, Py + a2 300, Myy) =
n n n ;i i ; n n i n i n i 1/2
O(n) Further, Zi:l Zj:l Zk:l ‘(Pa])zpakpo{k‘ < Zi:l Zj:l(Paj)2 (Zk:l (Pak)z Zk:l(szk)z)
noNTn (i i i j INEE nooNTn (i
<4y Zj:l<Pa‘].>2 ((le + 042MW) (Péﬁ + azM%)) < 4(1+a?) Die1 Zj:l(Pa])2 <
(1 +0%) 0 (P + M) = O(n).

Next, consider the matrix trace inequality tr ((P, — Dy)*) < 2tr (PY) + 2tr (D2) +

8tr(P2D?2) + 4tr ((P,D,)?) which follows from the inequality tr ((P, + Dq4)?*) > 0 after ex-

pansion of the fourth power and collecting terms of equal trace. From Baumgartner (2011,
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theorem 2) it follows that tr(P2D2) < (tr (P*)tr(D%))"?. From Baumgartner (2011,
theorem 3) and by positive semidefiniteness of P, |D,| P, it follows that |tr((P,D,)?)| <
maxi<icn | Dyl tr (Padiag(| '], [P3"]) Po) < (maxicicn [Py])*tr (P7) < (1+0)’tr (P7) .
Now, tr (D4) = S, (PA)* < (14 a)in = O(n). Ther, & (P2) = Y0, S (PU)? <
250 (PY 4+ a®Mj}) = O(n). Finally, tr(P}) = tr((Pze — aMw)*) < 2tr (Pp.) +
20 tr (M) + 8atr (P2, My,) + 402t ((Pzr Mw)?) = (2 + 1202) tr (Pg1) + 20t (M) =
O(n). Collecting the pieces, tr (P, — Dy)*) < 20(n) + 20(n) + 8 (0(n)O(n))"* + 4(1 +
a)?0(n) = O(n).
Lemma A5: Suppose assumptions 1-3 hold, and A > 0. Then for a constant matrix
Bi\ . : :
B = y with row dimension p + 1,
2
B (X,e) P,e - - —
% <, NO,(1-a)Z+ (1 —a)Z3+ p,Z4) ,
where
By = By ((1—a)0?Qxze + M2, + AXwX,,) By
+2X02 (B Zyebly + b2 X0, By + 02baobh) |
Z3 = BimoE [e (uj,e;)] B+ B'E [e} (u},e;)] 7B,
Ey = B(E[el(u},e;) (u},€;)]) B— By (025, +25..%.,) By
—3072 (B Zyeby 4+ 02X, By + 02bob)y) .
Proof. Let us represent the quantity of interest as
B'(X,e) Phe B (PoX,Pae)e ((1—a)MyYxzBi+ P,UBy, Pyeb)) e

Jn NG NG
(1 — a) My YxzBy + P,UB; + P.eb)) e N (UBy + ebb)' Pye
vn NLD

.y " (BT, M), €
= Z%(Bixue—!—bgaz)jt(l—a)z L X\Z/ﬁ

=1

B/P ulel—Eue) "\ by Pl (e2 — 5?)
+Z +; NG

Biu; + bgel Pje]
oy (s
i#£]

= S1+5+S3+5:+ S5

P(ii . _ “ _L —a(n—m
Z\/ﬁ _ \/_Z aMi \/ﬁ(ﬁ ( )
_ \/ﬁ<)\+o(1/\/ﬁ)—m(l—/v”ro(l/\/ﬁ)))_0(1)7
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hence S} =o(1).

Next, the inspection of Lemma A2 of Chao, Swanson, Hausman, Newey, and Woutersen
(2012) (cf. its fixed-instrument-design analog, Lemma A2 of Hansen, Hausman and
Newey, 2008) reveals that this central limit theorem also holds when P in it is replaced
by P, = Pzi — aMy thanks to the inequalities for P, from Lemma A4, with an ap-
propriate adjustment in the expression for thmﬂmptotic variance. In particular, the

multiplier 7 | (P )> — (P#)? = n~'rk(P) — (P%)? in the variance expression becomes

S (Poi(j)2 — (Pi)? = (1 — 2a) n'tk(P¥, ) + a?n~rk(M{l) — (P#)? whose limit value is

Jj=1 «

(I—a)X—p,.
Now let
1 (BiTIXZMW)z €
Wi=— 1 BiPY(ue; — Xye)

n ..
A

e

Note that using Assumptions 2 and 3 and that Y., (P2)* < O(n) (see the proof of Lemma

Ad), we have that Y7, E[||(B{ Tz Mw), ei||'] < Blef] |Bi]|* i, (T2 Mw), || < o (n?).
n ii 4 n ii\4

Next, 21, Bl| BiPY (wies — Zue)[I'] < 300, (P2 S 1(B1)gll* Bl(wiei = Sue)g] < O (n),

and S0, El[baPi (¢ — 02)|') < [l Sy (P El(e? — 02)') < O (n) . Hence

S E[|Wil[Y] € n20 (n?) — 0. Then we have that X7, W;W/ converges to

02B1Qx 71 By BimoE [e;u] By Bim by E [€]]
BiE [wef] T, B1 poBIE [(uie; — Tue) (wies — Lue)'| By poBLE [ufe; (€3 — o)y | =
bt BiE [¢}] pabaFE [uies (¢ — 0)] By pabalE [(2 = o2

Next, for any comformable vector c,

.. 2
4 (B{ul + bg€i> P;Jej

i#]

1 .
= = Z Z PIPHIE [(Biu; + bae;) (Byug + baer) ejey] c

" i#j 1Fk
2 I’ ) . Y
N ((1 o Oé) A\ — pa) C’ UeE [(BIUz + 6261) (Bluz + bgez) }I—l— .
= Qe

Hence we have
¢ (S2+ S5+ Si+ Ss) iN(O,c’diag{(l—a)[,],[}‘ildiag{(l—a)],[,]}c—i—c’Qc),

and it follows that
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V = diag{(1—«a)I,I,1} Vdiag{(1 —a)I,I,I}+Q
= (1-a)?0?BiQxz B+ (1 — a) (B{E [we?] 7, By + B, E [e?u}] By)
+ (1 — ) (bomh, B1E [€}] + BimabyE [€]])
+paboE [wie; (6] — 02)] B1 + p,BIE [ule; (6] — 02)] by
+puBLE [(ies — Sue) (uie: — Sue)'] By + pubsbh [(e - 02)2]
+((1—a)X—p,) o2E [(Biu; + bae;) (Bju; + bae;)']
+ (1 — @) A = po) E[(Bju; + bae;) €] E [(Bju; + bae;) e;]

which coincides with the variance expression in the statement of the Lemma.

Lemma A6: Suppose assumptions 1-3 hold, and A > 0. Then 7, — 7, and p, — p,.

Proof of Lemma A6. Recall that P, X = My Y xz+P;.U. Now, E [Pg} (Pyu U)Z} =

0 and
wr (PEETY) = 530S R30S PAL P )
=1 j=1 =1 g=1
S DO WEDW S W o
i=1 j=1 i=1 j=1

which in absolute value is no greater than

22 (supsup ‘Pzz) ZZ|PU 1+a) T L n—0

n
>1 1< =1 j—1

as Z?:l }Péﬁ( < |[Pgelly < v [Pyelly = \/_/\Iln/fx ( PZL) = y/n. Hence,
Pl (Pz.X), = P (MwYxz);, + P? (Pz.U), + 0,(1) — 74

according to Assumption 3. Also, by Assumption 3, p, — p,

Proof of Theorem 3. From Lemma A3,
X’PaX) ' X'P,e
n

+op (1) 0.

BB2SLS - 50 = (

Next,

R xX'p.x\'x'Pp,
\/E(BBZSLS_60> = ( ) \/ﬁe +op(1).

Application of Lemma A3, Lemma A5 with B = (,,,0,)" and the Slutsky Theorem
yields

n

R (1—a)?02Qxz +((1—a)A—p,) 0o
Vvn <5stLS 50) (1=a)Qxzr)" ‘N 0, +((1—a)A—2p,) BueX + p F [efuluﬂ
o)

+ (1 — a) (7o E [e2ul] + F [e?u,]
4 N (0’ (1)2B2SLS + (I)?J?QSLS + q)fzsm) 7
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where 2515 B25LS and $B25LS are as in the statement of the Theorem.

Lemma A7: Suppose assumptions 1-3 hold, and A > 0. The following expressions
are op (1):

L (Mwe)! =32, (M) E[ed],

IL (Mywe)! (Maw0): = X, (Mif)” My Elef]

1L (Mye)! - Y, (M“) E e} — 30%] - 3(Mi) 0%,

IV. (Mywe); (MzwO)i(Maw )=, (Mg M) E (¢ — 02) it =M Mo E fiit].

Proof of Lemma A7. We heavily use the properties of My, such as ‘M{,{,‘ < 1,

5, ()" = My < 15, M| < (S, (i) 5 (0)?) " < (o gz
L and similarly 3, [M{EEME5 | < 1,5 |ME| < [ M, < v [ My = VAN, (Mpy M) =

v/n, Lemma B1 in Chao, Swanson, Hausman, Newey, and Woutersen (2012), and the fol-

lowing and similar inequalities:

<

i1l q rial i1l 3 rial 11J1 7 ri2J1 i1j2 7 rizje i1k 3 rick
‘ZZGZ{jl,jg,k} MF M| < |30, My My — Myt My — My My” — My M|

_ 1142 11J1 | ri2j1 i1j2 3 ri2J2 i1k q risk
= | M|+ | My MyE | + | My M2 | + | M MR

We will show in detail how to obtain parts II and III; the other two are handled analo-
gously. The critical statement for part I is F [(Mwe)?’] =2 (M{;{,)sE (€3] , while the crit-

ical statements for part VI are E [(Mwe) (MzwU); (Mzwﬁ);] =>; (M%MQW)QE le2a;ul]+

i ik )2 ij ik )2 ii 7\ rii i v rid \2
Zj Zk;ﬁj (MI/I]/MZkW) 2E [1;;] and Z Ek;e] (M]Mzkw) = MWMZW_Zj (MI/I]/MZJW) :
Part II. Observe that

ij iy~ i5\2 3 id ~
(MWe) (Msz) (Z] MMJ/GJ‘)2Z M7 zwlj = Zj (MV{/) MZJWE [6?U1]+T1+T2+T3+T4,

where the formulas for T}, T5 and T3 appear below. We will show that 17 + T+ 15+ T, =
Op (1/n). First, take
T o
=3 Zk;ﬁj (MVIJ/) MZ’fWe?uk,

whose variance

.o 2 ,k .. 2 ,k - -
Zjl Zkﬁﬁjl ij Zkﬁﬁjz (M‘Z/[J/I) MZZVlV (MIZ/I]/Z) MZZVZVE [ejzluklejiuk?]

contains terms that are not zero, in the following cases:
i) j1 = J2, k1 = ko # 71 leading to scale e’ Uy en the variance component is
(i) j1 = jo, k1 = ko # ji leading t led E [e]] E [ui,], then th i ponent i

proportional to
1 W15 2 Q27 2 itk g risk
—5 2o i 2y (M) (M) sy My My
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which in absolute value is no greater than
1 i1\ 2 G0\ 2 i1 io 1 G170 2 ioi\ 2
—5 2 iy 2oy (M) (MGY)” oy [ M M| < — 500,52, 3, (M) (M)
n n
n—m
= 0( > )—0(1);

(ii) j1 = ko, jo = k1 # j1 leading to scaled F [e?ﬂj} E [efﬂ;] , then the variance component

is proportional to

1 i15\2 7 rirk iok\2 p rizj
3 Sy o X, (M) M (M) M
which in absolute value is no greater than
]_ G170 2 G0 iok) 2 1
2 Zj Zil (MVIl/j) Zig ‘MZ%} Zk (MI/I2/ ) < 2 Zj Vin = o(1).
Second, take
T ij A ik )\ fi ~
95 = Zj Zk;ﬁj My, Mg My, e ey iy,

whose variance

iJ1 ik1 ik1 ij2 iko iko ) ) ~  ~/
Zjl Zkl;ﬁjl Zh Zkg;ﬁjg My My My, My My My B [ejleklejzekzukluk‘g]

contains terms that are not zero, in the following cases:
(i) j1 = J2, k1 = ko # j1 leading to scaled E [e2ty )] 02, then the variance component is
proportional to

5 S S S MM MM X, M M
which in absolute value is no greater than
1 irk 3 rink 3 risk 3 riok i1j 7 rizg
2 D iy Dip Dk ’MW M gy, My, MZW‘ Zj;ék {MW My }
1 ik 3 itk iok 3 riok 1
< ﬁZkZZJMMl/ lew‘zu‘va/ MZ2W| =0 n = o(1);

(ii) j1 = ko, Jjo = k1 # j1 leading to scaled £ [e?&j} E [6]21];] , then the variance component
is proportional to

2 D 2y Zj My My M7, Zk;ﬁj My M gy, My,
which in absolute value is no greater than
1 irj inj 7 rizj irk  rizk 1
) Zj Zil |MMI/J} Zi2 |MM2/]MZ213V| Zk ‘MVII/ My | < n2 Zj Vin = o(1).
Third, take
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whose variance

i ik il
Zjl Zkl#jl Zl1¢{j1,k1} 232 Zkgyéjg le%{jg,kg} MW1 MW1 MZIl/V

172 iko ilo ~ ~
MW MW MZWE [ejleklul1€j26k2ulz]

contains terms that are not zero only in the case j; = jo, k1 = ko # j1, l1 = l2 & {j1,k1}

or similar leading to scaled 0% F [4;@)], then the variance component is proportional to
1 i1j 3 pizg ink g riok il 7 sl
ﬁ Zil Ziz Zj MI/Il/]MVIQ/] Zk:;éj MI/II/ MVIQ/ Zlgé{j,k} MzzleZQWv
which in absolute value is no greater than
1 i1j ji il rial ii i1] 3 fizg
S S 10| e | (M) + M)
1 i1 i17 7 it 1 i17) 2 i27 2
< X X M MY MG+ 5, 5, (M), (M)
Hence the variance component is no greater than proportional to
1 1
S Vi Y =0 (1).

Fourth, take

Th=>; (M) My (2a; — Eléaj])

J J
whose variance is
S S (M) MG (M) MG B [(¢2 1, — Ele20y)) (e, — Ble2])]

This is non-zero only when j; = j, leading to scaled E [(e3t; — E[e?i;])(e3i; — Eleday))],

and proportional to
E Zj Z’il (MWJ) MZf/?V Zig (MW]) MZ&V’
which in absolute value is no greater than
1 i1 2 ioj 2 1
— 2 2 (M) 30, (M) < O~ ) = o(1).

Part III. Observe that

[\&]
'S

ﬁ = —_—
(Mwe)! = (X, Mipes) =5, (M) E[ef = 308] + 3(05})°0
+Ty + Ty + T3 + Ty + T5,

where the formulas for 717, T5, T3, T4 and T5 appear below. We will show that T7 + T5 +
T3+ Ty +Ts = Op (1/n). First, take

Tl ij\3 i
T 2 ik (Myi,)” Migejer,
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whose variance

Do i Dkastin Din Dkt (M) My (M) My?E [e?1€k1€?2ek2:|

contains terms that are not zero, in the following cases:
(i) j1 = J2, k1 = ky # j1 leading to scaled E[eS]o?, then the variance component is

proportional to
1 i15\3 Q253 irk 3 riok
ﬁ Zil Ziz Zj (Mml/J) (MWQ/]) Zk;ﬁj MMI/ MMQ/ ’

which in absolute value is no greater than
1 i17 i2j i i 1 Q152 i27) 2
2 Zil ZiQ Zj ’MW] |3 ‘MW]|3 Zk?’fj ‘MV[l/kMV[z/k| S 2 Zil EiQ Zj (MW]) (MWJ)
n n
n—m
= 0( = ) = o(1);

(ii) j1 = ke, jo = k1 # j1 leading to scaled E[G?P, then the variance component is

proportional to
1 113\ 3 7 rirk isk\3 7 rizj
S S S X () 0 (1)
which in absolute value is no greater than
1 i17|3 | 3 rizd ik 2 1 io] i15\ 2
—5 20 2 2 [M [T M| 22, (M) < =550, 50, [ MG | 32, (Myy?)
1
< Y, Va=o(l).

(ili) j1 # j2, k1 = ko ¢ {1, j2} leading to scaled E[e}]*c2, then the variance component is

proportional to
1 i1j1\3 3 ri i2j2\3 7 ri
ﬁ Zil Ziz Zjl Zjﬁéjl Zk¢{j1,j2} (MVTI/JI) Mﬂl/k (MVIQ/JQ) MV‘Z/’C’
which in absolute value is no greater than
5 Y Yy gy M [ % | MG (MG 4 | M7 M | + [ M M
1 i14 i1j1) 2 i2j2) 2
n2 2ir Qi \MV},?\ Zjl (Mml/]l) ij (vafh)
1 11\ 4 iod i g0 2
+$ Zil Zjl (Mmlfjl) Ziz |MV72/]1| ij (MV?/”)
1 Goio\ 4 314 i1d1\ 2
+ﬁ Ziz ij (sz/j2> Zil |MV‘1/j2| Zjl (Mwl/ﬂ)

1 n—m n—m
< ﬁzh\/ﬁjt - Vn+—5—vn=o0(1).

n

IN

Second, take

T3 i \2 A ik \fi
5 = 2 ks gy (M) Mg My ejexen,
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whose variance

i1\ 2 7 rik1 4 il
Zh Zkﬁéjl Zlﬁé{jl,kl} ij Zkz#jz Zlﬁ{jmkz} (Mmjfl) MWl MWI

.. 2 . .
7‘[1]2 iko il 2 2
( W) My My? E [ejleklellejzekzelz]

contains terms that are not zero, in the following cases:
(1) j1 = J2, k1 = ko # j1, l1 = Iy & {j1, k1} or similar leading to scaled E[e?]ag, then the

variance component is proportional to
1 17 2 i25) 2 ik 3 riok i1l 3 rial
S i X (M) (M) sy MM S50 MM
which in absolute value is no greater than
1 152 jin\ 2 i1k 3 rizk
ﬁ Zh Ziz Zj (MV‘l/J) (M1J/V2) Zk‘#j |MW1/ MV?’ ‘ :

Hence the variance component is proportional to

T L 5 (M) () = 0 (” ‘J") = o(1).

n

(ii) j1 # jo, k1 = ko & {J1, 72}, I = Iz & {J1, Jo, k1 } or similar leading to scaled o%, then
the variance component is proportional to

1 i141) 2 242 2 irk 3 risk i1l p rial
ﬁ 221 Zlg Z]l (MV[I/J1> Z]Q (Mmz/vjz) Zk);ﬁjl,jg MI/Il/ MV%/ Zlg{]hjz,k‘} MI/Ilf MW2/ ?
which is no greater in absolute value than
]_ i1\ 2 G0\ 2
ﬁ Zil Ziz Z]l (Mmlfjl) Z]Q (MVI2/J2)
Dk go | My M| (| M2 ] + 2 | My M | + [ My M)
because of symmetry between j; and js. Consider the three terms in turn. The first is
1 i1é i171\2 i2j2\ 2 i1k risk 1
ﬁ Zil Z’L'Q ‘MV[I/'2| Zjl (Mwl/Jl) 2]2 (MI/?/]2) Zk?ﬁjl,jz ‘MV[I/ MV[2/ | S E Zil \/ﬁ S 0(1) )
the second does not exceed
2 i171 |3 i2j2\ 2 | 3 yi2d i1k g riok
ﬁ Zil Ziz Zjl ‘Mwl/jl{ ij (MW2/J2) ‘MV[Q/jl‘ Zk?éjl,b }Mml/ MVIQ/ ‘
2 G070\ 2 i 3171\ 2
< 23T, S () a5, ()
2 i 2 G0 2\/ﬁ G0 2
< ﬁ Ziz Z]é (MWQ/D) Zjl ‘MV‘Q/JI‘ < n2 Zlé ij (MVIQ/JQ) =0 (1) )
and the third is
1 i151\ 2 i2j2 2 i1k 3 rizk)2
5 2o iz 2y (M) 325, (M) Yooy (M M)

% S S Sk (M) (M) = 0 (” _Qm) — o(1).

n

IN
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(ili) j1 = k2 # J2, Jo = k1 # J1, b = Iz ¢ {J1, 2} or similar leading to scaled E[e}]*o?,

then the variance component is proportional to
1 i1g\2 g rizg i ink\2 i1l g iz
2 Do Dy Zj (MWJ) My Zk;ﬁj JWWIC (ka) Zl¢{j,k} MWZMWla
which is no greater in absolute value than
1 i1j inj i i i i1j 7 izj i i
Y Y Xy (M) (M| Sy (M| (M) (M| + [ M5 MG | + | MGG )
1 iri 152 i
ﬁ Zil Zlé |MM1/2} Zj (Mulfj) Zk (szfk)2
1 i1 i2] i1 1 i 2] i1
oy S X0 M| s (V) S [+ 5 3 o [ 55, [ 2, (M)
1
< SV, Vit Vi Yn=o(l).
Third, take

IN

Ts =305 2 krs 2rginy 2oag iy Miv My My Myjejereiey,

whose variance

Zh Zkl#l Zlﬁ{k‘l,jl} Zqﬁf{jhkhll} Zh Zkz#b zl2§E{k2J2} Zq1¢{j27k2ul2}

ij1 7 rik1 g rili  riqu g ride p rike g rile g rige

contains terms that are not zero only in the case j; = jo, k1 = ko, I1 = I3, ¢1 = ¢ and

similar leading to scaled ¢®, so the variance component is proportional to

1 i1j 7 risj irk  risk irl g rial ig g i

ﬁ Zil Zig Zj MVII/]MVIQ/J Zk;ﬁj MV[I/ MV[Z/ Zl¢{k,j} MI/Il/ MV[2/ qué{j,k,l} MVII/qMI/IZ}qa
which in absolute value is no greater than

E Zil ZiQ Zj |MVI1/]MI/I2/J‘ (‘MVII/2| +3 ‘MVII/jMV?/JD
< E Zil ZiQ |MI/11/2‘ + E Z]’ Zil ZiQ (MVIllj) (MI/IQ/]) < O <_) = 0(1)7
because of and symmetry among j, £ and [. Fourth, take
—
Ta=3; (M) (¢j = Elej])

whose variance is

S (M (M) B [(ef, - Elel]) (e, — Elel])]

41)%], and proportional

This is non-zero only when j; = j; leading to scaled E [(e? — Ele

to
4

Ly s, 00) s, ()
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which is no greater than

25T, 06p) T, (04) <0 (l) = o(1).

Fifth, take

T; :
By S (M) (M) (36— o)

whose variance is

Zjl Zkﬂéh Zj2 Zkz#jz (M{j‘]}l)Q (M$1)2(MI%2)2 (M%§2)2E [(6321 62’1 - 03) (632'2622 - 03)] :

It contains terms that are not zero only in the following cases:

(i) j1 = Jo, k1 = ko # j1 or similar leading to scaled E[ejf]2 - aﬁ, then the variance

component is proportional to
1 15\ 2 i2j\ 2 i1k 2 iok) 2
n2 Zz‘l Zig Zj (MW ) (MW ) Zk;ﬁj (MW ) (MW )

1 i1 2] i1 2 —
< STLELT ) 05F) Sy <0 (P20 o),

n

4] — o?) of, then the variance

(i) j1 = J2, k2 & {k1,/1} or similar leading to scaled (E[e
component is proportional to

1 i1] i2] i1k1 ioko -
n2 D iy Dain D (MWJ)2 (ij)z D kit (ka )2 D kot k) (MWk )2 <0 <" m> =l

n2

Lemma AS8: The following is true:

Elua) = %,—oTT,
= F [e?ui} —F [63] I,

] Z
Elewu;) = El[euui] —T'E[eu)] — E [eju;] T + E [¢f| T'T.

Proof of Lemma AS8. By straightforward computation.

Proof of Theorem 4. Because MZWéBQSLS = Mzwe — Msz (BBZSLS — 60) , We
have nilélB2SLSMzwéBQSLS 2, (1 — U — )\) 0'2 and nilX/MzwéBQSLS N (1 — U — )\) Y

using Lemma A2 and consistency of B pasLs- LThus, again using Lemma A2,

a N o / / ~ N
D, €BQSL5MZW€B2SLS X' Mzw X + X'Mzwepasrs eBQSLSMZWX

n? n n n n

(1= =N (028, + SueXl,) -
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Hence, also using Lemma A3,

BEESES L (11— 0) (1= 0) Quzs) '+ T (1= ) Q)

X ((1—p— A)? (028, 4+ SueX.)) (1 — ) QXZL)A)
A szl (025, + S0 ) Q5. = PSS,

- 2QXZL + 1—

Next, using Lemma A3

~) / !

P _ CpaspsX  _ epaspsMwX X, X

B2SLS = = - = - i = — +op (1),
€Bosr.s€B2SLS  €paosrsMweBasLs o’

SO X =X — éBQSLSF + op (1) . Note that

Ml 0 X = A MawX () plaay).

n

By Lemma A7(LII),

(épasrs); = (Mwe)? +op (1) = > (Mf,{,)gE [€?] +op (1)

and, using that My X = MywU + op (1),

(épasrs); (MzwX)i = (Mye)? (MzwU)i +op (1) = > (MI}],)ZMEJWE [e7a;] +op (1),

we have using Lemma A8

b S OBl 5, (M) My Bt

>, (M) S, (Mif)" My

+op (1) 5 B [elu] .

Then
P55 2 (1 0) (1 - 0) Q) (B[] a2 [20]]) (1 0) Q)™ = B,

Next, by Lemma A7(IILIV),

(Easrs)t = (Mwe)! +o0p (1) = X, (M) E [¢} = 30%] + 3(Mii) 0% + op (1)

and

(GstLS) (MZWX) (MZWX) = (MWG) (MZWU) (MZWU) +0P(1)
= %, (M3 M) B [(¢F ~ o?) ]
+ME Mg, 02 [ad)) + op (1)
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Then, using also Lemma AS,

ii \2 14 ii \2
Dy = E[ef—3a§]+3(MW)'?Z—3 <MW)” —o; | I'T
>, (M) X, (M)
b (U, () M B (2] + 5, OV M B [ )
> (Mif)” My
+ | B[ - o) ai] + —B22Y_o2p a7
> (Mg M)
! My Mgy o

_Z( — )21 P Aae(l—u—A)E[mg]+0P(1)
(MM, —H
J W= zZw

= E[ef|]I'T = 30T + (I'E [e}@] + E [e]w] T) + (E [(e — 02) @] ) + op (1)
= Elejuu| —o? (3, — olI'T) — 30:I'T = E [e}uuj] — 028, — 25X

ue’

and

PSS L, (1= ) Quze) ™ (B [eFul] — 2% — 28,50, (1= ) Q) ! = 24215,

Proof of Theorem 5. Because My (Pzw — &l,) My = My Ps; = P, and using
Lemma A3, we have

- — + 1
e'P,e
= 2 1).
\/ﬁ + Op( )
Using asymptotic normality of ¢'P,e/+/n from Lemma A5 with B = (0;,1)", we get that
the above quantity is asymptotically normal with the asymptotic variance 2 (1 — «) o2 +
po (Eej] = 307).

A2 P 2 .
As 65991 — 02, we summarize that

posrs (Pzw — aly,) €pasrs ¢Pe 1 (X’Pae)' (X’PQX) L X'Pe
n

N NG NG

JBQSLS . élB2SLS (PZW — (Sé]n) éBQSLS i N (0, 2\ (1 — a) 0'3 + Pa (E [64] — 30’4))

7 €

vn N &
£ et
LN (0,2)\(1 —a)+p, <%—3)) .

€

Proof of Corollary to Theorem 5. The first term clearly converges to 2\ (1 — «) .

In the second term, p,, is consistent for p, by Lemma A6, and 65,4, 5 is consistent for o2
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Next, by Lemma AT7(III),

1 ((éjsjlzks*LS);L B 3(Mf}/)2> A E [ef]
> (M)’

OBasLs
.. Or g p J
Summarizing, Vgasrs — Viasrs-

Proof of Theorem 6. Consider the normalized (by n~!) numerator and denominator
of F(B). Using Lemma A2, n™' (e — X (8 — 3,)) Pz (e — X(3 — B,)) equals

G/P e X/P e e’P 1 X X’P 1 X
z I - (B B) + (B~ Bo) —2

— (B = By) - T(ﬁ — Bo)
L Ao = M(B = Bo) ue — AL (B = Bo) + (B = Bo) (Qxz+ + AZ) (B — B),
while n™! (e — X(8 — B,)) My (e — X (B — B,)) equals

e’MWe ,X’Mwe eleX ,X’MwX
WS (B Bo) T = S (B By) + (B - o) =

S (L= p)og = (1= p) (B~ Bo)Bue — (1= 1) e (B — By)

+(8 = Bo) (@xzr + (1 — p) Bu) (B — Bo).

(8= Bo)

To summarize, the probability limit of the objective function is
1

1 ( . (11— ) (8= By Qxz (8= o) ) |
L—p 02 — (B = Bo)Bue — Tie(B = Bo) + (B = Bo) ((1 - N)_l QxzL + Eu) (B —Bo)

Indeed, it is minimized when 8 = [3,. The formal proof of consistency is standard and

follows, for example, Hansen, Hausman and Newey (2008).

The standard first order asymptotic stochastic expansion leads to

- 2) -~ () D

The first derivative of F'(/3) evaluated at f3, is

OF (By) 0 (Y — XB) Pye (Y — XB) X'Pyie ¢'Pyie

_ Y = _9 +2 X'Mye.
95 9B (Y — XB) Mw (Y — XP) ‘ s Mwe | (@Mpe) "
Note that
X'Py.e B BIPZLBQX'MWG
e'Mwe (¢’ Mye)
_ 1 (X’PZLe-e’MWe e’PZLe-X’MWe)
B ((3’]\414/6/71)2 n? n?
B 1 (X’Pae eMye €Pe X’MW6>
(¢! Mye/n)? n n n n ’
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so, using Lemma A3,

OF (By) B 2 e’ Mye X'Pe B X'Myee'P,e
SR = i (A - B ) o)
2 (X —el') Pye

= Tiepe v

1
Next we apply Lemma A5 with B = < I} ) to get that

X —el) Pe _ - -
oD 4 N (0,0 0) %+ (1 )0+ 0,20),

where, exploiting Lemma A8,

(1]
|

2 = (1—a)02Qxze + A (ngu — Zuez;e) ;

s = 7o (Eleu)] —E[e]T)+ (E|ejw] — E[e]]T) 7,
= w.E [e]u]] + E [efu;] 7,

1 = Elcu)] — E[e}w] T —T'E [¢}u;] + I'TE [e}] — 0250 + SueX,
= E|(ef —o?) wu] .

[1]
|

1]
|

The second derivative of F' () is
O*F (B) _ 0 <_2 X'Py (Y — XP5) )
0505~ 95 \ (Y — XB) My (¥ — X0)
) (2 (Y — XB) Py (Y — XB)
OB\ (Y — XB) My (Y — XP3))
X'Pyu X
(Y = XB) M (Y — XP)
X'Py. (Y — XB)
(Y — XB) My (Y — X5))°
(Y = XB) Py (Y - XB)
(v = XB) My (¥ — XB))*
(Y~ XB) Py (Y XP)
(Y — XB) My (Y — X))
When it is evaluated at 3, the probability limit is, using Lemma A2,

+

5 X' My (Y—Xﬁ))

-8

(Y — XB) My X

+8

X'My (Y — XB) (Y — XB) My X

/
w

Qxzr + Ay A e /
o — ) X
(]_ — [1,) O'g ((1 _ M) 03)2 <]‘ M) ue
Ao , )\;‘3 i
+8m (1—p) S0 (1 —p) %, — 2((1 mpy (Qxze + (1 — )%y
2(1—a)Qxze
1 — ,u, Ug ’
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Summarizing, the asymptotics for the LIML estimator is

. 2(1— A2
\/ﬁ</6LIML_60>i)< (1_;)62;22> (1_u)02N(0:(1—04)52+04(1—04)E3+Pa54)

d
LN (0, QLML 4 GLIML 4 pLIMLY.
where LML HLIML and LML are as in the statement of the theorem.

Proof of Theorem 7. First, using that ép ;i = Mwe — My X (BL]ML — ﬁo) , We

get using Lemma A2 that 63 ;,,; — o2 and

i A —1_7 2
o - CoPzweériur _ n” e'Ppie+op ) » Ao o
- ~f ~ - _ - .
€L eLIML n~te’'Mwe +op (1) (1 —p)o?

Second, by the partitioned matrix inverse, using that (Pzw — al,) W = (1 —a) W and
letting Xy = (W'W) " W'X,

A=

(X'P.X)"! — (X'P:X)"" XY,
— Xy (X'PX)™" 1—a) ' (WW) T+ Xy (X'PX) XY,

Using Lemma A3,

-1 -1
szj_ _szLXI//V

(5)1 (1—a)" +op (1)
n) T xw Q@ W) X QX |

X'PywX (X, W) Pyw (X, W) N n” e Pawérinr (X, W) énrnrr € pyp, (X, W)
n n (n'e% s brme)’ n n
(X, W) Pyweérrn™ e (X, W) 07 (X, W) énrur, €0 Pow (X, W)

n nte) L ntel L n
(X, W) (Prw X, W) N n~le'Pyie (¢! MyX,0) (¢ MyX,0)
n (n=le/ Mye)? n n
(X'Pyie,0) n~t (e My X,0) n~t(e’MyX,0) (X'Pyie,0) Cop (1)
— — 0]
n n—1le/ Mye n—le/ Mye n P
X W) (Paw X, W o2
W) Paw X W) A0 (1 ) 0) (1 — ) S 0) (A 0)
n (1 —p)o?)
1—p)%,,,0)  ((1—p)%,.,0)
o )\E/ 0 / (( ue’ o ue’ 1
(e O 2 o2 T-por o0l
(X, W) (Pyw X, W) )\diag {202, O ¥

ue’

n o2
and similarly

X' Myw X X, 0) (MzwX.0 diag {ZueX ., Omscm
W :( 7)( ZW 7)_(1_,“_)\) la’g{ ue? X }+0P(1)

2
n n o
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Further, using Lemma A2,

(1—a)’ X' PywX 4+ a2X' Myw X

n

— (1 o d)2 (X7 W)/ (PZWXa W) + d2 (X, O)/ (Msz, 0)
n n
diag {¥,.X!
(- @A+ ar(i— - ) el e Ok 4 1),

After multiplication of the sandwich, the northwest block becomes

AN, (1-a’XPuwX+a2X' MywX . A . Al . B\ /g\ !
n n n n

% — =
LIML - OTIML -
1:p,1:p
L (21— (Qxzr +AS) + 02l (1— = N5,
Qij_ p)
(1-a)
SueXie ((1 - O‘>2 Ata?(1—p— /\)) Al:p,ltp + All 1p T Bl:p,l:p -
_ o) + e - a”)Q Qe +op (1)
= Vo+Vs+Vi+op(1),
where

_ _ A _ _
‘/2 = O-nglzL + 1 _ aQXlzL (Uzzu - Zuezfue) QxlzL - (I)glML,

_ Aty + Al 1, _ Bip1.
o —1 p,Lip Lip,l:ip ~—1 o —1 1:p,1:p 1
‘/3 - szi n(l—a)2 szLa W_QXZLWQXZL‘

We need to find the limits of V5 and V. Taking into account that Mz X = Mz U,

MZWX = (MZWX7 MZWW) - MZWéLIMLFLIML
e (MwyX,0
= (MZWX7 0) - MZVWM
€LiMLeLIML
+MZWe (X/MwX, 0) - Op (1) + (Msz) é/LIML (X, W) +Op (1)

= (MZW07 0> +op (1),
SO (MZWX)Z = ((Mzwﬁ);, O;n><1>, + op (1) and
(MzwX), (MZWX); = diag {(Mzwﬁ)i(Mzwﬁ);7 Ome} +op(1).

Using Lemmas A6 and A7(II),

!/

(o) (MzwX), = ((Mwe)?(Mzwﬁ)uOmu),ﬂLoP(1)

= %, (M) My, (B [e2] ,0,0) +0p (1),
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then

Atpa. 1—a . T = .
in _ U8 e G (X)) = (- ) m B[] + op (1),
>0 (My)" My o
and so
_ Arprp+ AL 1, To B [e2t) + E [e2t]) 7!
o -1 p,L:p 1:p,1: -1 p —1 « 7 g i il Mo -1 _ A”LIML
Vs =0y n(l— a)Qp “Qxz1 = Qxpu 1 — o Qxye =037
Next,

(Mzw X)), (Mzw X);

U'M U
- diag { Al aomxm}
n

— diag {(1— p— N E[0) O} + 0p (1)

Using Lemmas A6 and A7(II),

o)’ (MawX), (MzwX)! = . (MiEMY,,) diag {E [(¢2 — 02) @] , O }
+ MG M3 diag {02 E (4], Onxm } + op (1),

and thus
iwin P [ (o ), (Vo ), — 50 %), Ol X,
> (M M) e
= po B [(€] — o2) ] ,
hence
_ é D, - — E [(612 B Uz) a’la;] —
Vi Qxlan (11i1p)2 QxlzL . loonxlzL (1— a)2 Qxlzi = oy,

Proof of Theorem 8. The properly normalized numerator of Ji 7, equals

5/ ~ !
eLIMLPééeLIML . e Pae
NG Jn

Following the proof of Theorem 5, one gets the conclusion.

+Op (].)

Proof of Corollary to Theorem 8. Follow the proof of Corollary to Theorem 5.
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