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tional bias correction of the 2SLS estimator is no longer appropriate. We provide

asymptotically correct versions of bias correction for the 2SLS estimator, derive
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1 Introduction

Often an instrumental variables regression contains many exogenous regressors. These

variables are not of interest, but are included primarily as a guard against model mis-

speci�cation and omitted variables bias, in order to approximate as closely as possible an

important but unobservable factor by throwing in many observable characteristics, or in

order to capture possible non-linearities in a semi-nonparametric manner. As a result,

if the sample is not too large, the proportion of such regressors to the number of obser-

vations may be perceptible. This may adversely a¤ect the inference because a part of

information in the sample has to be spent on estimation of a large number of nuisance

parameters. Hahn and Hausman (2002, Section 6) in their illustrative application to a

demand function compute a number of estimators and run a number of tests where they

include 134 predetermined variables, the sample size being 1459. The coe¢ cients of these

variables are of no interest, and the authors even do not mention what they are, while of

interest is the price elasticity only. The concern that the ratio of the number of exogenous

variables to the sample size may be non-negligible is relevant for estimation of a demand

function for various products (e.g., for water, see Billings, 1987, or for electricity, see

Kamerschen and Porter, 2004), estimation of the hedonic price model (e.g., see Witte,

Sumka and Erekson, 1979), or estimation of the household production function (e.g., see

Rosenzweig and Schultz, 1983), to name a few.

In this paper we analyze the impact of a large number of exogenous regressors on exist-

ing estimators and tests for a linear model estimated by instrumental variables methods.

For a standard instrumental variables regression with few or many instruments we con-

sider an asymptotic framework where the number of exogenous regressors and possibly

instruments is proportional to the sample size. The literature on estimation and infer-

ence in the presence of many (possibly weak) instruments is rapidly growing (see, among

others, Chao and Swanson, 2005, 2006; Hansen, Hausman and Newey, 2008; van Hasselt,

2010; Anderson, Kunimoto and Matsushita, 2010; Hausman, Newey, Woutersen, Chao,

and Swanson, 2010; Anatolyev and Gospodinov, 2011; Lee and Okui, 2012; Chao, Swan-

son, Hausman, Newey, and Woutersen, 2012), and the present paper aims to contribute to

this literature. Among the estimators we consider are conventional 2SLS, bias corrected

2SLS, LIML and K-class estimators. Among the tests we consider are conventional t and J

tests, as well as those recently proposed in the context of weak or many instruments, such

as Anderson�Rubin (Anderson and Rubin, 1949) and Kleibergen (Kleibergen, 2002) tests

for parameter restrictions, and the Wald test with variance estimates of Hansen, Hausman

and Newey (2008). In those cases when the presence of many exogenous regressors in-

validates the estimators or tests under consideration, we propose their modi�ed versions.

We do not assume error normality; all modi�cations are constructed in the general case
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of possibly non-normal model errors. Some of our results are new in the literature even

for the special case when the exogenous regressors are not many.

A brief preview of results follows. When the instruments are few, the inference us-

ing the conventional 2SLS estimator and associated t and J statistics, as well as the

Anderson�Rubin and Kleibergen tests, is still valid. When the instruments are many,

the LIML estimator remains consistent, but the presence of many exogenous regressors

changes its asymptotic variance. Moreover, the conventional bias correction of the 2SLS

estimator is no longer appropriate. We provide asymptotically correct versions of bias

correction for the 2SLS estimator, derive its asymptotically correct variance estimator,

extend the Hansen�Hausman�Newey LIML variance estimator to the case of many exoge-

nous regressors, and propose asymptotically valid modi�cations of the J overidenti�cation

tests based on the LIML and bias corrected 2SLS estimators. A small Monte-Carlo ex-

periment shows good performance of proposed modi�cations in moderately sized samples

in a model with non-normal errors.

The paper is structured as follows. Section 2 describes the model and states the

assumptions. Section 3 analyzes behavior of conventional estimators and tests when ex-

ogenous regressors are many but instruments are few. Sections 4 and 5 discuss the bias

corrected 2SLS and LIML estimators as well as their variance estimators and associated

tests when instruments and exogenous regressors are numerous. Section 6 presents sim-

ulation results in �nite samples. Some useful computational remarks are contained in

Section 7. Finally, Section 8 concludes. All proofs are relegated to the Appendix.

2 The setup

2.1 Model

We are interested in estimating and testing the structural equation with p endogenous

and m included exogenous regressors:

Y = X�0 +W�0 + e;

where Y = (y1; :::; yn)
0 is n � 1, X = (x1; :::; xn)

0 is n � p, W = (w1; :::; wn)
0 is n � m,

and e = (e1; :::; en)
0 is n � 1: The object of primary interest is the vector of structural

parameters �0; while the vector �0 contains nuisance parameters. There is additionally

an n � ` matrix of instruments (�excluded exogenous variables�) Z = (z1; :::; zn)
0 , ` � p:

For convenience, the data on instruments Z and exogenous regressors W will be treated

as nonrandom. Because the column dimensions of Z and W will grow with sample size

n; their elements implicitly depend on n:
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Let the reduced form be

X = �XZ +�XW + U;

where �XZ + �XW = Z�1 +W�2 is the linear projection on the space of (Z;W ) ; and

U = (u1; :::; un)
0 is n � p: We assume throughout that (Z;W ) has full column rank:

rk (Z;W ) = ` + m: This excludes redundant columns from data on instruments and

exogenous regressors. It also means that `+m does not exceed n:

2.2 Notation and assumptions

Let us denote by PW and MW the orthogonal projection matrices associated with W

PW = W (W 0W )
�1
W 0; MW = In � PW ;

by PZW and MZW the projection matrices associated with (Z;W ) ; and by PZ? and

MZ? the projection matrices associated with Z? = MWZ: Note that PZ? = PZW � PW

(see Lemma A1 in the Appendix). Similarly, denote X? = MWX and Y ? = MWY:

Additionally, let us introduce the following notation to be used throughout:

P� = PZ? � �MW

for any real number �:

Lower index i will point at the row number of a matrix, e.g. (MW�XZ)i is the

transposed ith row of MW�XZ . Upper indexes will denote corresponding elements of a

matrix, e.g. P ijW is the (i; j)th element of PW : Next, a bar will denote taking an average

over the index present, e.g. P iiW is n�1 times the trace of PW and
P

j P
ij
W is n�1 times the

sum of all elements of PW . Also, let n-vector dA contain diagonal elements of an n � n

matrix A:

We adapt the following asymptotic framework.

Assumption 1 Asymptotically, as n ! 1, m=n = � + o (1=
p
n) with 0 < � < 1; and

either ` is �xed, or `=n = �+ o (1=
p
n) with 0 � � < 1� �:

Assumption 1 is reminiscent of the classical many instruments asymptotic framework

of Bekker (1994). It is critical that the number of exogenous regressors and possibly

instruments grows proportionately with the sample size rather than slower than that. We

associate the word �many�with such proportional growth, the quali�er �moderately many�

with a slower growth, and the word �few�with a �xed number. We exclude the case of few

or moderately many exogenous regressors � = 0 here, but some classical textbook results

can be considered as limiting cases of ours when � is put to zero. Let us also introduce a

fundamental quantity

� =
�

1� �
;
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which is (asymptotically) a number of instruments per degrees of freedom. Note that

0 � � < 1 given the restrictions on � and �.

Next we make assumptions about data generation.

Assumption 2 The errors (ei; ui) are zero mean IID across i having �nite eighth mo-

ments, with E [e2i ] = �2e; E [uiu
0
i] = �u and E [uiei] = �ue.

Henceforth, by �lim�we understand taking a limit under Assumption 1.

Assumption 3 When ` is �xed, limn�1(Z?)0Z? = QZ? ; where QZ? is �nite and pos-

itive de�nite, �1 is of full column rank p; and
Pn

i=1

Z?i 4 � o (n2) : When ` ! 1;

limn�1�0XZMW�XZ = QXZ? ; where QXZ? is �nite and positive de�nite,
Pn

i=1 k(MW�XZ)ik
4

� o (n2) ; and the limits �� = lim (P ii� )
2 and �� = limP ii� (MW�XZ)i exist and are �nite.

Assumption 3 means in particular that the excluded instruments are, as a group,

strong after controlling for the explanatory power provided by the exogenous regressors.

Other requirements in Assumption 3 are technical, they are useful for various large sample

results to go through, and also are helpful in constructing estimators of various moments.

Note that if there are no exogenous regressors (m = 0 and � = �), then P� =

PZ � �In; (P ii� )
2 = (P iiZ )

2 � �2 + o(1) and P ii� (MW�XZ)i = (P iiZ � �) (�XZ)i, hence

�� = lim (P
ii
Z )

2 � �2 and �� = lim (P iiZ � �) (�XZ)i:

Let also

�̂ =
`

n
; �̂ =

m

n
; �̂ =

`

n�m

be �nite sample analogs of �; � and �: Also, put

�̂� = (P
ii
�̂ )

2
; �̂� = P ii�̂ (PZ?X)i

to be estimates of �� and ��:

Denote also for future use

� � �0ue
�2e

;

the coe¢ cients in a linear projection of reduced form errors on structural errors, and let

~ui = ui � �0ei

be corresponding population least squares residuals, or in a matrix form,

~U = U � e�:
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3 Estimators and tests under few instruments

3.1 2SLS estimation

In this subsection we consider the standard 2SLS estimator and associated J test. The

2SLS estimator for the parameter of interest is

�̂2SLS = (Ip; 0p�m)
�
(X;W )0 PZW (X;W )

��1
(X;W )0 PZWY:

By the partitioned matrix inverse,

�̂2SLS = (X
0PZ?X)

�1
X 0PZ?Y:

Note that the nuisance parameters can be computed as

�̂2SLS = (W
0W )

�1
W 0(Y �X�̂2SLS);

so the 2SLS residuals are then may be computed directly from �̂2SLS:

ê2SLS = Y ? �X?�̂2SLS:

De�ne the residual variance

�̂22SLS =
ê02SLS ê2SLS
n�m� p

:

The t statistic for the jth component of �0 based on 2SLS estimation is

t
(j)
2SLS =

(�̂2SLS)j � (�0)jr
�̂22SLS

h�
(X;W )0 PZW (X;W )

��1ijj
=

(�̂2SLS)j � (�0)jq
�̂22SLS

�
(X 0PZ?X)

�1�jj :
Further, the standard J test for overidentifying restrictions is given by

J2SLS =
ê02SLSPZW ê2SLS

�̂22SLS
:

A classical textbook result is that when there are few exogenous regressors (so that

� = 0) and few instruments (so that � = 0), the 2SLS estimator is consistent and asymp-

totically normal, and under the null of correct moment restrictions J2SLS is asymptotically

distributed as �2 (`� p). When the instruments are many (so that � > 0), the 2SLS esti-

mator is inconsistent (Bekker, 1994; Newey, 2004). The following Proposition establishes

the asymptotic properties of 2SLS in the presence of many exogenous regressors (so that

� > 0) when the instruments are few or many.
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Proposition 1: Suppose assumptions 1�3 hold. Then

�̂2SLS
p! �0 + (QXZ? + ��u)

�1 ��ue

and
J2SLS
n

p! �J1;

where the formula for the constant J1 can be found in the Appendix.

Thus, the 2SLS estimator is consistent only if � = 0; i.e. when there are few instru-

ments. The J statistic has a random limit only when � = 0; i.e. when there are few

instruments and the 2SLS estimator is consistent. In the rest of this Section we focus on

the case of few instruments.

Theorem 1: Suppose assumptions 1�3 hold, and ` is �xed. Then

p
n
�
�̂2SLS � �0

�
d! N

�
0; �2e (�

0
1QZ?�1)

�1
�
;

t
(j)
2SLS

d! N (0; 1) ; j = 1; :::; p;

and

J2SLS
d! �2 (`� p) :

Thus, the presence of many exogenous regressors does not a¤ect the form of the

asymptotic variance of the 2SLS estimator. In the case when the exogenous regressors

are all orthogonal to the excluded instruments, the asymptotic variance does not depend

on their number (assuming that the unexplained variance of the dependent variable does

not either). However, if the excluded instruments get better and better explained by the

exogenous regressors as the number of those grows, the e¤ect of numerosity of regressors

is to increase the asymptotic variance. The conventional standard errors, however, take

account of these variations in the asymptotic variance. The conventional J test is also

asymptotically valid.

Note that in the special case of a classical linear regression when Z = X the asymptotic

validity of t or Wald tests is consistent with results of Anatolyev (2012) who establishes,

although under more restrictive assumptions, that the classical tests are valid in the many

regressors framework when the number of restrictions is asymptotically �xed.

3.2 Anderson�Rubin and Kleibergen tests

In this subsection we consider the celebrated Anderson�Rubin (AR) and Kleibergen (K)

tests for testing parameter restrictions. In the usual circumstances these tests are robust

to the quality of instruments, and are correctly sized when the instruments are strong,

weak or irrelevant. We study the in�uence of the numerosity of exogenous regressors on

the asymptotics of the corresponding test statistics. We still focus on the case of �xed `.
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Consider the null hypothesis H0 : � = �0: The Anderson�Rubin AR statistic (Ander-

son and Rubin, 1949) is

AR =
n� `�m

`

�
Y ? �X?�0

�0
PZ?

�
Y ? �X?�0

�
(Y ? �X?�0)

0MZ? (Y ? �X?�0)
;

and is asymptotically distributed as �2 (`) =` under the null. The Kleibergen K statistic

(Kleibergen, 2002) is

K = (n� `�m)

�
Y ? �X?�0

�0
P ~Z
�
Y ? �X?�0

�
(Y ? �X?�0)

0MZ? (Y ? �X?�0)
;

where

~Z = PZ?

 
X? �

�
Y ? �X?�0

� �
Y ? �X?�0

�0
MZ?X

?

(Y ? �X?�0)
0MZ? (Y ? �X?�0)

!
;

and is asymptotically distributed as �2 (p) under the null regardless of the strength of the

instruments. The di¤erence with the AR statistic is that instead of projecting Y ?�X?�0
onto the ` columns of matrix Z, the K statistic projects onto the vector ~Z whose column

dimension is given by the number of endogenous variables. This reduces the number of

degrees of freedom and enhances the power properties (Kleibergen, 2002).

It turns out that both tests are robust to the presence of many exogenous regressors.

Theorem 2: Suppose assumptions 1�3 hold, and ` is �xed. Then

AR
d! �2 (`)

`

and

K
d! �2 (p) :

The conclusion also holds if the assumption of �xed �1 is replaced by �1 = ��=
p
n; where

�� is �xed.

4 Bias-corrected 2SLS estimation

4.1 Construction

Consider the existing bias corrected versions of the 2SLS estimator:

��B2SLS = (Ip; 0p�m)
�
(X;W )0 (PZW � �̂In) (X;W )

��1
(X;W )0 (PZW � �̂In)Y;

where either

�̂ =
`+m

n
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where the total number of instruments is counted (e.g., Newey, 2004; van Hasselt, 2010),

or

�̂ =
`� 2
n

where the number of additional instruments only is counted (e.g., Donald and Newey,

2001; Hahn and Hausman, 2002). By the partitioned matrix inverse,

��B2SLS = (X
0P�̂X)

�1X 0P�̂Y;

These estimators are inconsistent because they do not account for many exogenous re-

gressors as the following proposition shows.

Proposition 2: Suppose assumptions 1�3 hold, and � > 0. Then the asymptotic

biases of the bias corrected 2SLS estimators ��B2SLS are

�� (QXZ? � ��u)
�1�ue

and

�� ((1� �)QXZ? + ���u)
�1�ue

for the two choices of �̂.

One can easily see that the conventional bias correction works only if either there

is no endogeneity (�ue = 0) and there is no need to correct for bias, or the exogenous

regressors are not many (� = 0).

Let us instead make the following correction to the 2SLS estimator:

�̂B2SLS = (Ip; 0p�m)
�
(X;W )0 (PZW � �̂In) (X;W )

��1
(X;W )0 (PZW � �̂In)Y

= (X 0P�̂X)
�1
X 0P�̂Y:

Note that this is similar to the standard bias correction for 2SLS above, but the factor �̂

is di¤erent from either conventional factor �̂ which asymptotically is equivalent to either

�̂ + �̂ or �̂. For the bias-corrected 2SLS to be consistent, that factor should be adjusted

for the numerosity of exogenous regressors in a proper way. If there are no exogenous

regressors (m = 0 and � = �), then �̂ = 0; �̂ = �̂; P�̂ = PZ � �̂I; and the estimator is

equivalent to either version of the conventional bias corrected 2SLS.

The estimator �̂B2SLS allows for a variety of interpretations. For example, it is an

instrumental variables estimator in the regression of Y on X only, using the instrument

Ẑ1 = P�̂X: Or, it is an instrumental variables estimator in the regression of Y ? on X?

only, using the instrument Ẑ2 = P�̂X
?: Note also that, similarly to the case of 2SLS,

�̂B2SLS may be concentrated out:

�̂B2SLS = (W
0W )

�1
W 0(Y �X�̂B2SLS):
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As a result, the B2SLS residuals then may be computed directly from �̂B2SLS:

êB2SLS = Y ? �X?�̂B2SLS:

De�ne the residual variance

�̂2B2SLS =
ê0B2SLS êB2SLS
n�m� p

:

Note the degrees of freedom adjustment.

4.2 Asymptotic properties

The following theorem establishes the asymptotic properties of the bias-corrected 2SLS

in the presence of many exogenous regressors.

Theorem 3: Suppose assumptions 1�3 hold, and � > 0. Then the bias-corrected

2SLS estimator �̂B2SLS is consistent and zero mean asymptotically normal with the as-

ymptotic variance

VB2SLS = �
B2SLS
2 + �B2SLS3 + �B2SLS4 ;

where

�B2SLS2 = �2eQ
�1
XZ? +

�

1� �
Q�1
XZ?

�
�2e�u + �ue�

0
ue

�
Q�1
XZ? ;

�B2SLS3 =
1

1� �
Q�1
XZ?

�
��E

�
e2iu

0
i

�
+ E

�
e2iui

�
�0�
�
Q�1
XZ? ;

and

�B2SLS4 =
��

(1� �)2
Q�1
XZ?

�
E
�
e2iuiu

0
i

�
� �2e�u � 2�ue�0ue

�
Q�1
XZ? :

The composition of the asymptotic variance is the same as that in van Hasselt (2010):

one term �B2SLS2 is present even under error normality, and two terms �B2SLS3 and �B2SLS4

are responsible for possible deviations of third and fourth moments from their values

under normality. Moreover, the presence of many exogenous regressors is re�ected only

in changes in the scalar factors, otherwise the forms of the components are the same.

Under error normality when �B2SLS3 = �B2SLS4 = 0, the presence of numerous ex-

ogenous regressors is re�ected, apart from possible reductions in QXZ?, in the factor

�= (1� �) instead of �= (1� �) scaling up the unconventional term in �B2SLS2 contributed

by the numerosity of instruments. In the case of error non-normality, the terms �B2SLS3

and �B2SLS4 are in�ated because of numerous exogenous regressors. Of course, these e¤ects

may be partially o¤set or further exacerbated by changes in �� and ��:
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4.3 Variance estimation

To estimate VB2SLS; we need to construct consistent estimates of its three components,

�B2SLS2 ; �B2SLS3 and �B2SLS4 ; under error normality, consistent estimation of only �B2SLS2

su¢ ces. Its estimate is straightforward to construct:

�̂B2SLS2 = (1� �̂)n�̂2B2SLS (X
0P�̂X)

�1
+

�̂

1� �̂� �̂
(X 0P�̂X)

�1
D̂2 (X

0P�̂X)
�1
;

where

D̂2 = (ê
0
B2SLSMZW êB2SLS) (X

0MZWX) + (X
0MZW êB2SLS) (ê

0
B2SLSMZWX) :

For estimation of �B2SLS3 and �B2SLS4 it is necessary to construct various third and

fourth cross-moments of ei and ui using the B2SLS residuals and regressors. This turns

out to be not a straightforward task. Introduce

~X = X � êB2SLS�̂B2SLS;

where

�̂B2SLS =
ê0B2SLSX

ê0B2SLS êB2SLS

estimates �: Then form an estimate of �B2SLS3 as

�̂B2SLS3 = n2 (1� �̂) (X 0P�̂X)
�1
�
D̂3�̂

0
� + �̂�D̂

0
3

�
(X 0P�̂X)

�1
;

where

D̂3 =
(êB2SLS)

3
iP

j

�
M ij
W

�3 �̂0B2SLS + (êB2SLS)2i (MZW
~X)iP

j

�
M ij
W

�2
M ij
ZW

:

Finally, form an estimate of �B2SLS4 as

�̂B2SLS4 = n2�̂� (X
0P�̂X)

�1
D̂4 (X

0P�̂X)
�1
;

where

D̂4 =
(êB2SLS)

4
i � 3(M ii

W )
2
�̂4B2SLSP

j

�
M ij
W

�4 �̂0B2SLS�̂B2SLS

+�̂0B2SLS
(êB2SLS)

2
i (MZW

~X)0iP
j

�
M ij
W

�2
M ij
ZW

+
(êB2SLS)

2
i (MZW

~X)iP
j

�
M ij
W

�2
M ij
ZW

�̂B2SLS

+

�
(êB2SLS)

2
i � �̂�̂2B2SLS

�
(MZW

~X)i(MZW
~X)0iP

j

�
M ij
WM

ij
ZW

�2
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and

�̂ =
M ii
WM

ii
ZW

1� �̂� �̂
:

The variance estimator is computed as

V̂B2SLS = �̂
B2SLS
2 + �̂B2SLS3 + �̂B2SLS4 :

The following theorem shows the asymptotic validity of our construct in the case of

many exogenous regressors.

Theorem 4: Suppose assumptions 1�3 hold, and � > 0. Then

V̂B2SLS
p! VB2SLS:

Thus, the standard errors obtained with the use of V̂B2SLS will be asymptotically

valid, and hypothesis testing on its basis will be asymptotically correct. Of course, the

variance estimator V̂B2SLS is robust to the numerosity of exogenous regressors and may

be used when their number is large, moderately large, small, or zero.

Consider the limiting case when there are no exogenous regressors (m = 0 and � = �).

Then �̂ = 0; �̂ = �̂; P�̂ = PZ � �̂In; �̂� = (P
ii
Z )

2 � �̂
2
;
P

j

�
M ij
W

�2
M ij
ZW = M ii

Z = 1 � �̂;P
j

�
M ij
W

�3
= 1;

P
j

�
M ij
W

�4
= 1; (M ii

W )
2
= 1;

P
j

�
M ij
WM

ij
ZW

�2
= (M ii

Z )
2
= 1�2�̂+(P iiZ )

2
;

M ii
WM

ii
ZW =M ii

Z = 1��̂ so that �̂ = 1; and the three components of the variance estimator
can be simpli�ed to

�̂B2SLS2 = (1� �̂) (ê0B2SLS êB2SLS)
�
X 0(PZ � �̂In)X

��1
+

�̂

1� �̂

�
X 0(PZ � �̂In)X

��1
D̂2

�
X 0(PZ � �̂In)X

��1
;

�̂B2SLS3 = n2(1� �̂)
�
X 0(PZ � �̂In)X

��1 �
D̂3�̂

0
� + �̂�D̂

0
3

��
X 0(PZ � �̂In)X

��1
;

�̂B2SLS4 = n2
�
(P iiZ )

2 � �̂
2
��

X 0(PZ � �̂In)X
��1

D̂4

�
X 0(PZ � �̂In)X

��1
;

where

D̂2 = (ê
0
B2SLSMZ êB2SLS) (X

0MZX) + (X
0MZ êB2SLS) (ê

0
B2SLSMZX) ;

D̂3 = (êB2SLS)
3
i �̂

0
B2SLS +

(êB2SLS)
2
i (MZ

~X)i

1� �̂
;

and

D̂4 =
�
(êB2SLS)

4
i � 3�̂

4
B2SLS

�
�̂0B2SLS�̂B2SLS

+
�̂0B2SLS(êB2SLS)

2
i (MZ

~X)0i + (êB2SLS)
2
i (MZ

~X)i�̂B2SLS

1� �̂

+

�
(êB2SLS)

2
i � �̂2B2SLS

�
(MZ

~X)i(MZ
~X)0i

1� 2�̂+ (P iiZ )
2

:
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This asymptotic variance estimator in the special case of no exogenous regressors is new

to the literature on many instruments.

4.4 Speci�cation testing

Now consider a modi�ed J statistic, a suitable quadratic form in the B2SLS residuals:

JB2SLS =
ê0B2SLS (PZW � �̂In) êB2SLS

�̂2B2SLS
=
ê0B2SLSP�̂êB2SLS

�̂2B2SLS
:

This is an adaptation of the Sargan type statistic of Lee and Okui (2012) to the case of

many exogenous regressors.1

Theorem 5: Suppose assumptions 1�3 hold, and � > 0. Then

JB2SLSp
n

d! N
�
0; V J

B2SLS

�
;

where the asymptotic variance is

V J
B2SLS = 2� (1� �) + ��

�
E [e4i ]

�4e
� 3
�
:

The estimator of the asymptotic variance in the general case can be constructed as

V̂ J
B2SLS = 2�̂ (1� �̂) +

�̂�P
j

�
M ij
W

�4
 
(êB2SLS)

4
i

�̂4B2SLS
� 3(M ii

W )
2

!
;

while under error normality it is su¢ cient to use only the �rst term and set the second

term to zero.

Corollary to Theorem 5: Suppose assumptions 1�3 hold, and � > 0. Then

V̂ J
B2SLS

p! V J
B2SLS:

The J type test is one-sided (see Lee and Okui, 2012): we reject the null if the value

of
JB2SLSq
nV̂ J

B2SLS

exceeds qN(0;1)� ; the (1� �)-quantile of the standard normal.

Note that when there are no exogenous regressors (m = 0 and � = �),

V J
B2SLS = 2� (1� �) +

�
lim (P iiZ )

2 � �2
��E [e4i ]

�4e
� 3
�
;

1Among other things, Lee and Okui (2012) prove that a test based on such statistic is in fact asymp-

totically equivalent to the Hahn and Hausman (2002) test for instrument validity.
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and the test coincides with that in Lee and Okui (2012). In this limiting case one can

simply put

V̂ J
B2SLS = 2�̂(1� �̂) +

�
(P iiZ )

2 � �̂
2
� (êB2SLS)4i

�̂4B2SLS
� 3
!
:

If one uses only the �rst term in this estimate, the test is similar to the Anatolyev and

Gospodinov (2011) J test. That is, the Anatolyev and Gospodinov (2011) J test is not

robust to the numerosity of exogenous regressors even under error normality, in contrast

to the general test presented here.

5 LIML estimation

5.1 Construction

Consider now the LIML estimator (Anderson and Rubin, 1949, Bekker 1994, Donald and

Newey 2001, Hansen, Hausman and Newey, 2008, van Hasselt 2010):

�̂LIML = argmin
�

(Y �X�)0MW (Y �X�)

(Y �X�)0MZW (Y �X�)
;

or, equivalently,

�̂LIML = argmin
�
F (�) ;

where

F (�) =
(Y �X�)0 PZ? (Y �X�)

(Y �X�)0MW (Y �X�)
:

The second formulation is more convenient because the probability limit of the minimized

value of the objective function is exactly � (see the proof of Theorem 6). Note also that

the estimator �̂LIML may be interpreted as a LIML estimator in a transformed equation

where the left side variable is Y ? and the right side variables areX? using the instruments

(Z;W ) :

Let us write out the �rst order conditions for �̂LIML as

X 0PZ?
�
Y �X�̂LIML

�
� F (�̂LIML) �X 0MW

�
Y �X�̂LIML

�
= 0:

This implies

�̂LIML =
X 0P~�Y

X 0P~�X
;

where

~� = F (�̂LIML):

It is easy to show (see the proof of Theorem 6 below) that ~�
p! �: The value of ~�; which

provides an alternative way of calculating the LIML estimator, may be computed as the

smallest eigenvalue of the matrix (�X 0�X)�1�X 0PZW �X; where �X =
�
Y ?; X?� :

14



Let us de�ne the residual variance

�̂2LIML =
ê0LIMLêLIML

n�m� p
:

Note the degrees of freedom adjustment.

5.2 Asymptotic properties

The following theorem establishes the asymptotic properties of the LIML estimator in the

asymptotic framework under consideration.

Theorem 6: Suppose assumptions 1�3 hold, and � > 0. Then the corrected LIML
estimator �̂LIML is consistent and zero mean asymptotically normal with the asymptotic

variance

VLIML = �
LIML
2 + �LIML

3 + �LIML
4 ;

where

�LIML
2 = �2eQ

�1
XZ? +

�

1� �
Q�1
XZ?

�
�2e�u � �ue�0ue

�
Q�1
XZ? ;

�LIML
3 =

1

1� �
Q�1
XZ?

�
��E

�
e2i ~u

0
i

�
+ E

�
e2i ~ui

�
�0�
�
Q�1
XZ? ;

and

�LIML
4 =

��
(1� �)2

Q�1
XZ?E

��
e2i � �2e

�
~ui~u

0
i

�
Q�1
XZ? :

The e¤ects of the numerous exogenous regressors on the asymptotic variance are

similar to those for the appropriately bias corrected 2SLS.

The di¤erence between VB2SLS and VLIML is composed of three di¤erences, �B2SLS2 �
�LIML
2 ; �B2SLS3 � �LIML

3 and �B2SLS4 � �LIML
4 ; where

�B2SLS2 � �LIML
2 =

2�

1� �
Q�1
XZ?�ue�

0
ueQ

�1
XZ?

�B2SLS3 � �LIML
3 =

1

1� �

E [e3i ]

�2e
Q�1
XZ? (���

0
ue + �ue�

0
�)Q

�1
XZ?

�B2SLS4 � �LIML
4 =

��
(1� �)2

Q�1
XZ?

�
E [e3iui]

�2e
�0ue + �ue

E [e3iu
0
i]

�2e

��ue�0ue
�
E [e4i ]

�4e
+ 3

��
Q�1
XZ? :

The di¤erence �B2SLS2 � �LIML
2 is positive semide�nite, hence the LIML estimator is

asymptotically more e¢ cient than the bias-corrected 2SLS estimator under error normal-

ity. This result has a well known analog when the number of exogenous regressors is

small (e.g., Chao and Swanson 2006; van Hasselt, 2010). Under error non-normality, the

di¤erences �B2SLS3 � �LIML
3 and �B2SLS4 � �LIML

4 can potentially take any sign. Even

in the few exogenous regressors framework, van Hasselt (2010) �nds it di¢ cult (if not
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to say impossible) and unproductive to analyze the additional terms in the asymptotic

variance, while Hansen, Hausman and Newey (2008) mention that the adjustments for

non-normality �LIML
3 and �LIML

4 tend to be small, at least when � is small, in contrast

to the second term in �LIML
2 responsible for numerosity of instruments. Anderson, Kuni-

moto and Matsushita (2010), Anatolyev and Gospodinov (2011), and Lee and Okui (2012)

�nd via simulations that the e¤ects of deviation from normality are barely noticeable for

non-extreme error distributions. Thus, it is quite unlikely that the sum of the second and

third di¤erences of asymptotic variance components, if negative, will overweigh the �rst

di¤erence.

5.3 Variance estimation

Hansen, Hausman and Newey (2008) propose a variance estimator (HHN henceforth) in

the case of many instruments that takes into account error non-normality. Denote

�X = (X;W )� êLIML
��LIML;

where
��LIML =

ê0LIML (X;W )

ê0LIMLêLIML

estimates
�
�; 00m�1

�
: The HHN estimator has the following structure:

V̂LIML = n
�
�H�1 �� �H�1�

1:p;1:p
;

where
�H = (X;W )0 (PZW � ��In) (X;W ) ;

�� =
ê0LIMLPZW êLIML

ê0LIMLêLIML

;

and
�� = �̂0 + Â+ Â0 + B̂;

where the terms Â and B̂ estimate the terms related to the third and fourth moments,

respectively, that are present under error non-normality in addition to the term �̂0 that

is present under error normality. It turns out that under error normality the term

�̂0 = �̂2LIML

�
(1� ��)2 �X 0PZW �X + ��2 �X 0MZW

�X
�

given in Hansen, Hausman and Newey (2008) still correctly estimates the relevant por-

tion of the asymptotic variance when there are many exogenous regressors. However, the

terms Â and B̂ given in Hansen, Hausman and Newey (2008, p.399) do not correctly esti-

mate their corresponding portions when exogenous regressors are numerous. We therefore
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change those to

Â = n(1� �̂)�̂�
(êLIML)

2
i

�
MZW

�X
�0
iP

j

�
M ij
W

�2
M ij
ZW

and

B̂ = n�̂�

�
(êLIML)

2
i � �̂�̂2LIML

� �
MZW

�X
�
i

�
MZW

�X
�0
iP

j

�
M ij
WM

ij
ZW

�2 :

The following proposition formalizes the asymptotic validity of our modi�cation.

Theorem 7: Suppose assumptions 1�3 hold, and � > 0. Then the modi�ed HHN

estimator V̂LIML is consistent for VLIML.

Suppose there are no exogenous regressors (m = 0 and � = �), then �̂ = 0; �̂ = �̂;

P�̂ = PZ� �̂In; �̂� = (P iiZ )
2� �̂2;

P
j

�
M ij
W

�2
M ij
ZW =M ii

Z = 1� �̂; (M ii
Z )

2
= 1�2�̂+(P iiZ )

2
;

M ii
WM

ii
ZW = M ii

Z = 1 � �̂; and it is easily seen that Â and B̂ become exactly as those in

Hansen, Hausman and Newey (2008, p.399):

Â =
nX
i=1

�
P iiZ � �̂

�
(PZX)i �

1

n

nX
i=1

(êLIML)
2
i

�
MZ

�X
�0
i
;

B̂ =
(P iiZ )

2 � �̂
2

1� 2�̂+ (P iiZ )
2

nX
i=1

�
(êLIML)

2
i � �̂2LIML

� �
MZ

�X
�
i

�
MZ

�X
�0
i
:

5.4 Speci�cation testing

Now consider a modi�ed J statistic, a suitable quadratic form in the LIML residuals:

JLIML =
ê0LIML (PZW � �̂In) êLIML

�̂2LIML

=
ê0LIMLP�̂êLIML

�̂2LIML

:

This an adaptation of the Sargan type statistic of Lee and Okui (2012) to the case of

many exogenous regressors and LIML estimation.

Theorem 8: Suppose assumptions 1�3 hold, and � > 0. Then

JLIMLp
n

d! N
�
0; V J

LIML

�
;

where the asymptotic variance is

V J
LIML = 2� (1� �) + ��

�
E [e4i ]

�4e
� 3
�
:

Note the equivalence to the B2SLS-based modi�ed J test. The estimator of the

asymptotic variance in the general case can be constructed analogously as

V̂ J
LIML = 2�̂ (1� �̂) +

�̂�P
j

�
M ij
W

�4
 
(êLIML)

4
i

�̂4LIML

� 3(M ii
W )

2

!
:
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while under error normality it is su¢ cient to use only the �rst term and set the second

term to zero.

Corollary to Theorem 8: Suppose assumptions 1�3 hold, and � > 0. Then

V̂ J
LIML

p! V J
LIML:

Note that if there are no exogenous regressors (m = 0 and � = �), then

V J
LIML = 2� (1� �) +

�
lim (P iiZ )

2 � �2
��E [e4i ]

�4e
� 3
�
:

In this limiting case one can simply put

V̂ J
LIML = 2�̂

�
1� �̂

�
+
�
(P iiZ )

2 � �̂
2
� (êLIML)

4
i

�̂4LIML

� 3
!
:

If one uses only the �rst term in this estimate, the test becomes similar to the Anatolyev

and Gospodinov (2011) J test. That is, the Anatolyev and Gospodinov (2011) J test

is not robust to the numerosity of exogenous regressors, in contrast to the general test

presented here.

The J type test is one-sided (see Lee and Okui, 2012): we reject the null if the value

of
JLIMLq
nV̂ J

LIML

exceeds qN(0;1)� ; the (1� �)-quantile of the standard normal.

Another possible statistic to test for the model speci�cation is based on the di¤erence

between the minimized objective function ~� = F (�̂LIML) and a direct estimate �̂ of �;

but this yields an asymptotically equivalent test. Moreover, inspection of the proofs of

Theorems 5, 6 and 8 reveals that the statistics
p
nJB2SLS;

p
nJLIML and

p
n (~�� �̂) all

are based on the asymptotic behavior of the same quantity,

e0P�ep
n
;

and hence the corresponding tests are asymptotically equivalent.

5.5 K-class estimation

One can also extend the notion of a K-class estimator (Nagar, 1959; Hansen, Hausman

and Newey, 2008) to the present situation with numerous exogenous regressors:

�̂� =
X 0P�Y

X 0P�X
;
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where � is a constant or data-dependent quantity. From inspection of proofs it follows

that �̂� is consistent only if �
p! �: Further, as

X 0P�ep
n

=
X 0P~�ep

n
�
p
n (�� ~�) (X

?)0ep
n

;

�̂� is asymptotically equivalent to �̂LIML if
p
n (�� ~�) p! 0: One popular choice

� =
~�� (1� ~�) c=n
1� (1� ~�) c=n

leads to the Fuller (1977) type estimator, which is asymptotically equivalent to �̂LIML

under many exogenous regressors.

6 Simulation experiment

In this section we carry out a small Monte-Carlo experiment. Of primary interest to us is

the amount of distortions arising from the presence of many exogenous regressors when

they play a role, and to verify for how big their proportion to the sample size may make

the distortions sizable. It is also of interest to see how well the asymptotic theory works

for a typical sample size.

The data for the Monte Carlo experiment are generated from

y = �x+
mX
j=1

�jwj + e;

x =
X̀
j=1

�1jzj +
mX
j=1

�2jwj + u;

Here, the parameter values are � = 1; �j = �2j = 1=
p
m for j = 1; :::;m; and �1j =�

1; 00`�1
�0
: The local-to-zero �j�s and �1j�s keep the information contained in included

exogenous variables �xed as m changes. The exogenous regressors wj are independent

and distributed according to the standard normal except for one exogenous regressor

which is set to unity. When the instruments zj�s are few (small `), they are independent

standard normal; when they are many (large `), they are generated as in Hausman,

Newey, Woutersen, Chao, and Swanson (2010): z = (&; &2; &3; &4; &D1; :::; &D`�4) ; where

Dk 2 f0; 1g, Pr fDk = 1g = 1
2
for k = 1; :::; `� 4; and & is standard normal. Next, each of

errors e and u is drawn from the skew Student�s distribution of Azzalini and Capitanio

(2003) transformed to have zero means and unit variances, with the parameters implying

the skewness coe¢ cient 1:38 and the kurtosis coe¢ cient 6:54.2 The covariance between e

and u is 0:9: The sample size is n = 400: The results are based on 5,000 simulations.

2We used the procedure ST from the Gauss library SKEW by Roncalli and Lagache (2004).
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First we report the actual rejection rates at the 5% nominal level of the 2SLS based

t test and AR and K tests when there are ` = 2 instruments. The last two columns

correspond to the AR and K tests when we additionally divide �1j by
p
n making the set

of instruments weak.

� t-2SLS J-2SLS AR K AR(W) K(W)

0:1 4.9% 5.3% 5.0% 4.8% 5.0% 5.3%

0:2 5.3% 4.8% 5.1% 4.7% 5.1% 4.7%

0:3 5.1% 4.9% 4.8% 4.6% 4.8% 4.9%

0:4 5.2% 4.9% 4.8% 4.5% 4.8% 4.6%

0:6 5.2% 4.8% 5.0% 4.9% 5.0% 5.0%

0:8 6.1% 5.3% 6.1% 5.8% 6.1% 5.4%

Clearly, all considered tests are robust to the numerosity of exogenous regressors

exhibiting rejection rates very close to the nominal one. When � gets very large though,

the tests acquire a slight tendency to overreject.

Now we switch to the many instrument case and look at the medians of simulated

bias corrected 2SLS estimators and the LIML estimator for some values of � and �.

� = � med-B2SLS1 med-B2SLS2 med-B2SLS med-LIML

0:1 �0:114 0:014 �0:002 0:001

0:2 �0:303 0:057 �0:001 0:000

0:3 �0:665 0:140 �0:003 0:000

0:4 �1:226 0:276 0:000 �0:002

The median bias is obviously present in the �inappropriately� corrected 2SLS esti-

mators, and is practically absent in the properly corrected one, as well as in the LIML

estimator. The �rst version of �inappropriate� correction leads to a much higher bias

than the second version, and these biases are of opposite signs.

Next, we present the actual rejection rates at the 5% nominal level of t and J tests.

The third and fourth columns of the following table show rejection rates based on the ap-

propriately corrected 2SLS estimator using the proposed standard errors, and the LIML

estimator using the modi�ed HHN standard errors. The �fth and sixth columns show,

respectively, the null rejection rates for the Anatolyev and Gospodinov (2011, AG hence-

forth) and Lee and Okui (2012, LO henceforth) J type tests that account for the numeros-

ity of instruments but do not for the numerosity of exogenous regressors. The decision rule
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of the AG test has the following form: J > q
�2(`�1)
�(
p
1����1(�))

, where J is the conventional J

statistic based on LIML residuals. Finally, the seventh and eighth columns represent the

proposed J type tests based on the bias corrected 2SLS and LIML estimators, respectively.

� � t-B2SLS t-LIML J-AG J-LO J-B2SLS J-LIML

0:1 0:1 5:0% 5:2% 6:5% 5:8% 5:7% 5:3%

0:2 4:5% 5:1% 7:1% 6:2% 6:2% 5:3%

0:3 5:2% 4:9% 5:6% 6:0% 5:8% 5:0%

0:4 4:9% 5:3% 5:2% 6:0% 5:8% 5:1%

0:2 0:1 5:0% 5:1% 5:8% 5:8% 5:5% 5:0%

0:2 5:0% 5:2% 6:5% 6:7% 6:1% 5:5%

0:3 4:4% 4:8% 5:2% 6:3% 5:7% 4:9%

0:4 4:8% 4:5% 4:5% 6:6% 6:5% 5:2%

0:3 0:1 4:8% 4:5% 7:1% 6:1% 6:1% 4:9%

0:2 4:3% 5:1% 6:1% 6:7% 6:3% 5:1%

0:3 5:0% 4:4% 4:2% 6:2% 5:8% 4:5%

0:4 5:6% 5:0% 3:4% 6:4% 6:4% 4:8%

0:4 0:1 5:1% 4:7% 6:6% 5:9% 5:7% 4:5%

0:2 5:5% 5:1% 5:2% 6:6% 6:6% 4:6%

0:3 6:2% 5:4% 2:9% 6:0% 6:0% 4:3%

0:4 6:5% 4:4% 1:2% 5:2% 6:1% 3:9%

Both t tests exhibit just slight distortions even for a moderate sample size, with an

exception of the B2SLS-based one when both � and � are big. The LIML based standard

errors seem to be a bit more reliable than those based on B2SLS. The (asymptotically

incorrect) AG test behaves unstably, in some cases exhibiting perceptible overrejection,

in some cases perceptible underrejection. The (also asymptotically incorrect) LO test

behaves more stably showing consistent overrejection, which turns out non-severe for a

moderate degree of non-normality. Our J type B2SLS based test also tends to slightly

overreject, while actual rejection rates for the J type LIML based test are very close to

the nominal level, again except when both � and � are big.

7 Computational note

The tests proposed in this paper are easy and straightforward to implement. A compu-

tational di¢ culty may be to program various objects which are functions of elements of
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matrices P�̂, MW ; MZW and others. In GAUSS, they can be coded in the following way.

Let the matrices PW and PZW be coded as Pw and Pzw, then the matrices MW , MZW and

P�̂ are coded as Mw=eye(n)-Pw, Mzw=eye(n)-Pzw and Pa=Pzw-Pw-ahat*(eye(n)-Pw),

where scalar n contains n, and ahat contains �̂: The following table represents statements

for various objects, functions of elements of these matrices.

(P ii�̂ )
2 meanc(diag(Pa)^2)

(M ii
W )

2 meanc(diag(Mw)^2)

M ii
WM

ii
ZW meanc(diag(Mw.*Mzw))P

j

�
M ij
W

�3
meanc(sumc(Mw^3))P

j

�
M ij
W

�2
M ij
ZW meanc(sumc((Mw^2).*Mzw))P

j

�
M ij
W

�4
meanc(sumc(Mw^4))P

j

�
M ij
WM

ij
ZW

�2
meanc(sumc((Mw^2).*(Mzw^2)))

Other objects of interest involving these matrices may be formed similarly. For ex-

ample, let vector ehat contain the elements of ê; and X contain elements of X: Then the

coding table is

P ii�̂ (PZ?X)i meanc(diag(Pa).*((Pzw-Pw)*X))

ê2i (MZWX)
0
i (ehat^2)�(Mzw*X)/n

ê2i (MZWX)i (MZWX)
0
i X�Mzw*diagrv(eye(N),ehat^2)*Mzw*X/n

8 Conclusion

We have considered a standard linear instrumental variables regression with few or many

instruments where the number of exogenous regressors may be large and comparable to the

sample size. Within an asymptotic framework where the number of exogenous regressors

and possibly instruments is proportional to the sample size, some existing estimators and

tests are robust to their numerosity, which is however not true for others. In those cases

when the presence of many exogenous regressors invalidates an estimator or test under

consideration, we have proposed its modi�ed asymptotically valid version. Future research

may extend to instrumental variables models with heteroskedasticity, with the literature

for the many instrument case still being developed (e.g., Chao, Swanson, Hausman, Newey,

and Woutersen, 2012; Hausman, Newey, Woutersen, Chao, and Swanson, 2010), and

accommodate serial correlation in model errors.
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A Appendix: proofs

Lemma A1: Suppose (Z;W ) has full column rank. The following is true: PZ? =

PZW � PW ; PZ?MW =MWPZ?MW = PZ? ; MWMZ?MW =MZ?MW =MW � PZ?.

Proof of Lemma A1.
By the partitioned matrix inverse PZW = (Z;W )

�
(Z;W )0 (Z;W )

��1
(Z;W )0 is

(Z;W )

"
	�1n �	�1n Z 0W

�ZW	�1n (W 0W )�1 + ZW	
�1
n Z 0W

#
(Z;W )0 ;

where ZW = (W 0W )�1W 0Z and 	n = Z 0MWZ. Hence,

PZW � PW =MWZ (Z
0MWZ)

�1
Z 0MW = PZ? :

Next, PZ?MW = (PZW � PW )MW = PZW � PW = PZ? ; MWPZ?MW = MWPZ? =

(PZ?MW )
0 = P 0

Z? = PZ? . Finally, MWMZ?MW =MWMW �MWPZ?MW =MW �PZ?.

Lemma A2: Suppose assumptions 1�3 hold. Then

X 0PZ?X

n

p! QXZ? + ��u;
X 0PZ?e

n

p! ��ue;
e0PZ?e

n

p! ��2e;

X 0MWX

n

p! QXZ? + (1� �) �u;
X 0MW e

n

p! (1� �) �ue;
e0MW e

n

p! (1� �)�2e;

X 0MZWX

n

p! (1� �� �) �u;
X 0MZW e

n

p! (1� �� �) �ue;
e0MZW e

n

p! (1� �� �)�2e:

Proof of Lemma A2. First, by Lemma A1 of Hansen, Hausman and Newey (2008)
using Assumptions 2 and 3,

U 0PZWU

n

p! (�+ �) �u;
U 0PWU

n

p! ��u;
U 0PZW e

n

p! (�+ �) �ue;

U 0PW e

n

p! ��ue;
e0PZW e

n

p! (�+ �)�2e;
e0PW e

n

p! ��2e:

It follows immediately that n�1e0PZ?e
p! ��2e and n

�1e0MW e
p! (1� �)�2e:

Now, consider n�1�0XZPZ?e whose mean is zero and whose variance is

E

�
�0XZPZ?ee

0PZ?�XZ
n2

�
=
�2e
n

�0XZPZ?�XZ
n

! 0;

hence n�1�0XZPZ?e
p! 0: Similarly, one can show that n�1�0XZMW e

p! 0; n�1�0XZPZ?U
p!

0 and n�1�0XZMWU
p! 0:

Now, PZ?X = PZ?�XZ + PZ?U; hence

X 0PZ?X

n
=

(PZ?X)
0 PZ?X

n
=
�0XZ�XZ

n
� �

0
XZPW�XZ

n
+
�0XZPZ?U

n
+
U 0PZ?�XZ

n

+
U 0PZ?U

n

p! QXZ? + ��u
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and
X 0PZ?e

n
=
�0XZPZ?e

n
+
U 0PZ?e

n

p! ��ue:

Similarly, MWX =MW�XZ +MWU; hence

X 0MWX

n
=

(MWX)
0MWX

n
=
�0XZMW�XZ

n
+
�0XZMWU

n
+
U 0MW�XZ

n
+
U 0MWU

n
p! QXZ? + (1� �) �u

and
X 0MW e

n
=
�0XZMW e

n
+
U 0MW e

n

p! (1� �) �ue:

The last three results directly follow from the previous ones.

Proof of Proposition 1. Straightforward computations using Lemma A2 yield

�̂2SLS = �0 +
�
n�1X 0PZ?X

��1
n�1X 0PZ?e

p! �0 + (QXZ? + ��u)
�1 ��ue:

Next, recall that ê2SLS =MW (Y �X�̂2SLS); or

ê2SLS =MW e�MWX (X
0PZ?X)

�1
X 0PZ?e:

Then, using Lemma A2,

ê02SLSPZW ê2SLS
n

=
e0PZ?e

n
� e0PZ?X

n

�
X 0PZ?X

n

��1
X 0PZ?e

n
p! ��2e � �2�0ue ~��ue;

where ~� = (QXZ? + ��u)
�1 : Next,

ê02SLS ê2SLS
n

=
e0MW e

n
� 2e

0MWX

n

�
X 0PZ?X

n

��1
X 0PZ?e

n

+
e0PZ?X

n

�
X 0PZ?X

n

��1
X 0MWX

n

�
X 0PZ?X

n

��1
X 0PZ?e

n
p! (1� �)�2e � 2� (1� �) �0ue ~��ue

+�2 (1� �) �0ue
~� (QXZ? + (1� �) �u) ~��ue

= (1� �)
�
�2e + ��0ue

~� ((�� 2)QXZ? � � (1 + �) �u) ~��ue

�
:

Summarizing, the J statistic has the following limit:

J2SLS
n

p! �
�2e � ��0ue

~��ue

�2e + ��0ue
~� ((�� 2)QXZ? � � (1 + �) �u) ~��ue

� �J1:
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Proof of Theorem 1. The probability limit of the residual variance is �2e: The
estimator �̂2SLS satis�es

p
n(�̂2SLS � �0) =

�
X 0PZ?X

n

��1
X 0PZ?ep

n
:

As in Lemma A2, PZ?X = MWZ�1 + PZ?U and hence n�1X 0PZ?X
p! �01QZ?�1

and
X 0PZ?ep

n
= �01

(Z?)0ep
n

+
U 0PZ?ep

n
:

Because U 0PZ?e = n�1=2U 0Z?
�
n�1(Z?)0Z?

��1
n�1=2(Z?)0e = OP (1)QZ?OP (1) ; the sec-

ond term above is oP (1). Now let

Wi =
Z?i eip
n
:

Note that by Assumptions 2 and 3, we have
Pn

i=1E[
Z?i ei4] � E[e4i ]

Pn
i=1

Z?i 4 �
o (n2) : Hence

Pn
i=1E[kWik4] � n�2o (n2)! 0: Then we have that

Pn
i=1WiW

0
i converges

to �2eQZ? : By Lemma A2 of Hansen, Hausman and Newey (2008), (Z
?)0e=

p
n is asymp-

totically normal with the asymptotic variance �2eQZ?. Together,

X 0PZ?ep
n

d! N
�
0; �2e�

0
1QZ?�1

�
and p

n(�̂2SLS � �0)
d! N

�
0; �2e (�

0
1QZ?�1)

�1
�
:

The t statistic for the jth component based on 2SLS is

t
(j)
2SLS =

p
n(�̂2SLS � �0)jq

�̂22SLS
�
(n�1X 0PZ?X)

�1�jj d!
N
�
0; �2e

�
(�01QZ?�1)

�1�j;j�q
�2e
�
(�01QZ?�1)

�1�jj d
= N (0; 1) :

Next, the numerator of the J statistic is

ê02SLSPZW ê2SLS = e0PZ?e�
e0PZ?Xp

n

�
X 0PZ?X

n

��1
X 0PZ?ep

n

=
e0Z?p
n
Q�1
Z?
(Z?)0ep

n
� e0Z?p

n
�1 (�

0
1QZ?�1)

�1
�01
(Z?)0ep

n
+ oP (1)

=  0 + oP (1) ;

where

 =
�
I` �Q

1=2

Z?�1 (�
0
1QZ?�1)

�1
�01Q

1=2

Z?

�
Q
�1=2
Z?

(Z?)0ep
n

:
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Taking account of the fact that the �rst factor in  is an idempotent matrix of rank `�p,
we have by the standard argumentation that  0 d! �2e�

2 (`� p) : As the denominator of

the J statistic is consistent for �2e, the two pieces together yield the conclusion.

Proof of Theorem 2. Note that Y ?�X?�0 =MW (Y �X�0) =MW (e+W�0) =

MW e: Now, irrespective of the strength of instruments,�
Y ? �X?�0

�0
MZ?

�
Y ? �X?�0

�
n� `�m

=
e0MW e

n� `�m
� e0PZ?e

n� `�m

p! �2e

and �
Y ? �X?�0

�0
MZ?X

?

n� `�m
=

e0MWX

n� `�m
� e0PZ?X

n� `�m

p! �0ue

using Lemmas A1 and A2. By Lemma A1,
�
Y ? �X?�0

�0
PZ?

�
Y ? �X?�0

�
= e0PZ?e;

and from the proof of Theorem 1 e0PZ?e
d! �2e�

2 (`). Hence,

AR =
1

`

e0PZ?e

(Y ? �X?�0)
0MZ? (Y ? �X?�0) = (n� `�m)

d! 1

`

�2e�
2 (`)

�2e
� �2 (`)

`
:

Next, again using Lemma A1,

~Z = PZ?

�
MWX �MW (Y �X�0)

�0ue + oP (1)

�2e + oP (1)

�
= PZ? (X � e (� + oP (1))) :

When the instruments are strong,

~Z 0 ~Z

n
=

X 0PZ?X

n
+
e0PZ?e

n
(� + oP (1))

2 � 2X
0PZ?e

n
(� + oP (1))

p! �01QZ?�1;

using Lemma A2. Hence�
Y ? �X?�0

�0
P ~Z
�
Y ? �X?�0

�
= e0MWP ~ZMW e

=  01 (�
0
1QZ?�1)

�1
 1 + oP (1) ;

where

 1 � 1p
n
(X � e�)0 PZ?e =

X 0PZ?ep
n

� �0 e
0PZ?ep
n

d! N
�
0; �2e�

0
1QZ?�1

�
using the proof of Theorem 1. To summarize,

K =
 01 (�

0
1QZ?�1)

�1  1 + oP (1)

�2e + oP (1)

d! �2 (p) :
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Now let �xed�1 be replaced by�1 = ��=
p
n so that the instruments are weak or irrelevant.

Recall that ~U = U � e�; and note that ~U is uncorrelated with e. Then jointly

	 �
�
	 ~U

	e

�
� vec

 �
(Z?)0Z?

n

��1=2
(Z?)0( ~U; e)p

n

!

d!
�
� ~U
�e

�
� N

�
0; diag

�
�u � �2e�

0�; �2e
	

 I`

�
:

Using Lemma A1,

~Z = PZ?

 
Z
��p
n
+ ~U

!
+ PZ?e � oP (1) ;

therefore

~Z 0 ~Z =

 
Z
��p
n
+ ~U

!0
PZ?

 
Z
��p
n
+ ~U

!
+ oP (1) = 	

0
2	2 + oP (1) ;

where

	2 �
�
(Z?)0Z?

n

��1=2 
(Z?)0Z?

n
��+

(Z?)0 ~Up
n

!

=

�
(Z?)0Z?

n

�1=2
��+	 ~U

d! Q
1=2

Z?
��+ � ~U � �2:

Hence,

e0MWP ~ZMW e = 	
0
e	2 (	

0
2	2 + oP (1))

�1
	02	e

d! �0eP�2�e:

Then, due to independence of �2 and �e and idempotence of P�2 ; we have P�2�ej�2 �
N
�
0; �2eP�2

�
and �0eP�2�ej�2 � �2e�

2
�
rk
�
P�2
��
= �2e�

2 (p) ; and hence �0eP�2�e � �2e�
2 (p)

and K d! �2 (p) :

Proof of Proposition 2. For the �rst version,

��B2SLS � �0 = (X
0P�+�X)

�1
X 0P�+�e+ oP (1) :

From Lemma A2(a),

��B2SLS � �0 =

�
X 0PZ?X

n
� (�+ �)

X 0MWX

n

��1�
X 0PZ?e

n
� (�+ �)

X 0MW e

n

�
+ oP (1)

p! (QXZ? + ��u � (�+ �) (QXZ? + (1� �) �u))
�1

� (��ue � (�+ �) (1� �) �ue) = �� (QXZ? � ��u)
�1�ue:
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Similarly, for the second version,

��B2SLS � �0 =

�
X 0P�X

n

��1
X 0P�e

n
+ oP (1)

p! (QXZ? + ��u � � (QXZ? + (1� �) �u))
�1

� (��ue � � (1� �) �ue)

= �� ((1� �)QXZ? + ���u)
�1�ue:

Lemma A3: Suppose assumptions 1�3 hold, and � > 0. Then

X 0P�X

n

p! (1� �)QXZ? ;
X 0P�e

n

p! 0;
e0P�e

n

p! 0:

Proof of Lemma A3. Using Lemma A2,

X 0P�X

n
=

X 0PZ?X

n
� �

X 0MWX

n

p! QXZ? + ��u � � (QXZ? + (1� �) �u)

= (1� �)QXZ?

and similarly
X 0P�e

n

p! ��ue � � (1� �) �ue = 0:

Last,

e0P�e

n
=
e0PZW e

n
� (1� �)

e0PW e

n
� �

e0e

n

p! (�+ �)�2e � (1� �)��2e � ��2e = 0:

Lemma A4. Under Assumption 1, the following quantities are bounded from above

byO(n):
Pn

i=1

Pn
j=1(P

ij
� )

4;
Pn

i=1

Pn
j=1

Pn
k=1(P

ij
� )

2(P ik� )
2;
Pn

i=1

Pn
j=1

Pn
k=1

��(P ij� )2P ik� P jk� ��
and tr ((P� �D�)

4) ; where D� = diag(P
11
� ; :::; P

nn
� ):

Proof. Note that jP ij� j � jP
ij
Z?j+�jM

ij
W j � 1+�: Using the inequality (a�b)2 � 2(a2+

b2) which follows from the inequality (a+ b)2 � 0; we get
Pn

j=1(P
ij
� )

2 = 2
Pn

j=1(P
ij
Z?)

2 +

2�2
Pn

j=1(M
ij
W )

2 � 2P ii
Z?+2�

2M ii
W . Then

Pn
i=1

Pn
j=1(P

ij
� )

4 � (1+�)2
Pn

i=1

Pn
j=1(P

ij
� )

2 �
2(1 + �)2

�Pn
i=1 P

ii
Z? + �2

Pn
i=1M

ii
W

�
= O(n) and

Pn
i=1

Pn
j=1

Pn
k=1(P

ij
� )

2(P ik� )
2 =Pn

i=1

�Pn
j=1(P

ij
� )

2
�2
� 4

Pn
i=1

�
P ii
Z? + �2M ii

W

�2 � 4(1+�2) �Pn
i=1 P

ii
Z? + �2

Pn
i=1M

ii
W

�
=

O(n): Further,
Pn

i=1

Pn
j=1

Pn
k=1

��(P ij� )2P ik� P jk� �� �Pn
i=1

Pn
j=1(P

ij
� )

2
�Pn

k=1(P
ik
� )

2
Pn

k=1(P
jk
� )

2
�1=2

� 4
Pn

i=1

Pn
j=1(P

ij
� )

2
��
P ii
Z? + �2M ii

W

� �
P jj
Z? + �2M jj

W

��1=2 � 4(1+�2)Pn
i=1

Pn
j=1(P

ij
� )

2 �
8(1 + �2)

Pn
i=1

�
P ii
Z? + �2M ii

W

�
= O(n):

Next, consider the matrix trace inequality tr ((P� �D�)
4) � 2tr (P 4�) + 2tr (D

4
�) +

8tr(P 2�D
2
�)+4tr ((P�D�)

2) which follows from the inequality tr ((P� +D�)
4) � 0 after ex-

pansion of the fourth power and collecting terms of equal trace. From Baumgartner (2011,
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theorem 2) it follows that tr(P 2�D
2
�) � (tr (P 4�) tr (D

4
�))

1=2
: From Baumgartner (2011,

theorem 3) and by positive semide�niteness of P� jD�jP� it follows that jtr((P�D�)
2)j �

max1�i�n jDii
� j tr (P�diag(jP 11� j ; :::; jP nn� j)P�) � (max1�i�n jP ii� j)2tr (P 2�) � (1+�)2tr (P 2�) :

Now, tr (D4
�) =

Pn
i=1(P

ii
� )

4 � (1 + �)4n = O(n): Then, tr (P 2�) =
Pn

i=1

Pn
j=1(P

ij
� )

2 �
2
Pn

i=1

�
P ii
Z? + �2M ii

W

�
= O(n): Finally, tr (P 4�) = tr ((PZ? � �MW )

4) � 2tr
�
P 4
Z?

�
+

2�4tr (M4
W )+ 8�

2tr(P 2
Z?M

2
W )+ 4�

2tr ((PZ?MW )
2) = (2 + 12�2) tr (PZ?)+ 2�

4tr (MW ) =

O(n): Collecting the pieces, tr ((P� �D�)
4) � 2O(n) + 2O(n) + 8 (O(n)O(n))1=2 + 4(1 +

�)2O(n) = O(n):

Lemma A5: Suppose assumptions 1�3 hold, and � > 0. Then for a constant matrix

B =

�
B1
b02

�
with row dimension p+ 1;

B0 (X; e)0 P�ep
n

d! N (0; (1� �) �2 + (1� �) �3 + ���4) ;

where

�2 = B0
1

�
(1� �)�2eQXZ? + ��2e�u + ��ue�

0
ue

�
B1

+2��2e
�
B0
1�ueb

0
2 + b2�

0
ueB1 + �2eb2b

0
2

�
;

�3 = B0
1��E

�
e2i (u

0
i; ei)

�
B +B0E

�
e2i (u

0
i; ei)

0�
�0�B1;

�4 = B0 �E �e2i (u0i; ei)0 (u0i; ei)��B �B0
1

�
�2e�u + 2�ue�

0
ue

�
B1

�3�2e
�
B0
1�ueb

0
2 + b2�

0
ueB1 + �2eb2b

0
2

�
:

Proof. Let us represent the quantity of interest as

B0 (X; e)0 P�ep
n

=
B0 (P�X;P�e)

0 ep
n

=
((1� �)MW�XZB1 + P�UB1; P�eb

0
2)
0 ep

n

=
((1� �)MW�XZB1 + P�UB1 + P�eb

0
2)
0 ep

n
+
(UB1 + eb02)

0 P�ep
n

=

nX
i=1

P ii�p
n

�
B0
1�ue + b2�

2
e

�
+ (1� �)

nX
i=1

(B0
1�

0
XZMW )i eip
n

+

nX
i=1

B0
1P

ii
� (uiei � �ue)p

n
+

nX
i=1

b2P
ii
� (e

2
i � �2e)p
n

+
X
i6=j

(B0
1ui + b2ei)P

ij
� ejp

n

= S1 + S2 + S3 + S4 + S5

First,
nX
i=1

P ii�p
n

=
1p
n

nX
i=1

�
P iiZ? � �M ii

W

�
=

1p
n
(`� � (n�m))

=
p
n

�
�+ o

�
1=
p
n
�
� �

1� �

�
1� �+ o

�
1=
p
n
���

= o (1) ;
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hence S1 = o (1) :

Next, the inspection of Lemma A2 of Chao, Swanson, Hausman, Newey, andWoutersen

(2012) (cf. its �xed-instrument-design analog, Lemma A2 of Hansen, Hausman and

Newey, 2008) reveals that this central limit theorem also holds when P in it is replaced

by P� = PZ? � �MW thanks to the inequalities for P� from Lemma A4, with an ap-

propriate adjustment in the expression for the asymptotic variance. In particular, the

multiplier
Pn

j=1 (P
ij)2 � (P ii)2 = n�1rk(P ) � (P ii)2 in the variance expression becomesPn

j=1

�
P ij�
�2� (P ii� )2 = (1� 2�)n�1rk(P iiZ?)+�2n�1rk(M ii

W )� (P ii� )
2 whose limit value is

(1� �)�� ��:

Now let

Wi =
1p
n

0B@ (B0
1�

0
XZMW )i ei

B0
1P

ii
� (uiei � �ue)

b2P
ii
� (e

2
i � �2e)

1CA :

Note that using Assumptions 2 and 3 and that
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which coincides with the variance expression in the statement of the Lemma.

Lemma A6: Suppose assumptions 1�3 hold, and � > 0. Then �̂� ! �� and �̂� ! ��:
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where �B2SLS2 ; �B2SLS3 and �B2SLS4 are as in the statement of the Theorem.

Lemma A7: Suppose assumptions 1�3 hold, and � > 0. The following expressions
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��M ij

W

�� < 1;P
j

�
M ij
W

�2
=M ii

W � 1;
P

k

��M i1k
W M i2k

W

�� � �Pk

�
M i1k
W

�2P
k

�
M i2k
W

�2�1=2 � �M i1i1
W M i2i2

W

�1=2 �
1 and similarly

P
k

��M i1k
W M i2k

ZW

�� � 1;Pj

��M ij
W

�� � kMWk1 �
p
n kMWk2 =

p
n�1=2max (M

0
WMW ) =p

n; Lemma B1 in Chao, Swanson, Hausman, Newey, and Woutersen (2012), and the fol-

lowing and similar inequalities:���Pl =2fj1;j2;kgM
i1l
W M i2l

W

��� �
��P

lM
i1l
W M i2l

W �M i1j1
W M i2j1

W �M i1j2
W M i2j2

W �M i1k
W M i2k

W

��
=

��M i1i2
W

��+ ��M i1j1
W M i2j1

W

��+ ��M i1j2
W M i2j2

W

��+ ��M i1k
W M i2k

W

�� :
We will show in detail how to obtain parts II and III; the other two are handled analo-

gously. The critical statement for part I is E
h
(MW e)

3
i

i
=
P

j

�
M ij
W

�3
E [e3i ] ; while the crit-

ical statements for part VI areE
h
(MW e)

2
i (MZW

~U)i(MZW
~U)0i

i
=
P

j

�
M ij
WM

ij
ZW

�2
E [e2i ~ui~u

0
i]+P

j

P
k 6=j
�
M ij
WM

ik
ZW

�2
�2eE [~ui~u

0
i] and

P
j

P
k 6=j
�
M ij
WM

ik
ZW

�2
=M ii

WM
ii
ZW�

P
j

�
M ij
WM

ij
ZW

�2
:

Part II. Observe that

(MW e)
2
i (MZW

~U)i = (
P

jM
ij
W ej)

2
P

jM
ij
ZW ~uj =

P
j

�
M ij
W

�2
M ij
ZWE

�
e2i ~ui

�
+T1+T2+T3+T4;

where the formulas for T1; T2 and T3 appear below. We will show that T1+T2+T3+T4 =
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(iii) j1 = k2 6= j2; j2 = k1 6= j1; l1 = l2 =2 fj1; j2g or similar leading to scaled E[e3j ]2�2e,
then the variance component is proportional to
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contains terms that are not zero only in the case j1 = j2; k1 = k2; l1 = l2; q1 = q2 and
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which is no greater than
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It contains terms that are not zero only in the following cases:

(i) j1 = j2; k1 = k2 6= j1 or similar leading to scaled E[e4j ]
2 � �8e, then the variance
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Lemma A8: The following is true:
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Proof of Lemma A8. By straightforward computation.
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Hence, also using Lemma A3,
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Then, using also Lemma A8,
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Proof of Corollary to Theorem 5. The �rst term clearly converges to 2� (1� �) :
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Next, by Lemma A7(III),
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(êB2SLS)

4
i

�̂4B2SLS
� 3(M ii

W )
2

!
p! E [e4i ]

�4e
� 3:

Summarizing, V̂ J
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Proof of Theorem 6. Consider the normalized (by n�1) numerator and denominator
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Indeed, it is minimized when � = �0: The formal proof of consistency is standard and

follows, for example, Hansen, Hausman and Newey (2008).
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so, using Lemma A3,
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Summarizing, the asymptotics for the LIML estimator is
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�� =
ê0LIMLPZW êLIML

ê0LIMLêLIML

=
n�1e0PZ?e+ oP (1)

n�1e0MW e+ oP (1)

p! ��2e
(1� �)�2e

= �:

Second, by the partitioned matrix inverse, using that (PZW � ��In)W = (1� ��)W and

letting XW = (W 0W )�1W 0X,

�H�1 =

"
(X 0P��X)

�1 � (X 0P��X)
�1X 0

W

�XW (X
0P��X)

�1 (1� ��)�1 (W 0W )�1 +XW (X
0P��X)

�1X 0
W

#
:

Using Lemma A3,� �H
n

��1
= (1� �)�1

"
Q�1
XZ? �Q�1

XZ?X
0
W

�XWQ
�1
XZ? n (W 0W )�1 +XWQ

�1
XZ?X

0
W

#
+ oP (1) :

Next,

�X 0PZW �X

n
=

(X;W )0 PZW (X;W )

n
+
n�1ê0LIMLPZW êLIML

(n�1ê0LIMLêLIML)
2

(X;W )0 êLIML

n

ê0LIML (X;W )

n

�(X;W )
0 PZW êLIML

n

n�1ê0LIML (X;W )

n�1ê0LIMLêLIML

� n�1 (X;W )0 êLIML

n�1ê0LIMLêLIML

ê0LIMLPZW (X;W )

n

=
(X;W )0 (PZWX;W )

n
+

n�1e0PZ?e

(n�1e0MW e)
2

(e0MWX; 0)
0

n

(e0MWX; 0)

n

�(X
0PZ?e; 0)

0

n

n�1 (e0MWX; 0)

n�1e0MW e
� n�1 (e0MWX; 0)

0

n�1e0MW e

(X 0PZ?e; 0)

n
+ oP (1)

=
(X;W )0 (PZWX;W )

n
+

��2e
((1� �)�2e)

2 ((1� �) �0ue; 0)
0
((1� �) �0ue; 0) (��

0
ue; 0)

� (��0ue; 0)
0 ((1� �) �0ue; 0)

(1� �)�2e
� ((1� �) �0ue; 0)

0

(1� �)�2e
+ oP (1)

=
(X;W )0 (PZWX;W )

n
� �

diag f�ue�0ue; 0m�mg
�2e

and similarly

�X 0MZW
�X

n
=
(X; 0)0 (MZWX; 0)

n
� (1� �� �)

diag f�ue�0ue; 0m�mg
�2e

+ oP (1) :
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Further, using Lemma A2,

(1� ��)2 �X 0PZW �X + ��2 �X 0MZW
�X

n

= (1� ��)2 (X;W )
0 (PZWX;W )

n
+ ��2

(X; 0)0 (MZWX; 0)

n

�
�
(1� ��)2 �+ ��2 (1� �� �)

� diag f�ue�0ue; 0m�mg
�2e

+ oP (1) :

After multiplication of the sandwich, the northwest block becomes

V̂LIML =

"� �H
n

��1 
�̂2LIML

(1� ��)2 �X 0PZW �X + ��2 �X 0MZW
�X

n
+
Â

n
+
Â0

n
+
B̂

n

!� �H
n

��1#
1:p;1:p

= Q�1
XZ?

 
�2e (1� �)2 (QXZ? + ��u) + �2e�

2 (1� �� �) �u

(1� �)2

�
�ue�

0
ue

�
(1� �)2 �+ �2 (1� �� �)

�
(1� �)2

+
Â1:p;1:p + Â01:p;1:p + B̂1:p;1:p

n (1� �)2

!
Q�1
XZ? + oP (1)

= �V2 + �V3 + �V4 + oP (1) ;

where

�V2 = �2eQ
�1
XZ? +

�

1� �
Q�1
XZ?

�
�2e�u � �ue�0ue

�
Q�1
XZ? = �

LIML
2 ;

�V3 = Q�1
XZ?

Â1:p;1:p + Â01:p;1:p

n (1� �)2
Q�1
XZ? ;

�V4 = Q�1
XZ?

B̂1:p;1:p

n (1� �)2
Q�1
XZ? :

We need to �nd the limits of �V3 and �V4. Taking into account that MZWX =MZWU;

MZW
�X = (MZWX;MZWW )�MZW êLIML

��LIML

= (MZWX; 0)�MZW e
e0 (MWX; 0)

ê0LIMLêLIML

+MZW e (X
0MWX; 0) � oP (1) + (MZWX) ê

0
LIML (X;W ) � oP (1)

=
�
MZW

~U; 0
�
+ oP (1) ;

so
�
MZW

�X
�
i
=
�
(MZW

~U)0i; 0
0
m�1

�0
+ oP (1) and

�
MZW

�X
�
i

�
MZW

�X
�0
i
= diag

n
(MZW

~U)i(MZW
~U)0i; 0m�m

o
+ oP (1) :

Using Lemmas A6 and A7(II),

(êLIML)
2
i

�
MZW

�X
�
i
=

�
(MW e)

2
i (MZW

~U)i; 0
0
m�1

�0
+ oP (1)

=
P

j

�
M ij
W

�2
M ij
ZW

�
E
�
e2i ~u

0
i

�
; 00m�1

�0
+ oP (1) ;
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then

A1:p;1:p
n

=
(1� �̂)P

j

�
M ij
W

�2
M ij
ZW

h
�̂�(êLIML)

2
i

�
MZW

�X
�0
i

i
1:p;1:p

= (1� �)��E
�
e2i ~u

0
i

�
+ oP (1) ;

and so

�V3 = Q�1
XZ?

Â1:p;1:p + Â01:p;1:p

n (1� �)2
Q�1
XZ?

p! Q�1
XZ?

��E [e
2
i ~u
0
i] + E [e2i ~u

0
i] �

0
�

1� �
Q�1
XZ? = �

LIML
3 :

Next,

�
MZW

�X
�
i

�
MZW

�X
�0
i
= diag

(
~U 0MZW

~U

n
; 0m�m

)
= diag f(1� �� �)E [~ui~u

0
i] ; 0m�mg+ oP (1) :

Using Lemmas A6 and A7(II),

(êLIML)
2
i

�
MZW

�X
�
i

�
MZW

�X
�0
i
=

P
j

�
M ij
WM

ij
ZW

�2
diag

�
E
��
e2i � �2e

�
~ui~u

0
i

�
; 0m�m

	
+M ii

WM
ii
ZWdiag

�
�2eE [~ui~u

0
i] ; 0m�m

	
+ oP (1) ;

and thus

B̂1:p;1:p
n

=
�̂�P

j

�
M ij
WM

ij
ZW

�2 h(êLIML)
2
i

�
MZW

�X
�
i

�
MZW

�X
�0
i
� �̂
�
MZW

�X
�
i

�
MZW

�X
�0
i

i
1:p;1:p

p! ��E
��
e2i � �2e

�
~ui~u

0
i

�
;

hence

�V4 = Q�1
XZ?

B̂1:p;1:p

n (1� �)2
Q�1
XZ?

p! ��Q
�1
XZ?

E [(e2i � �2e) ~ui~u
0
i]

(1� �)2
Q�1
XZ? = �

LIML
4 :

Proof of Theorem 8. The properly normalized numerator of JLIML equals

ê0LIMLP�̂êLIMLp
n

=
e0P�ep
n
+ oP (1) :

Following the proof of Theorem 5, one gets the conclusion.

Proof of Corollary to Theorem 8. Follow the proof of Corollary to Theorem 5.
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