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Abstract

We study efficiency properties of the irrevocable exit English auc-
tion in a setting with interdependent values. Maskin (1992) shows
that the pairwise single-crossing condition is sufficient for efficiency
of the English auction with two bidders and suggests that it is also a
necessary condition. This paper clarifies and extends Maskin’s results
to the case of N bidders. We introduce the generalized single crossing
condition—a fairly intuitive extension of the pairwise single-crossing
condition—and prove that it is essentially a necessary and sufficient
condition for the existence of an efficient equilibrium of the N -bidder
English auction.

Keywords: English auction, efficient auction, ex post equilibrium, single-
crossing, interdependent values.

1 Introduction

How to sell a good to the buyer who values it the most is one of the main
questions of the theory of auctions. When each buyer knows how much she
values the good, any common auction format is efficient. The task becomes
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harder as the informational environment gets more complex. When the val-
uations of the buyers are asymmetric and depend on the private information
of the other buyers, the set of efficient mechanisms is quite limited. Among
these is the open ascending price, the English auction. Milgrom & Weber
(1982) introduce the irrevocable exit model of the English auction. This stan-
dard model is known to possess an efficient equilibrium when value functions
satisfy certain conditions. The set of minimal (necessary and sufficient) con-
ditions for efficiency of the English auction remains a long-standing problem.
This paper provides a solution.

Milgrom & Weber (1982) show that with symmetric interdependent values
the English auction has an efficient equilibrium and, if signals (the bidders’
private information) are affiliated, it also generates higher expected revenue
than other common auction forms. Maskin (1992) suggests that with asym-
metric values the pairwise single-crossing condition is necessary for the effi-
ciency of the English auction and shows that it is a sufficient condition when
there are two bidders. However, Perry & Reny (2005) provide an exam-
ple with three bidders, where the pairwise single-crossing is satisfied but no
efficient equilibrium exists. Krishna (2003) presents a pair of sufficient con-
ditions for efficiency of the N -bidder English auction—the average-crossing
and cyclical-crossing conditions.1

We introduce the generalized single-crossing (GSC) condition, a property
of the value functions that is a natural extension of the pairwise single-
crossing (SC) condition. At any signal profile call the bidders with equal and
maximal values the winners’ circle. SC states that if the signal of any bidder
from the winners’ circle is slightly increased, she belongs to the new winners’
circle. This implies that a bidder’s own private information affects her own
valuation more than the valuations of her competitors. Our new condition,
GSC states that if the signals of any subset of the winners’ circle are slightly
increased, the resulting winners’ circle contains at least one of the bidders
whose signal was increased. GSC implies, and in the case of two bidders,
reduces to SC.

There are two main results. If GSC is violated, except in three spe-

1The average-crossing condition requires that starting from a signal profile where the
values of several bidders are equal and maximal, if the signal of one of them is increased, the
corresponding increments to the values of the others are lower than the average increment.
The cyclical-crossing requires that the increments to the values are ranked in the pre-
specified cyclical order—the effect on the own value is the largest and decreases for each
subsequent bidder in the cycle.
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cial cases, no efficient equilibrium of the N -bidder English auction exists.
Conversely, if GSC is satisfied at every signal profile, the N -bidder English
auction admits an efficient ex post equilibrium. In two of the exceptions,
illustrated by examples 2 and 3 below, an efficient equilibrium exists despite
a violation of SC in the interior of the signals’ domain. This clarifies the
conventional wisdom that SC is necessary for efficiency of any mechanism.2

The English auction is not the only efficient mechanism in the interde-
pendent values setting, and GSC is not the weakest condition for efficiency of
arbitrary mechanisms. For instance, a generalized Vickrey auction is efficient
if SC holds. In a Vickrey auction the bidders report their signals to the auc-
tioneer, who assigns the object to the bidder with the highest value based on
the reports and prescribes the payment. To implement the mechanism the
auctioneer has to know all that the bidders commonly know, and the bidders
have to trust the auctioneer to run the mechanism correctly. In contrast,
to run the English auction the auctioneer only has to observe which bidders
are active at the current price. A transparent set of rules and the strategic
simplicity make the English auction attractive to the bidders as well. In the
English auction, even if the values are interdependent, the strategy in the
efficient equilibrium is nothing but “drop out when the price reaches what
you believe your value is.”3

Updating the beliefs about the signals of the other bidders in an efficient
equilibrium of the English auction requires solving a vector-system p · 1 =
V(s) (equating the price and the valuations of the bidders; see Section 3 for
details). An efficient equilibrium exists if the solution s(p) is non-decreasing,
and GSC is the exact condition guaranteeing this. As such, it can be exploited
directly or with appropriate modifications in the analysis of any economic
system described by a vector-system p = f(x) that requires the monotonicity
of the solution x (p). In the international trade context, for example, such
systems may be prices or quantities of final goods as functions of factor prices
or factor demands.

Independently from us Dubra, Echenique & Manelli (2009) also look for

2See, for instance, Maskin (1992), pp. 127-128; Dasgupta & Maskin (2000), pp. 348-
349.

3Kirchkamp & Moldovanu (2004) experimentally compare an English auction with a
sealed-bid second-price auction in the setting with interdependent and asymmetric values.
Even though not all the subjects follow their efficient equilibrium strategies, overall the
bidding in the English auction is close enough to the equilibrium so that the English
auction is significantly more efficient.
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the conditions under which the English auction is efficient. Their main re-
search questions are different form ours. In particular, they study the con-
nection between the theories of auctions and trade mentioned above and
attempt to relax the assumption of differentiality of the value functions, typ-
ical in the literature on efficient auctions. In the final version, Dubra et al.
(2009) present a condition, an own effect property (OEP) and use it to gen-
eralize the Stolper-Samuelson theorem. They also show that it is a sufficient
condition for efficiency of the English auction. In essence, OEP requires GSC
for all possible increases of the signals (not only infinitesimal).4 Dubra et al.
(2009) also show that if OEP does not hold, then there is a distribution of
the bidders’ signals such that an efficient equilibrium in the English auction
does not exist. Our result is much stronger, we show that if GSC does not
hold, then for any distribution of the signals no efficient equilibrium exists.

Recall that in the standard model of the English auction exits are irrevo-
cable. Izmalkov (2003) proposes an alternative model of the English auction.
In his model the bidders are allowed to re-enter even if they have previously
dropped out. The English auction with reentry is efficient under conditions
that are weaker than GSC. (GSC would imply that no reentry happens in
an efficient equilibrium.) At the same time the possibility of reentry sub-
stantially enriches the strategy space and provides opportunities to exchange
messages, which may allow bidders to coordinate on a collusive outcome. In
contrast, the irrevocable-exit English auction is robust to collusion within
the auction since the only way a bidder can send a message is by exiting.

Recently several mechanisms were designed to allocate multiple units in
the interdependent values setting efficiently. All of these mechanisms are
remarkable constructions, however, in their single unit version they are sig-
nificantly more complex than the English auction. The “contingent bid”
mechanism of Dasgupta & Maskin (2000) requires each buyer to submit a
price she is willing to pay given the realized values of the others, a (N − 1)-
variable function. This auction is efficient if SC holds.5 Perry & Reny (2002)

4Dubra et al. (2009) do not require differentiability of the value functions. Yet, their
other assumptions—the continuity and increasing in ties condition imply partial differen-
tiability along the equilibrium path of the efficient equilibrium, which is enough for our
proof of sufficiency.

5Jehiel & Moldovanu (2001) study the setting with allocative externalities. When
private information is one-dimensional Jehiel & Moldovanu (2001) offer a sufficient for
efficiency congruence condition. This condition reduces to the pairwise single-crossing
without the allocative externalities. When private information is multi-dimensional Jehiel
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and Perry & Reny (2005) design two elegant mechanisms which incorporate
a concept of “directed bids.” Every buyer bids against every other buyer,
thus managing N − 1 bids simultaneously. These auctions require the strong
form of SC for efficiency.6

The rest of the paper is organized as follows. Section 2 describes the
environment and introduces GSC. Its sufficiency is proven in Section 3. The
examples clarifying the role of GSC and the proof of its necessity are in
Section 4.

2 Preliminaries

2.1 The model

There is a single indivisible good to be auctioned among a setN = {1, 2, ..., N}
of bidders. Prior to the auction each bidder j privately observes a real val-
ued signal sj ∈ [0, 1]. Signals are distributed according to a joint density
function f(s), where s = (s1, s2, ..., sN) denotes the profile of the signals of
all the bidders.7 It is assumed that f has full support and is strictly positive
on its interior.

If the realized signals are s, the value of the object to bidder j is Vj(s).
Note that a bidder’s value may depend on the information obtained by the
other bidders. The sale of an oil track is a typical example of such an
environment—a firm’s estimate of the worth of the track may depend on
the results of the “off-site” drilling conducted by a rival that owns an adja-
cent track, see Porter (1995).

The value functions V = (V1, V2, ..., VN) are assumed to have the follow-
ing properties. For any j, and any i 6= j: Vj(0) = 0; Vj(1) < ∞; Vj is

continuously differentiable, Vj ∈ C1([0, 1]N),
∂Vj
∂sj

> 0. Value functions Vj for

all j and distribution f(s) are commonly known among the bidders.8

& Moldovanu (2001) and also Dasgupta & Maskin (2000) show that achieving efficiency
is generically impossible.

6SC has to be satisfied for any pair of bidders with equal values, not only when their
values are maximal. Thus, the strong SC and GSC are not comparable.

7Vectors and sets are denoted, respectively, by bold and calligraphic letters; a � b
(a = b) means ai > bi (ai ≥ bi) in every component.

8These are fairly standard assumptions. The analysis can be easily extended to the
unbounded supports as long as the valuations are bounded. The sufficiency proposition
requires no assumption on f . The necessity proposition requires that signals have full
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Definition 1. For a given profile of signals s, the winners’ circle I(s) is
the set of bidders with the highest values at s. Formally,

j ∈ I(s)⇐⇒ Vj(s) = max
i∈N

Vi(s). (1)

We require the value functions to be regular : at any s and for any subset

J ⊂ I(s), it is assumed detDVJ 6= 0, where DVJ =
(
∂Vi(s)
∂sj

)
i,j∈J

.

Note that our specification allows the signal of one bidder to affect the
values of the others. We allow for such cross effects to be negative but
not arbitrarily large. Specifically, we require that at any s, for any subset
J ⊂ I(s) and any direction u = (uJ ,u−J ), such that uJ � 0 and u−J = 0,

there exists j ∈ J with the directional derivative DuVj(s) =
∑N

i=1 ui
∂Vj(s)

∂si
>

0. That is, if all sJ are increased in the direction u, the value of at least one
bidder from J is increased.

This assumption is weaker than any of the comparable restrictions of the
existing literature. In many papers, including Milgrom & Weber (1982), it is
assumed that an increase in a bidder’s signal has a non-negative effect on the
other bidders’ values. Krishna (2003) requires that such an increase, while
possibly negatively affecting some bidders, has a positive total effect, which
together with the average crossing condition implies the assumption imposed
here. (Krishna’s cyclical crossing condition is sufficient when the values are
non-decreasing in the other bidders’ signals.)

2.2 Generalized Single Crossing

Definition 2. The generalized single-crossing (GSC) condition holds
if at any s, for any subset A ⊂ I(s) and bidder k ∈ I(s) \ A,9 and any
direction u, such that uj > 0 for all j ∈ A and uj = 0 for all j /∈ A,

DuVk(s) ≤ max
j∈A
{DuVj(s)}. (2)

support and for all j and sj any subset of the other bidders’ signals of positive measure
has positive probability. The assumption of f(s) > 0 is the simplest one guaranteeing these
two properties. (For instance, if f is degenerate so that s is commonly known, then V(s)
is known too and an efficient allocation can be achieved no matter what the properties of
the value functions are.)

9By convention, GSC is satisfied at any s with #I(s) = 1.
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In words, select any group A of bidders from I(s), the bidders who have
equal and maximal values and increase their signals. GSC requires that the
increments to the values of the bidders from I(s)\A are at most as high as the
highest increment among the bidders from A. Or, stated differently, at least
one bidder from A should be in the resulting winners’ circle. Single-crossing
condition (SC) is GSC required for subsets A consisting of one bidder.

GSC is violated at signal profile s for subset A ⊂ I(s) and bidder k ∈
I(s) \ A if there exists vector u, with uj > 0 for all j ∈ A, uj = 0 for all
j /∈ A, such that DuVk(s) > maxi∈A{DuVi(s)}. In what follows, whenever
we say that GSC is violated it means that there exist such s, A, and k.

2.3 The English Auction

Following Milgrom & Weber (1982), we consider the standard model for the
analysis of the English auction. Specifically, the price of the object rises
continuously, and the bidders indicate whether they are willing to buy the
object at that price or not. A bidder who is willing to buy at the current
price is said to be an active bidder. At a price of 0 all the bidders are active,
and, as the price rises, bidders can choose to drop out of the auction. The
decision to drop out is both public and irrevocable. Thus, if bidder j drops
out at price pj, both her identity and the exiting price pj are observed by
all the bidders. Furthermore, once bidder j drops out she cannot “re-enter”
the auction at a higher price. The auction ends when the second last bidder
drops out. The clock stops, the only remaining bidder is the winner. If
no bidders remain active the winner is chosen at random among those who
exited last. The winner is obliged to pay the price shown on the clock. If two
or more bidders decide to remain active forever then the auction continues
indefinitely. We assign to every such bidder a payoff of −∞.

Since all drop-out decisions are public, the public history H(p) can be
effectively summarized as the sequence of prices at which the bidders, inactive
at p, have exited, H(p) = p−M, whereM is the set of the bidders active just
before p. If no bidder exits at p ∈ [p′, p′′), then H(p′) = H(p′′). Denote with
H̄(p) the public history H(p) together with all the exits that happen at p.
Therefore, if H̄(p) 6= H(p), then there exists a bidder who exited at p. All
the bidders are assumed to be active just before the clock starts at p = 0, so
H(0) = ∅.

In the English auction a bidder’s strategy determines the price at which
she would drop out given the public history provided no other bidder drops
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out first. Formally, following Krishna (2003), bidder j’s bidding strategy is
a collection of functions βMj : [0, 1]× RN−M

+ −→ R+, for each M⊂ N , with
j ∈M and M = #M > 1. Function βMj determines the price βMj (sj;H(p))
at which bidder j with signal sj will drop out when the set of active bidders is
M and the bidders N \M dropped out at prices H(p) = p−M = {pj}j∈N\M.

If βMj (sj;H(p)) ≤ p at some p, the strategy says that bidder j must exit at
p. If active bidders are able to infer true signals s−M of inactive bidders
from their exit prices p−M, the strategies can be equivalently written as
βMj (sj; s−M). Since the public history uniquely determines the set of active
bidders M, we simply use βj(sj;H(p)) in place of βMj (sj;H(p)) in the rest
of the paper.

The equilibrium concept we use is a Bayesian-Nash equilibrium. The
equilibrium we present in Section 3 is also ex-post and efficient.

Definition 3. An ex-post equilibrium is a Bayesian-Nash equilibrium β
that remains a Nash equilibrium even if the signals (s1, s2, ..., sN) are com-
monly known. An equilibrium is efficient if the object is allocated to the
bidder with the highest value at every realization of signals (s1, s2, ..., sN).

Example 1 (Perry and Reny). Consider the following value functions

V1 = s1 + s2s3,

V2 = 1
2
s1 + s2,

V3 = s3.

There exists no efficient equilibrium of the English auction.

Perry & Reny (2005) prove that no efficient equilibrium exists. Observe
that GSC is violated at s = (.3, .6, .75) for A = {2, 3}, bidder 1, and vector

u = (0, 1, 1). Indeed, DuV2 = DuV3 = 1, while DuV1 = ∂V1(s)
∂s2

+ ∂V1(s)
∂s3

=
1.35 > 1.

3 Sufficiency

In this section we show that GSC is sufficient for the existence of an efficient
equilibrium of the N -bidder English auction.10

10We build upon the existing constructions. Milgrom & Weber (1982) present an efficient
equilibrium of the English auction with symmetric bidders; Maskin (1992) extends it to
the case of two asymmetric bidders, and Krishna (2003) generalizes it to the case of N
asymmetric bidders.
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Proposition 1 (Sufficiency). Suppose the value functions satisfy GSC. Then,
there exists an efficient ex post equilibrium of the N-bidder English auction.

The key component of the proposed efficient equilibrium is the weakly-
increasing profile of inferences, or inverse bidding functions, σ(p,H(p)), com-
puted at any p for any given public history H(p). Then, the equilibrium
strategy of each active bidder j prescribes her to remain active as long
as σj(p,H(p)) is lower than sj, and exit at the lowest pj at which sj =
σj(pj, H(p)).

Formally, we define the (suggested equilibrium) strategies as follows. Sup-
pose there exists a profile of functions σ(p,H(p)), such that, letting M be
the set of active bidders given H(p), for any p ≥ maxi 6∈M pi:

1. for any (inactive) bidder i /∈M, σi(p) = σi(pi, H(pi)),
11 that is, σi(p) is

fixed after bidder i exits at pi;

2. for any bidder j ∈M, σj(p) ∈ [0, 1] solves Vj(σj(p),σ−j(p)) = p if such
a solution exists with σj(p) ≤ 1, else σj(p) = 1 and Vj(σj(p),σ−j(p)) <
p.

That is, for all active bidders, σM(p) are determined simultaneously as a
solution to

VM(σM(p),σ−M(p)) 5 p 1M, σM(p) 5 1M,
∀j : (Vj(σ(p))− p)(σj(p)− 1) = 0.

(3)

Then, for bidder j ∈M strategy βMj : (sj, H(p)) −→ R+ is

βMj (sj; p−M) = arg min
p
{σj(p) ≥ sj} . (4)

Strategy βj can be interpreted as follows. Given the public historyH(p) =
p−M, an active bidder j is supposed to exit the auction at pj = βMj (sj; p−M),
provided no other bidder exits before. If the current price p < βMj (sj; p−M),
bidder j is suggested to remain active; if p ≥ βMj (sj; p−M) bidder j is sug-
gested to exit at p. Once bidder j exits at pj, the other bidders update the
public history and, expecting bidder j to follow (4), infer s∗j = σj(pj). If σj(·)
is non-decreasing the inferred s∗j is unique and coincides with true signal sj.

11To shorten the notation we are omitting H(p) from the arguments, whenever the
public history is explicitly mentioned or implied by the context.
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The strategies can then be reformulated as the functions of the own and
inferred signals of inactive bidders, βMj (sj; s−M) = βMj (sj; p−M).

The proof of Proposition 1 is based on the following three lemmas.

Lemma 1. GSC holds if and only if at any s with #I(s) ≥ 2, for any A ⊂
I(s) and k ∈ I(s)\A, for vector uA = (uAA,0−A) that solves DuAVA(s) = 1,

DuAVk(s) ≤ 1. (5)

In addition, if GSC is satisfied, then for any A ⊂ I(s), uAA = 0.

We will refer to uA as the equal increments vector corresponding to subset
A.

Consider increasing the values of bidders A ⊂ I(s) uniformly while keep-
ing the signals of the others fixed. Lemma 1 states that if GSC is satisfied
then, as a result, the values of bidders A ⊂ I(s) remain maximal and their
signals do not decrease in the process. Note also that Lemma 1 provides
a relatively simple way of verifying GSC. Indeed, at any s and for a given
DVI(s), it suffices to check whether linear inequalities (5) are jointly satisfied.

Lemma 2. Suppose GSC holds. Then there exist inferences σ(p,H(p)),
such that each σj(·, H(p)) is continuous and non-decreasing for any H(p),
and σj(p, H̄(p)) = σj(p,H(p)) for all p such that H̄(p) 6= H(p). For any
active at H(p) bidder j, σj(p,H(p)) < 1 implies j ∈ I(σ(p)).

This Lemma establishes the existence of the inferences satisfying (3). The
proofs of Lemmata 1 and 2 are in Appendix A.1.

Lemma 3. Suppose GSC holds. Then the strategies defined by (4) constitute
an efficient ex-post equilibrium of the N-bidder English auction.

Proof. We first show that β are well-defined. For any bidder j, ar-
bitrarily fix the exit prices of the other bidders, p−j, possibly with pi =
∞ for some bidders. Then one can obtain σj(p) defined for any p ≥ 0
as σj(p) = σj(p,H(p)), where H(p) = ∪pi<p{pi}. Lemma 2 shows that
σj(p) is continuous and non-decreasing for any given p−j. Therefore, pj =
arg minp {σj(p) ≥ sj} is unique, so βj(sj; ·) is well defined.

Next, we show that when all the bidders follow strategies (4), the object
is allocated efficiently. Suppose bidder j wins the object at price p∗. Then,
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for any i 6= j, σi(p
∗) = σi(pi) = si, while σj(p

∗) ≤ sj, and, according to
Lemma 2,

Vj(σj(p
∗), s−j) = max

i 6=j
Vi(σj(p

∗), s−j) = p∗. (6)

The pairwise single-crossing, σj(p
∗) ≤ sj, and equation (6) imply that

Vj(s) ≥ max
i 6=j

Vi(s) ≥ p∗, (7)

so bidder j is (one of) the bidder(s) with the highest value, and the price p∗

that bidder j has to pay does not depend on the signal of bidder j.
Finally, we show that β form an ex-post equilibrium. Suppose every bid-

der other than bidder j follows the proposed strategy and bidder j deviates.
The payoff of bidder j can change only if the deviation affects whether bidder
j obtains the object. If bidder j wins the object as a result of the deviation,
she has to pay p∗j = maxi 6=j Vi(σj(p

∗
j), s−j). If bidder j is not the winner in

the equilibrium, then σj(p
∗
j) ≥ sj since σj(p) is non-decreasing, so Vj(s) ≤ p∗j ,

and the deviation is not profitable. If, as a result of the deviation, bidder
j is not the winner while she is in the equilibrium, she is possibly forfeiting
positive profits according to (7). Thus, no profitable deviation exists. The
above arguments are valid even if signals s are commonly known, hence the
presented equilibrium is ex-post.

4 Necessity

In this section we establish that GSC is essentially necessary for the existence
of an efficient equilibrium of the N -bidder English auction.

There are three kinds of settings in which an efficient equilibrium may ex-
ist despite the violation of GSC. Firstly, if GSC is violated only on the bound-
ary, one of the bidders may have the highest value at all signals’ realizations
and follow “remain active forever” strategy in an efficient equilibrium. For
example, this occurs in a 2-bidder auction with V1 = s1 and V2 = 2s1 +s2. In
general, if GSC is violated only on the boundary, the existence of an efficient
equilibrium is not precluded and may depend on the properties of the values
that are not the highest. While we do expect that a condition qualitatively
similar to GSC ultimately determines whether an efficient equilibrium exists
or not in such settings, we choose to abstain from analyzing them since it
represents significant technical challenge without much additional insight.
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The following two examples demonstrate that, contrary to the existing
perceptions, an efficient equilibrium may exist while SC is violated in the
interior.

Example 2. Consider the following value functions

V1 = s1 + 2s2 + 4s3,

V2 = 2s1 + s2 + 4s3,

V3 = s3.

Suppose that s3 = 1 − (s1 + s2) /2. There exists an efficient equilibrium of
the English auction.

Note that bidder 3 here is “irrelevant: ” her value is never the highest and
her signal does not affect the efficient allocation. In an efficient equilibrium
she exits at 0 for all s3. Given this, the expected values of bidders 1 and
2 are: W1(s1, s2) = Es3|s1,s2V1(s1, s2, s3) = 4 − s1 and W2(s1, s2) = 4 − s2.
Let t1 = 4 − s1 and t2 = 4 − s2, then W1(t1, t2) and W2(t1, t2) satisfy SC,
and βi(ti) = ti for i = 1, 2 ensure efficiency. The degeneracy of the signals
distribution is not consequential. A similar equilibrium can be constructed
for any non-degenerate f for which E (s3|s1, s2) = A− (2A− 1) (s1 + s2) /2
with A less than but close to 1.

Example 3. Consider the following value functions

V1 = Bs1 + 2s2 − 1
2
,

V2 = Bs1 + s2,

and the conditional density (with |A| < 4): f (s1|s2) = 1−A
(
s1 − 1

2

) (
s2 − 1

2

)
.

If AB > 12, there exists an efficient equilibrium of the English auction.12

Here, SC is violated at
(
s1,

1
2

)
for any s1, and ∂V1(s)

∂s1
= ∂V2(s)

∂s1
for all s.

Thus, who has the highest value is independent of s1: bidder 1 does when
s2 >

1
2

and bidder 2 does when s2 <
1
2
. It is also crucial that bidder 2 with a

low (high) signal is relatively optimistic (pessimistic) about bidder 1’s signal.
The following pair of strategies constitutes an efficient equilibrium. Bidder 1

12The p.d.f. f(s) is strictly positive whenever the marginal distribution of s2 is strictly
positive (|A| < 4 gives f (s1|s2) > 0). It is not important that V (0) 6= 0, as we can

redefine V1 = Bs1 + 2
(
1
2 − s2

)2
+ 2s2 − 1

2 and construct a similar equilibrium.
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with any s1 bids β1 = B
2

+ 1
2
, while bidder 2 with s2 ≤ 1

2
bids β2 =∞ and with

s2 >
1
2

bids β2 = 0. Bidder 1 pays 0 whenever she wins and cannot change
her bid to increase her payoff. Bidder 2 with s2 >

1
2

loses to β1 = B
2

+ 1
2

and
has a payoff of 0. She cannot improve since by bidding more than β1 and
winning she obtains

E (V2 − β1|s2) =
(
1− 1

12
AB
) (
s2 − 1

2

)
,

which is negative if AB > 12. Similarly, bidder 2 with s2 ≤ 1
2

wins and does
not regret paying B

2
+ 1

2
since her expected payoff is positive. Note that a

fully revealing strategy β1(s1) = εs1 + B−ε
2

+ 1
2

for a sufficiently small ε > 0
and the same β2 also form an efficient equilibrium.

These examples share a common feature: the signal of one of the bidders
is irrelevant for efficiency and correlated with the signals of the others. Para-
doxically, the presence of this bidder allows us to achieve efficiency. Different
types of this bidder are “pooled” to affect the beliefs and the strategies of the
others. We consider these settings to be non-generic and impose two mild
assumptions, under which they do not arise.

We assume that for any s, any bidder k ∈ I(s) and subset A = I(s)\{k},
if for all j ∈ A,

∂Vj(s)

∂sk
= ∂Vk(s)

∂sk
, then for any ε > 0, there exists s′, such that

‖s′ − s‖ < ε, I(s′) = I(s), and for some j ∈ A,
∂Vj(s′)
∂sk

6= ∂Vk(s′)
∂sk

. For auctions

with more than two bidders, we assume that for any s with #I(s) = 2 and,
letting A = I(s) and B = N \A, for any s′B 6= sB, there exists an interior s′A
such that either I(s′A, sB) = A 6= I(s′A, s

′
B) or I(s′A, sB) 6= A = I(s′A, s

′
B).

The first assumption explicitly bars the settings as in Example 3. The
second assumption requires that, unlike in Example 2, the signals of the
“non-winners” are weakly relevant in deciding who should receive the good.
Consider two different signal profiles sB and s′B, and the two sets of profiles of
A’s signals for which the winner’s circle isA given sB and s′B, respectively. We
require that these two sets are different. Thus, whether bidders B have signals
sB or s′B is relevant for efficiency. Because the assumption is not imposed on
s with #I(s) = 1, it does not eliminate “waiting” efficient equilibria in which
one bidder always has the highest value and “remains active forever.”

Proposition 2 (Necessity). Suppose GSC is violated at an interior s∗, then
no efficient equilibrium exists in the N-bidder English auction.

Proof. Suppose GSC is violated at s∗ for A and k. Without loss of any
generality we can assume that: (i) I(s∗) = A ∪ {k}; (ii) GSC holds at any

13



interior s for any B ⊂ I(s) with #B < #A and any i ∈ I(s) \ B; and (iii)

there exists j ∈ A,
∂Vj
∂sk
6= ∂Vk

∂sk
. Indeed, if (i) is false, then letting C = A∪{k}

one can slightly reduce the values of all the bidders I(s∗) \ C while keeping
fixed the values of bidders C and the signals of the bidders not in I(s∗). If the
reduction in the values is sufficiently small, the resulting profile s′ is interior,
and by continuity GSC is violated at s′ for A and k. If (ii) is false, then one
can start with such s, B and i. Finally, if (iii) is false, that is for all j ∈ A,
∂Vj
∂sk

= ∂Vk
∂sk

, then, by assumption, one can find s′ close to s∗ for which (iii)
holds.

We proceed from the contrary, assuming that an efficient equilibrium
exists. Fix an efficient equilibrium β. If any of the bidders follows a mixed
strategy, select an arbitrary strategy in its support. No restrictions on the
strategies are imposed, they need not be monotonic and can be discontinuous
everywhere.

At any step of the proof, it will be clear in the bidding of what subset of
bidders C we are interested in and the signals of the others, s−C, will be fixed.
To keep track of the histories, and, thus, different parts of the strategies, we
propose the following notational convention. For any bidder j ∈ C and signal
sj we define β̂j(sj) as the price at which she exits according to her equilibrium
strategy if the other bidders from C remain active forever and all the bidders
N \ C follow their equilibrium strategies given their signals. It is possible
that β̂j(sj) = ∞ for some j and sj. Note that the actual price at which

the first bidder from C drops out is equal to mini∈C β̂i(si). In the proof we
will focus on bidding functions β̂. In particular, if bidder j has strictly the
highest value at s, she must not be the first to drop out, and so

β̂j(sj) > min
i∈C

β̂i(si).

To avoid excessive notation, we will simply write βj(sj) in place of β̂j(sj).
With C being a subset of interest, we will omit the signals of bidders N \ C,
as they are going to be fixed, and write s in place of sC. We will write sN to
refer to the full profile of signals.

When more than two bidders are active, the exit decision of any active
bidder depends on a calculation of what is going to happen if she stays longer
and somebody else exits first. As GSC holds for any smaller than #I(s∗)
number of bidders, we are going to derive the implications of GSC on the
bidding strategies for any number of bidders in the winners’ circle, both when
GSC is satisfied and when it is violated.
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First, we consider the case #I(s) = 2. Let A = {j}. We start with an

interior s = (sj, sk) such that
∂Vj
∂sj
6= ∂Vk

∂sj
,
∂Vj
∂sk
6= ∂Vk

∂sk
, and I(s) = {j, k}. We

will call the profiles satisfying these properties strictly competitive for {j, k}.
Step 1. Here we establish that there exists a neighborhood U s = U s

j ×U s
k

of s so that: (1) bidding functions of j and k are monotonic over U s
j and

U s
k : βj(sj) is increasing (decreasing) whenever

∂Vj
∂sj

> ∂Vk
∂sj

(
∂Vj
∂sj

< ∂Vk
∂sj

)
and

(2) for each s′j ∈ U s
j there exists s′k ∈ U s

k so that {j, k} = I(s′j, s
′
k) and if βj

is continuous at s′j, then βk is continuous at s′k and βj(s
′
j) = βk(s

′
k).

Consider trajectory s(τ) such that Vj(s(τ)) = Vk(s(τ)) = Vj(s) + τ . We
can find a sufficiently small neighborhood (τ−, τ+) of 0 and the correspond-
ing U s = sj(τ−, τ+) × sk(τ−, τ+),13 so that: (i) sj(τ) and sk(τ) are strictly
monotonic on (τ−, τ+); (ii) U s ∈ (0, 1) × (0, 1); (iii) the single-crossing in-
equalities are of the same sign at all s′ ∈ U s; and (iv) for all (s′j, s

′
k) ∈ U s,

I(s′j, s
′
k) = {j, k} ⇔ (s′j, s

′
k) = s(τ) for some τ ∈ (τ−, τ+). Pick any

τ, τ ′, τ ′′ ∈ (τ−, τ+) so that sj(τ) < sj(τ
′) < sj(τ

′′). Suppose that
∂Vj
∂sj

< ∂Vk
∂sj

,

then at (sj(τ), sk(τ
′)) bidder j has the highest value, while at (sj(τ

′′), sk(τ
′))

bidder k does. Thus,

βj(sj (τ)) > βk(sk(τ
′)) > βj(sj (τ ′′)). (8)

Similarly, if
∂Vj
∂sj

> ∂Vk
∂sj

, βj is increasing. The same holds for bidder k. As

a monotonic function is continuous almost anywhere, if βj is continuous at
sj(τ), then βj(sj(τ)) = βk(sk(τ)), else βk is discontinuous at sk(τ) as well.

Step 2. An immediate corollary to Step 1 is that when #N > 2, for all
s′ ∈ U s all the other bidders drop out before both j and k (recall that s−jk
is fixed),

max
i 6=j,k

βi(si) ≤ inf
(s′j ,s

′
k)∈Us
{βj(s′j), βk(s′k)}.

In addition, s−jk is uniquely identified by the history.
Indeed, if ∃i 6= j, k with βi(si) > infs′jk∈Us{βj(s′j), βk(s′k)}, then ∃τ , such

that βj(sj(τ)) = βk(sk(τ)) < βi(si), which contradicts efficiency. If the his-
tory of exits for some s′−jk 6= s−jk is the same, then by assumption, there
exists interior s′jk for which only one of I(s′jk, s−jk) and I(s′jk, s

′
−jk) equals

{j, k}. Without loss of any generality we can suppose that s′jk is strictly

13For any function f : X → Y and subsets S ⊂ X and T ⊂ Y , we define f(S) = {f(x) :
x ∈ S} and f−1(T ) = {x : f(x) ∈ T}.
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competitive for j and k (it can be slightly perturbed if necessary while keep-
ing all the other relevant properties intact); βj and βk are continuous at s′j
and s′k, respectively (one can apply Step 1 for s′jk and, if necessary, choose
a continuity point along the trajectory and sufficiently close to s′jk); and
I(s′jk, s−jk) = {j, k}, while j /∈ I(s′jk, s

′
−jk). Now, for s′′j sufficiently close to

s′j and such that I(s′′j , s
′
k, s−jk) = {j} while still j /∈ I(s′′j , s

′
k, s
′
−jk) we have

βj(s
′′
j ) > βk(s

′
k). Thus, as all the other bidders exit before j and k do and

with the same history, bidder j wins at both (s′′j , s
′
k, s−jk) and (s′′j , s

′
k, s
′
−jk),

which contradicts efficiency.
Step 3. Now we connect the bidding functions of bidders j and k to their

valuations. There are two cases to consider: (1) for each s′j ∈ U s
j there is a

unique s′k such that βj(s
′
j) = βk(s

′
k); and (2) there are more than one such

signal for some s′j ∈ U s
j . In Case 1 βj(s

′
j) = Vj(s

′). In Appendix A.3 we show
that Case 2 is incompatible with efficiency.

Let CU s
j ⊂ U s

j and CU s
k ⊂ U s

k be the sets over which, respectively, βj
and βk are continuous. In Case 1, U s

k ⊃ β−1
k (βj(CU

s
j )). Consider any

s′j ∈ CU s
j and s′k such that βj(s

′
j) = βk(s

′
k). Suppose βj(s

′
j) < Vj(s

′). If
bidder j with s′j increases her bid by a small ε > 0, she also wins when
βk(s

′′
k) ∈ (βj(s

′
j), βj(s

′
j) + ε), pays βk(s

′′
k), and obtains value Vj(s

′
j, s
′′
k) close

to Vj(s
′
j, s
′
k). For sufficiently small ε, βk(s

′′
k) < βj(s

′
j) + ε < Vj(s

′
j, s
′′
k), and

thus the deviation is profitable. Since Vj and Vk are continuous, βj and βk
are continuous on, respectively, U s

j and U s
k .

Step 4. Finally, if SC is violated at s = s∗ for A = {j} and k, then bidder
j has a profitable deviation and so efficiency cannot be achieved.

As follows from the previous steps, βj is decreasing and βj(sj(τ)) =
βk(sk(τ)) = Vj(s(τ)) = Vk(s(τ)) for all τ ∈ (τ−, τ+). Since the values are
increasing with τ , sj(τ) and sk(τ) cannot be both decreasing or both in-
creasing (as then βk is also decreasing and so cannot be equal to Vk). If sj(τ)

is decreasing, then sk(τ) is increasing, and so ∂Vk(s(τ))
∂sk

>
∂Vj(s(τ)

∂sk
. Bidder j

with sj(τ) can improve by staying longer: by bidding βj(sj(t)) for t ∈ (τ, τ+)
she also wins against all sk(t

′) for t′ ∈ (τ, t) and pays Vj (sj(t
′), sk(t

′)) <

Vj (sj(τ), sk(t
′)). If sj(τ) is increasing, then sk(τ) is decreasing and ∂Vk(s(τ))

∂sk
>

∂Vj(s(τ))

∂sk
. Again, bidder j with sj(τ) improves by bidding βj(sj(t)) for t ∈

(τ−, τ), since then she also wins against sk(t
′) for all t′ ∈ (t, τ) and pays

Vj (sj(t
′), sk(t

′)) < Vj (sj(τ), sk(t
′)).

Now, suppose #A ≥ 2. For convenience, we relabel bidder k as bidder 1.
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Step 5. Consider trajectory s(t) that for each t solves

Vj(s(t)) = Vj(s) + t, for all j ∈ C = A ∪ {1}.

Such a trajectory exists and is unique, since it solves

ds

dt
= (DV (s))−1 · 1. (9)

By continuity of the value functions and their first derivatives, there exists
an open neighborhood U0

t of t = 0, such that for all t ∈ U0
t : C = I(sN (t)),

GSC is violated at sN (t) for A and 1, and
∂Vj(sN (t))

∂s1
6= ∂V1(sN (t))

∂s1
for some

j ∈ A.
Step 6. Consider s′ = s(t) for an arbitrary t ∈ U0

t and let, for any j ∈ A,
bj(s

′
j) ≡ limsj↓s′j inf βj(sj). Lemma 6 in Appendix A.3 shows that these limits

are equal: for any j ∈ A, bj(s
′
j) = b(t) <∞. In addition, for any j ∈ A and

sj > s′j sufficiently close to s′j, βj(sj) ≥ b(t), and for bidder 1, β1(s′1) > b(t).
Step 7. Corollary 1 in Appendix A.2 shows that for t′ > t either: (i)

s1(t′) < s1(t) and, for all j ∈ A, sj(t
′) > sj(t); or (ii) s1(t′) > s1(t) and,

for all j ∈ A, sj(t
′) < sj(t). This, together with Step 6, implies that b(t) is

(weakly) monotonic in t. In Case (i) it is non-decreasing, in Case (ii) it is
non-increasing.

Step 8. Corollary 2 in Appendix A.3 shows that if for some bidder j ∈ A,
βj(sj(t)) 6= b(t), then t has to be a discontinuity point for b(t). Since b(t) is
monotonic it has no more than a countable number of discontinuity points.
Hence for almost all t ∈ U0

t , βj(sj(t)) = b(t) for every j ∈ A. That is,
when the signals of the bidders from A belong to trajectory s(t), they almost
always exit simultaneously.

Step 9. Consider two continuity points for b(t), t and t′, such that b(t′) ≥
b(t). In Case (i), t′ > t; in Case (ii), t′ < t. Then, s1(t′) < s1(t), and
β1(s1(t′)) > b(t′) ≥ b(t) = βj(sj(t)) for all j ∈ A.

Step 10. By construction, at t, I(s1(t), sA(t)) = C. We have

∂V1(s1, sA(t))

∂s1

> min
j∈A

∂Vj(s1, sA(t))

∂s1

. (10)

Indeed, SC holds since #A > 1, and the equality is prevented by the unique-
ness of the solution to (9). Thus, if starting from s(t) we slightly decrease
the signal of bidder 1, she can no longer possess the highest value.
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Then, we can find t′ sufficiently close to t such that t′ is a continuity
point for b(t), s1(t′) < s1(t), and all the bidders with the highest value at
(s1(t′), sA(t)) belong to A. Then by the results of Step 8, at the profile
(s1(t′), sA(t)), the bidders from A drop out simultaneously at b(t) while bid-
der 1 stays longer. Thus, efficiency is not achieved—a contradiction.

A Appendix

A.1 Proof of Proposition 1

Proof of Lemma 1. Suppose inequalities (2) are strict for all A. By

induction on #A, we show uAA � 0. For #A = 1, uAA =
(
∂VA
∂sA

)−1

> 0.

Suppose, on the contrary, there exists A ⊂ I(s) with #A > 1, such that
uAA 6� 0 while uBB � 0 for all B ⊂ I(s) with #B < #A. Partition A =
B t C t D, so that uAB � 0, uAC = 0, and uAD � 0. Clearly, D 6= ∅ and
also B 6= ∅, since the inequalities are strict. Consider u ≡ (0B,u

A
−B) and

u′ ≡ (−uAB ,0−B). Note that uD = 0, u−D = 0, u′B � 0, u′−B = 0, and
uA = u − u′. Let i ∈ arg maxl∈BDu′Vl and j ∈ arg maxl∈DDu′Vl. GSC for
subsets B and D respectively, implies Du′Vi > Du′Vj, DuVi < DuVj, and
DuAVi < DuAVj. But by the definition of uA, DuAVi = DuAVj = 1; thus
uAA � 0. If some inequalities in (2) are not strict, perturb DVI(s) by adding
ε > 0 to every diagonal element; so that DV ′I(s) = DVI(s) + εI#I . By
continuity, uAA = limε→0 uAA(ε) = 0 for all subsets A ⊂ I(s). Finally, (5)
follows from GSC verified on uA.

Next, suppose (5) holds. Suppose GSC holds at s for all B ⊂ I(s) with
#B < n − 1. We show that then it also holds for all A ⊂ I(s) with #A =
n > 1. (GSC trivially holds when #A = 1.) Suppose, on the contrary,
there exists A ⊂ I(s) with #A > 1, k ∈ I(s) \ A, and u with uA � 0 and
u−A = 0, such that DuVk > maxj∈ADuVj. Let B = arg maxj∈ADuVj. Since
u 6= uA, B ( A, uB � 0 and for vector uB, uBB = 0 by the argument above.
Consider vector w(t) = u − tuB. When t increases, only coordinates wB(t)
are weakly decreasing, and as GSC is satisfied for B, B = arg maxj∈ADw(t)Vj
and maxj∈ADw(t)Vj < Dw(t)Vk. Then there exist the smallest t∗ > 0 and
i ∈ A\B, such that either wi(t

∗) = 0 or i ∈ arg maxj∈ADw(t)Vj as well. In the
first case GSC is violated for A\{i} and k for vector w(t∗) which contradicts
the induction presumption. In the second case, repeat the procedure starting
with u = w(t∗). As #A is finite, the first case applies eventually.

18



Proof of Lemma 2. Suppose that at p0 with H(p0) = H̄(p0) there exists
a profile σ0(p0) satisfying (3). Let A be all j ∈M with σj(p,H(p)) < 1. Fix
σ−A(p) = σ0

−A(p0) for p ≥ p0. To find σA(p) that solves

VA(σA(p),σ0
−A(p0)) = p1A, (11)

it suffices to solve the system of differential equations

dσA
dp

= (DVA)−11A. (12)

By the Cauchy-Peano theorem, given σA(p0) = σ0
A(p0), there exists a unique

continuous solution σA(p) to (12) on p ∈ [p0, p∗], for some p∗ > p0.
Suppose GSC is satisfied. As long as A ⊂ I(σ(p)), dσA

dp
= uAA = 0

(from the proof of Lemma 1) and ∂Vi
∂σA

dσA
dp
≤ 1 for any i ∈ I(σ(p)) \ A

by (5). As a result, σ(p) extends to all p ≤ p∗A, where p∗A is the lowest
price at which σj(p

∗
A) = 1 for some j ∈ A. To extend σ(p,H(p)) beyond

p∗A, a new system (11) is solved for A′ = A(σ(p∗A, H(p∗A))) ( A with the
initial condition σ0

A′(p
∗
A) = σA(p∗A). This is repeated until there is no j with

σj(p) < 1, after which σ(p) is fixed.
To provide σ(p,H(p)) for all prices and histories we need to specify for

each H(p) the initial σ0(p0) for p0 = maxpj∈H(p) pj. Set σ0(0,∅) = 0 and
compute σ(p) for all p > 0, starting with A = N . At p∗ such that H(p∗) 6=
H̄(p∗), define σ0(p∗, H̄(p∗)) = σ(p∗, H(p∗)) (which maintains continuity of
inferences), and compute σ(p, H̄(p∗)) for all p > p∗.

A.2 Supporting results for the value functions

Corollary 1. Consider interior s with #I(s) > 2, any A ( I(s) with
#A = n ≥ 2 and bidder k ∈ I(s) \ A. Suppose GSC is satisfied at s for any

B ⊂ I(s) with #B < n. Suppose also that for some j ∈ A,
∂Vj(s)

∂sk
6= ∂Vk(s)

∂sk
.

Then, GSC is violated at s for A and k if and only if (1) uCk < 0 and ∀j ∈ A,
uCj > 0, or (2) uCk > 0 and ∀j ∈ A, uCj < 0, where C ≡ A ∪ {k} and uC is an
equal increment vector for the subset C.

Proof. First note that uAA = 0 and uBB = 0 for all B ⊂ I(s) with #B < n
(this follows from the proof of Lemma 1).

(⇐=) Suppose that uCk < 0, while uCA � 0 (the argument for the other
case is similar), and define u′ = (−uCk ,0−k). Since GSC is satisfied for B =
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{k}, Du′Vk ≥ maxi∈ADu′Vi. If Du′Vk > maxi∈ADu′Vi, then GSC is violated
for k, A, and u ≡ uC + u′. Otherwise, define D = arg maxi∈ADu′Vi. We
have D ( A (since u′ 6= uC), uDD = 0, and for i ∈ D, DuDVk < DuDVi (since
u′ 6= uD). Then, for sufficiently small ε > 0 and vector u ≡ uC+u′− εuD we
have: (i) uA � 0, u−A = 0; (ii) for each i ∈ D and j ∈ A\D, Du′Vi > Du′Vj;
(iii) DuVk > maxi∈ADuVi, that is GSC is violated for k, A, and u.

(=⇒) First note that uCk 6= 0 (else, uC = uA and GSC is satisfied with
equality for bidder k and A) and for all i ∈ A, uCi 6= 0 (else, GSC is violated
for a subset with less than n bidders). We can suppose that all the inequalities
in (5) are strict. If not, we can first perturb the Jacobian as we did in Step
2 of the proof of Lemma 1 to eliminate all equalities.

We show that uCC can have either 1 or n positive components. Partition
C = B tD, where i ∈ B (i ∈ D) if uCi < 0 (uCi > 0). Clearly D 6= ∅. Suppose
that #D 6= 1, n and consider vector w1(t) = uC−tuD. Since #D < n, we have
uDD � 0 and ∀j ∈ D,∀i ∈ B, DuDVj > DuDVi, thusDw1(t)Vj < Dw1(t)Vi for all
t > 0. Let t1 be the minimal t > 0 such that w1j(t) = 0 for some j ∈ D. Let E
consist of all l ∈ D with w1l(t) > 0 and consider vector w2(t) = w1(t1)− tuE .
Let t2 be the minimal t > 0 such that for some bidder j ∈ E , w2j(t) = 0.
Again, ∀j ∈ E ,∀i ∈ B, Dw2(t2)Vj < Dw2(t2)Vi. By continuing in this manner
we eventually obtain vector wm(tm) such that for all j ∈ D, wmj(tm) = 0. Fix
j ∈ D with wmj(0) > 0, thus Dwm(tm)Vj < Dwm(tm)Vi for all i ∈ B. Consider
w ≡ −wm(tm) and note that wB = −uCB � 0, w−B = 0. Therefore, GSC is
violated for B, j, and w, which is a contradiction since #B < n.

Suppose uCk > 0 (the proof for uCk < 0 is similar) and uCA 6� 0. Consider
u′ = (0k,u

C
−k). Clearly, u′ 6= uA. Since DuCVk = DuCVi = 1 for all i ∈ A and

GSC is (strictly) satisfied for B = {k}, we have Du′Vk < mini∈ADu′Vi. Since
GSC is violated for A and k, there exists u, with uA � 0 and u−A = 0,
such that DuVk > maxi∈ADuVi. Consider w(t) = u − tu′ and note that
Dw(t)Vk > maxi∈ADw(t)Vi for t ≥ 0, w−C(t) = 0 for any t, and wA(0) � 0.
Since u′i = uCi > 0 for some i ∈ A, there exist the minimal t′ > 0 such that
wi(t

′) = 0 for some i ∈ A. Then, GSC is violated for B = A \ {i}, k, and
w(t′), which is a contradiction since #B < n.

Definition 4. For a given s′, B ⊂ I(s′), and vector x with x−B = 0, define
yB ≡ DxVB(s′). Define trajectory sxB(τ) with sxB(0) = s′ and sxB−B(τ) = s′−B
as a solution to the system

VB(sxB(τ)) = V 1B + τyB,
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where V = maxj∈N Vj(s
′). Clearly,

dsxBB (τ)

dτ

∣∣∣
τ=0

= xB.

Lemma 4. For any proper subset B ( A there exists D = D(B), B ⊆ D ( A,
such that for any k ∈ A \ D, DuDVk(s) < 1. Also, for any ε > 0, there
exists vector vB = 0 such that

∥∥vB − uB
∥∥ < ε, vBk = 0 for any k ∈ A \ D,

DvBVi(s) < 1 for any i ∈ A \ B, and DvBVj(s) = 1 for all j ∈ B.

Proof. The proof is by induction on the number of bidders in B. Define C
as the set of bidders k ∈ A\B such that DuBVk(s) = 1. Since GSC is satisfied
for B, uB 6= uA and C 6= A\B. If C = ∅, then set D ≡ B, and vB ≡ uB. Thus,
lemma is true for #B = #A− 1 = n − 1. Suppose now that lemma is true
for all B′, with #B′ > #B. If C 6= ∅ define B′ = A \ C, then DuBVk(s) < 1
for any k ∈ B′ \ B. Pick D ≡ D(B′). Consider vB = λ1u

B + (1− λ1) vB
′

with λ1 ∈ (0, 1). When λ1 → 1, vB → uB. By induction, for all j ∈ A \ B′,
DvB′Vi(s) < 1. Thus, for all j ∈ A\B, DvBVi(s) < 1 as long as λ1 ∈ (0, 1).

Remark 1. As follows from the proof of Lemma 4 we can find a finite se-
quence B ( B′ ( B′′ ( . . . ( A, such that vB(λ) = λ1u

B+λ2u
B′ +λ3u

B′′ +
. . ., where

∑
i λi = 1, λi ∈ (0, 1) for all i, and λ1 is arbitrarily close to 1.

Lemma 5. For any B ( A and vB ≡ vB( λ) with λ1 sufficiently close to 1,

it is either DvBV1(s) < maxj∈BDvBVj(s) or ∂V1
∂s1

(s′) > minj∈B
∂Vj
∂s1

(s′).

Proof. IfDuBV1(s) < 1 = maxj∈BDuBVj(s), thenDvBV1(s) < maxj∈BDvBVj(s)
for λ1 sufficiently close to 1. Else, as #B < n, DuBV1(s′) = 1 or DVEu

B
E = 1E ,

where E = B ∪ {1}. SC and regularity imply ∂V1(s′)
∂s1

> minj∈B
∂Vj(s′)
∂s1

.

A.3 Proof of Proposition 2

Case 2 of Step 3. For each τ ∈ (τ−, τ+), define Θk(τ) = {s′k : βj(sj(τ)) =
βk(s

′
k)} and Θj(τ) = {s′j : βj(sj(τ)) = βj(s

′
j)}. Then, {j, k} ∈ I(sj(τ), s′k)

for all s′k ∈ Θk(τ). Indeed, j and k are the last to drop out, and if, for
instance, Vk (sj(τ), s′k) < Vj (sj(τ), s′k), then one can select s′′j sufficiently
close to sj(τ), so that βj(s

′′
j ) < βj(sj(τ)) = βk(s

′
k) but Vk(s

′′
j , s
′
k) < Vj(s

′′
j , s
′
k),

which contradicts efficiency.
First, we establish that generically for all s′k ∈ Θk(τ), profile (sj(τ), s′k) is

strictly competitive for {j, k} and set Θk(τ) is finite. Indeed, let SSj ⊂ U s
j

consist of all sj(τ) for which ∃s′k ∈ Θk(τ) such that
∂Vj(sj(τ),s′k)

∂sk
=

∂Vk(sj(τ),s′k)

∂sk
.

Set SSj is finite. (Otherwise, select (snj , s
n
k) →n→∞ (s∗j , s

∗
k) such that snj =
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sj(τ
n) ∈ SSj, s

n
j 6= smj for n 6= m, and snk ∈ Θk(τ

n). Since the value

functions are C1 and regular,
∂Vj(s∗j ,s

∗
k)

∂sk
=

∂Vk(s∗j ,s
∗
k)

∂sk
, {j, k} ∈ I(s∗j , s

∗
k), and

∂Vj(s∗j ,s
∗
k)

∂sj
6= ∂Vk(s∗j ,s

∗
k)

∂sj
. There exists M , so that for all n > M , (snj , s

n
k) belongs

to the unique trajectory defined by Vj = Vk and passing through (s∗j , s
∗
k). But

then, ∃M1 > M , so that: either
∂Vj(snj ,s

n
k )

∂sk
=

∂Vk(snj ,s
n
k )

∂sk
and so ∀n,m > M1,

snj = smj ; or
∂Vj(snj ,s

n
k )

∂sk
6= ∂Vk(snj ,s

n
k )

∂sk
and so ∀n > M1, snj /∈ SSj.) Then,

for all τ with sj(τ) /∈ SSj, set Θk(τ) is finite. (If not, select converging

to some s∗k sequence snk ∈ Θk(τ). In the limit,
∂Vk(sj(τ),s∗k)

∂sk
=

∂Vj(sj(τ),s∗k)

∂sk
,

which contradicts sj(τ) 6∈ SSj.) By similar arguments, the number of τ for

which ∃s′k ∈ Θk(τ),
∂Vj(sj(τ),s′k)

∂sj
=

∂Vk(sj(τ),s′k)

∂sj
is finite. Finally, if for some

s′k ∈ Θk(0), I(sj(0), s′k) 6= {j, k}, we can, for each such s′k, perturb slightly
the initial s∗ so that the values of D = I(sj(0), s′k) \ {j, k} are uniformly
reduced, the values of {j, k} remain equal and maximal, and all GSC in-
equalities remain of the same sign. Therefore the arguments made so far can
be repeated for this profile. Once there is no such s′k, by continuity and wlog
we can assume that ∀τ ∈ (τ−, τ+), I(sj(τ), s′k) = {j, k}.

Next, select τ ∗ ∈ (τ−, τ+), such that #Θk(τ) > 1 and ∀s′k ∈ Θk(τ
∗), ∀s′j ∈

Θj(τ
∗), profile (s′j, s

′
k) is strictly competitive for {j, k}. (This can be done

generically by the same argument as above. If τ ∗ does not exist, then
∀τ with sj(τ) ∈ CU s

j , #Θk(τ) = 1, and as in Case 1, βk(sj(τ), sk(τ)) =
Vk(sj(τ), sk(τ)) for all τ ∈ (τ−, τ+). In turn, for τ with #Θk(τ) > 1, for
s′k ∈ Θk(τ) and s′k 6= sk(τ), bidder k has a profitable deviation.) Thus,
instead of one trajectory s(τ) as in Case 1, we have #Θk(τ

∗)×#Θj(τ
∗) tra-

jectories along which the values of j and k and their bids are equal. By the
argument similar to the one in Case 1, we have βj(s

′
j) = Esk∈Θk(τ∗)Vj(s

′
j, sk) =

Esj∈Θj(τ∗)Vk(sj, s
′
k) = βk(s

′
k). Let s̄k = max Θk(t

′). Then for each s′j ∈
Θj(τ

∗), βk(s̄k) = Esk∈Θk(τ∗)Vj(s
′
j, sk) = Esk∈Θk(τ∗)Vk(s

′
j, sk) < Vk(s

′
j, s̄k). In

turn, βk(s̄k) < Esj∈Θj(τ∗)Vk(s
′
j, s̄k), a contradiction.

Lemma 6. Consider s′ = s(t) for an arbitrary t ∈ U0
t , s(t) is the trajectory

defined in Step 5. For any j ∈ A, there exists bj(s
′
j) ≡ limsj↓s′j inf βj(sj), and

these limits are equal: bj(s
′
j) ≡ b < ∞. In addition, β1(s′1) > b and for any

j ∈ A and sj > s′j sufficiently close to s′j, βj(sj) ≥ b.

Proof. The proof relies on some supporting results about the value
functions presented in Appendix A.2 above. Consider trajectory sA(τ) ≡
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su
AA(τ) with sA(0) = s′ along which the values of bidders A remain equal

and s′1 is fixed (see Definition 4). Because GSC holds for any subset smaller
than A, uAA � 0 and thus, for any j ∈ A, sAj (τ) is strictly increasing (for τ
close to 0). Since GSC is violated for A and 1, V1(sA(τ)) > maxj∈A Vj(s

A(τ))
for any sufficiently small τ > 0. Therefore,

β1(s′1) > min
j∈A

βj(s
A
j (τ)). (13)

In turn, by continuity of V, for any s1 sufficiently close to s′1 and s1 < s′1,

β1(s1) > min
j∈A

βj(s
A
j (τ)). (14)

Define bB ≡ mini∈A bi(s
′
i), B = arg mini∈A bi(s

′
i), and b−B ≡ mini∈A\B bi(s

′
i).

(It is possible that bB =∞ and/or b−B =∞. In what follows, a > b together
with b = ∞ implies a = ∞.) By definition, bB < ∞ when #B < n = #A.
We show by induction on #B that unless #B = n efficiency is violated.

[1]. Suppose #B = 1, let B = {j} and fix ε = (b−j − bj) /2. There exists
δτ > 0, such that for all τ ∈ (0, δτ ) and i ∈ A \ {j}, βi(sAi (τ)) > b−j − ε
and (13) holds. Consider trajectory s∗(r) = s′ + rvj, where vj ≡ vj( λ) is
defined in Lemma 4 (see also Remark 1), and λ1 is sufficiently close to 1 so
that Lemma 5 holds. Then there exists δr > 0, so that for all r ∈ (0, δr) and
for all i ∈ A, s∗i (r) ∈ sAj [0, δτ ) (that is, s∗i (r) = sAi (τ) for some τ ∈ [0, δτ )).

Consider a sequence sjm ↓ s′j, for which βj(sjm) → bj(s
′
j) and, for all m,

βj(sjm) < bj + ε and rm ∈ (0, δr), where s∗j(rm) = sjm. Then, by (13),

β1(s′1) > βj(s
∗
j(rm)) = min

j∈A
βj(s

A
j (τm)), (15)

where τm is defined by sAj (τm) = s∗j(rm). Also, similarly to (14), there exists
δ1 > 0 such that for any s1 ∈ (s′1 − δ1, s

′
1),

β1(s1) > βj(sj(rm)). (16)

Since #B < n by continuity and Lemma 4, for sufficiently large m (and so
for sufficiently small rm > 0), {j} ⊂ I(s∗(rm)) ⊂ {j, 1}. By continuity and
Lemma 5, for sufficiently small rm > 0, there exists δ′1(rm) > 0 such that for
any s1 ∈ (s′1 − δ′1(rm), s′1),

{j} = I(s1, s
∗
A(rm)). (17)
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Pick s1 such that both (16) and (17) hold. Then even if we slightly increase
the signals of those i ∈ A for whom s∗i (rm) = s′i, by continuity {j} = I(s)
at the so obtained profile s. Since βi(si) > b−j − ε for any si ∈ (s′i, s

A
i (δτ )),

βj(sjm) = βj(sj) = mini∈A+1 βi(si). Thus, we have reached a contradiction
as j has the highest value but drops out the first.

[2]. Here we show that for any j ∈ A with sj > s′j and sufficiently close to

s′j, βj(sj) ≥ bB. For each j ∈ A pick a trajectory sj(r) = s′+rvj( λj), where

vj( λj) satisfies Lemmata 4 and 5 (see also Remark 1), and so that ∀j ∈ A,
λj1 ∈ (1− δλ, 1), where δλ > 0 and is arbitrarily close to 0. Then, there exists
δr > 0, so that for all r ∈ (0, δr) and for all i, j ∈ A we have: (1) sji (r) = sAi (τ)
for some τ ∈ [0, δτ ); and (2) {j, 1} ⊃ I(sj(r)) and {j} = I(s1, s

j
A(r)) for any

s1 ≤ s′1 sufficiently close to s′1 (the latter may depend on particular r and j).
Suppose that there exists j ∈ A with βj(sj) < bB for sj > s′j arbitrarily

close to s′j. Pick such sj so that sj = sjj(rj) and rj ∈ (0, δr), let ε = bB −
βj(sj) > 0. Then {j, 1} ⊃ I(sj(r)) and, as in [1], by slightly reducing s′1
and slightly increasing the signals of all i ∈ A with sji (rj) = s′i we obtain
profile s with {j} = I(s). Thus there exists i ∈ C with βi(si) < βj(sj). If
β1(s1) is always the smallest no matter how slight the decrease in s1 is, then
lims1↑s′1 sup β1(s1) ≤ bB − ε, contradicting (14). Thus there exists i ∈ A with
si > s′i, such that βi(si) < βj(sj) = bB − ε and ri, defined as sii(r) = si,
satisfies ri < κrj. By choosing δλ as close to 1 as necessary, we can make
κ as close to zero as necessary. It suffices to have κ < 1. By repeating
this procedure we either find a contradiction that involves bidder 1 or find
i ∈ A and a converging sequence of rim ↓ 0, such that sim = sii(rim) ↓ s′i and
βi(sim) < bB − ε for any m. But then, bi(s

′
i) ≤ bB − ε.

[3]. Suppose now that #B = k ≥ 2. We show that we can find a
trajectory s(ρ) along which bidders from B have the highest value and are
dropping simultaneously for almost all ρ. Then, as in [1], even after slightly
increasing the signals of the bidders from A \ B, there exists i ∈ A \ B who
drops earlier. Thus, for some i ∈ A \ B, bi(s

′
i) ≤ bB.

Formally, consider trajectory sB(ρ) = sv
BD(ρ), for ρ ≥ 0 and sB(0) = s′,

defined for subset D from Lemma 4. (It is possible that vBj = 0 for some
j ∈ B, thus sBj (ρ) is not necessarily increasing.) Define bj(ρ) ≡ bj(s

B
j (ρ)).

Clearly, limρ→0 bj(ρ) = bj(s
′
j) for all j ∈ B. By construction, since GSC is

satisfied for D and 1, and by Lemmata 4 and 5, for sufficiently small ρ > 0,
I(sB(ρ)) ⊂ B ∪ {1}. Once we slightly decrease the signal of bidder 1, all the
bidders with the highest value belong to B. Also, for sufficiently small ρ,
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maxj∈B bj(ρ) < b−B.
Proceeding from the contrary; by the arguments similar to the one in [1]

applied to s = sB(ρ) for a sufficiently small ρ > 0, and by induction (on the
size of a subset of B), we have that bj(ρ) = bB(ρ) for all j ∈ B. In general,
as long as we stay sufficiently close to s′, by slightly moving in appropriate
directions away from s′ and possibly in several steps, we can separate bidders
A in any given order. Thus, whenever two or more bidders from A have equal
and maximal values, the limits of their bids from the right have to be equal.

Similarly, by the argument in [2], βj(sj) ≥ bB(ρ) for any j ∈ A with
sj > sBj (ρ) and sufficiently close to sBj (ρ). Therefore, since sBj (ρ) is strictly
increasing for some j ∈ B, bB(ρ) is weakly increasing.

There exists δρ > 0, so that for all ρ ∈ (0, δρ) and any j ∈ B, βj(s
B
j (ρ)) ≤

bB(ρ). (Otherwise, for any δρ > 0 we can find ρ ∈ (0, δρ) and j ∈ B, such that
βj(s

B
j (ρ)) > bB(ρ). Fix sBj (ρ) and βj(s

B
j (ρ)). By induction and repeating the

above arguments for B′ = B\{j} and A′ = A\{j}, we have a contradiction.)
In turn, since bB(ρ) is monotonic and ∀j, βj(sj) ≥ bB(ρ) for any sj > sBj (ρ)
(locally), ρ is a discontinuity point for bB(ρ) if βj(s

B
j (ρ)) < bB(ρ) for some

j ∈ B. Since a monotonic function can have only a countable number of
discontinuity points, we have that for almost all ρ, for all j, βj(s

B
j (ρ)) = bB(ρ).

Now we add bidder 1 into the picture. First, suppose that for some j ∈ B
there exists δρ > 0, such that sBj (ρ) = s′j for ρ ∈ (0, δρ). Then, bB(ρ) = bB,
and so for any i ∈ B with sBi (ρ) strictly increasing, βi(s

B
i (ρ)) = bB for all

ρ ∈ (0, δρ). Consider sA(τ). If τ > 0 is sufficiently small, the bids of bidders
A\B are separated away from bB, for each j ∈ B, βj(s

A
j (τ)) ≥ bB and for some

i ∈ B, βi(s
A
i (τ)) = bB. Therefore from (13), β1(s′1) > bB = minj∈A βj(s

A
j (τ)).

Let B′ consist of i ∈ B, for whom βi(si) = bB in the right-hand neighborhood
of s′i. Consider a trajectory s∗(r) = s′ + rvB

′
. Along this trajectory, the set

of bidders with the highest value is a subset of B′ ∪ {1}. By continuity and
Lemma 5, for a sufficiently small r > 0, (14) holds as well, and once s′1 is
slightly reduced, all the bidders with the highest value belong to B′. After
slightly increasing the signal of each j ∈ A with s∗j(r) = s′j, we obtain profile
s, at which bidders B′ drop out simultaneously at bB = minj∈A+1 βj(sj)—a
contradiction.

In the remaining case, for all j ∈ B, sBj (ρ) is strictly increasing and so βj
is monotonic in the right-hand neighborhood of s′j. Since uAA � 0, for any
small τ > 0 and for each j ∈ B, let ρj be the solution to sBj (ρj) = sAj (τ)
and ρ′ ≡ minj∈B ρj. For any ε > 0 there exists δτ > 0, such that for any
τ ∈ (0, δτ ) we have: (i) for any i ∈ A \ B, βi(s

A
i (τ)) > b−B(s′)− ε/2; (ii) for
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all j ∈ B, ρj is sufficiently small so that |bB(ρ)− bB| < ε/2 and the above
results hold. (That is, in particular: (1) the bidders from B have the highest
value at sB(ρ), (2) bB(ρ) is weakly increasing and, for all j, βj(s

B
j (ρ)) ≤ bB(ρ);

and (3) starting from sB(ρ′), once s′1 is slightly reduced, all the bidders with
the highest value belong to B.

Pick any τ ∈ (0, δτ ) such that bB(ρ) is continuous at ρ′. Then, consider
i ∈ B with ρi = ρ′. From (14), for any s1 < s′1 and sufficiently close to s′1,
we have

β1(s1) > min
j∈B

βj(s
A
j (τ)) = min

j∈B
βj(s

B
j (ρj)) = βi(s

B
i (ρ′)) = bB(ρ′).

Then, starting from sB(ρ′), by reducing slightly s′1 and increasing slightly s′j
for each j ∈ A with sBj (ρ′) = s′j, we obtain profile s, at which I(s) ⊂ B, but
bidders B exit first simultaneously at bB(ρ′)—a contradiction.

[4]. We have shown that #B = n, and so B = A. Let b ≡ bA. Since
for all j ∈ A, βj(sj) ≥ b(s′) for all sj > s′j close to s′j, from (13) we have
β1(s′1) > b.

It remains to be shown that b < ∞. If b = ∞, then for each j ∈ A+1

there exists an interval of signals with βj(sj) = ∞. Then, at a profile with
such signals, each bidder’s payoff is −∞, which cannot happen in equilibrium
since instead each bidder can exit at p = 0 and assure herself the payoff of
0.

Corollary 2. If for some j ∈ A, βj(sj(t)) 6= b(t), then t is a discontinuity
point for b(t).

Proof. If for some j ∈ A, βj(sj(t)) > b(t), then by the argument similar
to the one in [3] of the proof of Lemma 6, considering A′ = A \ {j}, we can
find a profile s, at which all the bidders from A′ exit simultaneously prior to
bidder 1 and j, while all the bidders with the highest value belong to A′.

Monotonicity of b(t) is established in Step 7 of the proof of Proposition
2. From Lemma 6 it follows that for all j ∈ A, whenever sj(t

′) > sj(t),
βj(sj(t

′)) ≥ b(t), for t and t′ from the considered neighborhood U0
t . There-

fore, if for some j ∈ A, βj(sj(t)) < b(t), then b(t′′) ≤ βj(sj(t)) whenever
sj(t

′′) < sj(t), so t is a discontinuity point for b(t).
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