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Abstract

To predict a return characteristic, one may construct models of different complexity de-

scribing the dynamics of different objects. The most complex object is the entire predictive

density, while the least complex is the characteristic whose forecast is of interest. This

paper investigates, using experiments with real data, the relation between the complexity

of the modeled object and the predictive quality of the return characteristic of interest, in

the case when this characteristic is a return sign, or, equivalently, the direction-of-change.

Importantly, we carry out the comparisons assuming that the underlying loss function is

asymmetric, which is more plausible than the quadratic loss still prevailing in the analysis

of returns. Our experiments are performed with returns of various frequencies on a stock

market index and exchange rate. By and large, modeling the dynamics of returns by autore-

gressive conditional quantiles tends to produce forecasts of higher quality than modeling the

whole predictive density or modeling the return indicators themselves.
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1 Introduction

One of important choices in making model-based time-series predictions is the degree of

complexity of the object whose dynamics will be modeled. On the one hand, one may

model the whole one-period ahead conditional density, and read off the forecast for the

characteristic of interest from the estimated conditional density. This is an indirect approach

to forecasting. It has an advantage that it contains all the information about the dynamics

of the variable of interest and hence may be used for a variety of purposes, while its obvious

shortcoming is difficult implementation, in particular, of adequate specification and precise

estimation. On the other hand, one may model the dynamics of the feature of interest in

the first place, which gives rise to the direct approach. It is easier to implement and it

contains minimally necessary information,1 but the model may not be sufficiently flexible.

Intermediate, semi-direct approaches are also possible. There, one describes the evolution

of an object (usually more complex, but not necessarily) different from the characteristic of

interest which is however simpler than the whole conditional density.

Here are three examples of direct vs. indirect (and possibly semi-direct) approaches. In

the value-at-risk (VaR) literature, the indirect approach would be to analyze the conditional

distribution (Kuester, Mittnik and Paolella, 2006), the semi-direct one would be to focus on

its tails (e.g., McNeil and Frey, 2000), and the direct approach would be to parameterize

the evolution of a conditional quantile (Engle and Manganelli, 2004). Kuester, Mittnik and

Paolella (2006) recently showed that the quantile models tend to be inferior to fully para-

metric models in terms of forecasting ability. Another example is prediction under the linear

exponential loss. While most of the literature tends to exploit the indirect approach (e.g.,

Patton and Timmermann, 2007) or use approximations (e.g., Christoffersen and Diebold,

1997), Anatolyev (2009a) proposes a direct approach where the object of modeling is the

conditional expectation of a certain nonlinear function of the variable being forecast. Lastly,

a long-debated issue in time series multiperiod forecasting literature is whether iterated or

direct forecasts are better (e.g., Marcellino, Stock and Watson, 2006). Here, the object of

interest is the multiperiod conditional expectation, and modeling it constitutes the direct

1This approach lies within the “decisionmetrics” paradigm of Skouras (2007), where an econometric model

is developed so that it serves a particular purpose rather than is used in a variety of contexts.
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approach, while a semi-direct approach assumes modeling the one-period ahead conditional

expectation and iteratively deducing the multiperiod conditional expectation.

In this paper we investigate, using experiments with real data, the question of whether

the return signs, or equivalently, directions-of-change, are better to forecast using a direct,

semi-direct, or indirect approach. Direction-of-change forecasts are useful in formation if

trading strategies and efficient asset allocation and have lately received a lot of attention

of financial econometricians (e.g., Rydberg and Shephard, 2003; Pesaran and Timmermann,

2004; Christoffersen and Diebold, 2006; Chung and Hong, 2007; Anatolyev, 2009b; Anatolyev

and Gospodinov, 2010). First, directional forecasts can be generated indirectly by reading

off the conditional distribution, see Christoffersen, Diebold, Mariano, Tay and Tse (2007)

and Bekiros and Georgoutsos (2008), among others. Second, they can be produced by a

dynamic model for certain conditional objects, more complex than the up/down conditional

probability, and this would constitute the semi-direct approach. Finally, the conditional

probabilities can be modeled directly in a binary autoregressive framework, see Startz (2008).

Importantly, we perform the comparisons assuming that the underlying loss function

is asymmetric, corresponding to the so called Linlin loss. While the symmetric quadratic

(Quad) loss function 1
2
u2 is still prevailing in econometrics because of its convenience and

tractability, more and more often researchers use asymmetric loss functions in empirical

analysis, such as the linear-exponential (Linex) loss of the form exp (θu) − θu − 1 or the

doubly linear (Linlin) loss of the form
(
(1− α) I{u<0} + αI{u>0}

)
|u| (where the parameters θ

or α index the degree of asymmetry) more adequately reflecting asymmetries in preferences

of decision makers. Empirical plausibility is the first reason of our use of the Linlin loss.

The second reason is the accumulated experience due to the increased interest to modeling

and analyzing the quantiles of the conditional distribution of returns, see for example Engle

and Manganelli (2004), Lee and Yang (2006) and Cenesizoglu and Timmermann (2008). An

important, albeit technical, reason why we prefer Linlin to other asymmetric losses is that a

quantile predictor is directly linked to a direction-of-change predictor (Granger and Pesaran,

2000; Lee and Yang, 2006). Note that our interest is to those quantiles that are not too far

from the median, which significantly differs from that in the VaR analysis where the focus

is on quantiles in the tails.
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We do real data experiments with the S&P500 index and DM/USD exchange rate of

various frequencies: weekly, daily and intradaily. As the “indirect” model for the predictive

density, we use the flexible NGARCHSK class of León, Rubio and Serna (2005) (see also

León, Menćıa, and Sentana, 2009). As the “semi-direct” model for the quantiles, we use the

CAViAR class of Engle and Manganelli (2004). Finally, as the “direct” model for directional

indicators, we use the BARMA class of Startz (2009). By and large, the semi-direct approach,

i.e. by way of modeling the evolution of conditional quantiles, turns out to be markedly

superior to the direct and indirect approaches for stock returns, especially at daily frequency,

and not worse for exchange rate returns. We also run additional experiments in order to

see how robust these tendencies are, where we exploit variations of the same models that

deviate from the baseline ones in minor ways.

The paper is structured as follows. Section 2 describes the theory related to the rela-

tionship among the three approaches to forecasting the directions-of-change. In Section 3

the corresponding models are described. Section 4 contains the description of data and the

results. Finally, Section 5 concludes.

2 Directional forecasting under asymmetric loss

2.1 Link between directional and return forecasts

Let {rt}Tt=1 be the series of financial returns. Also we consider the binary return indicator,

or direction-of-change, series {yt}Tt=1,

yt = I {rt ≥ 0} =
sgn(rt) + 1

2
,

where I {A} is the indicator of event A equalling one if A is true and zero otherwise, and

sgn(u) is a sign function equalling 1 if u is non-negative and −1 otherwise.

Consider a forecaster who makes directional and return forecasts for the same return

series. Let r̂t+1|t be an optimal forecast of the return rt+1 at t + 1 made at t, while ŷt+1|t

be her optimal directional forecast, i.e. of the indicator yt+1 at t + 1 made at t. Of course,

the forecaster predicts the market to move up when the return forecast is positive, and to

move down otherwise. Thus, the optimal directional and return forecasts are linked in the
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following way:

ŷt+1|t = I
{
r̂t+1|t ≥ 0

}
. (1)

The relation (1) allows us to employ the semi-direct approach: when there is a model for

return levels that generates a return forecast, this return forecast can be translated into the

directional forecast using (1).

2.2 “Continuous” and “discrete” losses

Let the forecaster be endowed with the “continuous” loss function c(rt+1 − r̂t+1|t) when she

evaluates return forecasts. The forecast r̂t+1|t introduced above is optimal in the sense of

minimizing this “continuous” loss. Note that traditionally the only argument is the differ-

ence between the return realization and its forecast. When the forecaster makes directional

forecasts, she is implicitly driven by some underlying “discrete” loss function dt(ŷt+1|t, yt+1),

or, equivalently, “discrete” utility function ut(ŷt+1|t, yt+1), and ŷt+1|t is optimal in the sense

of minimizing this “discrete” loss or maximizing this “discrete” utility. In contrast to the

“continuous” counterpart, in general these “discrete” functions are also functions of the in-

formation set Ωt available to the forecaster at t, the period of making the forecast (hence

the index t), and the argument is not necessarily single.

The most general “discrete” utility function has the form (Granger and Pesaran, 2000;

Elliott and Lieli, 2005)

ut(ŷt+1|t, yt+1) =



u1,+,t if ŷt+1|t = yt+1 = 1,

u0,−,t if ŷt+1|t = yt+1 = 0,

u1,−,t if ŷt+1|t = 1, yt+1 = 0,

u0,+,t if ŷt+1|t = 0, yt+1 = 1,

which can be alternatively represented in the form of the following 2× 2 payoff matrix:

ut(ŷt+1|t, yt+1) rt+1 ≥ 0 rt+1 < 0

ŷt+1|t = 1 u1,+,t u1,−,t

ŷt+1|t = 0 u0,+,t u0,−,t
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2.3 Link between directional and probability forecasts

Let us define the conditional probability of an up movement as

πt = Pr {rt+1 ≥ 0|Ωt} ,

where Ωt is the information set containing rt and its past. Note that

πt = E(yt+1|Ωt).

In order to employ the both direct and indirect approaches, we need to tie the directional

forecasts to this conditional probability.

The expected utility of the decision ŷt+1|t = 1 is ut(1, ·) = (1− πt)u1,−,t + πtu1,+,t, while

that of the decision ŷt+1|t = 0 is ut(0, ·) = (1 − πt)u0,−,t + πtu0,+,t. Then the forecaster will

prefer the forecast ŷt+1|t = 1 if ut(1, ·) ≥ ut(0, ·) which is equivalent to the rule

πt ≥
u0,−,t − u1,−,t

(u0,−,t − u1,−,t) + (u1,+,t − u0,+,t)
≡ π̄t.

Thus the optimal indicator forecast is

ŷt+1|t = I {πt ≥ π̄t} . (2)

The (generally time varying) threshold π̄t is completely determined by the “discrete” utility

function in hand. The relation (2) allows us to employ the direct and indirect approaches:

when there is a model for the conditional probability or conditional density that generates a

probability forecast, this probability forecast can be translated into the directional forecast

using (2). The comparison of (1) and (2) gives the conclusion that the events r̂t+1|t ≥ 0 and

πt ≥ π̄t are equivalent for an optimizing forecaster.

Furthermore, Granger and Pesaran (2000) show (see also Lee and Yang, 2006) that

the optimal directional predictor minimizes the expected “discrete” loss E [dt(vt+1)], where

vt+1 = yt+1 − ŷt+1|t is an indicator forecast error, and dt(v) is a “discrete” loss function

dt(v) =


1− π̄t if v = 1,

π̄t if v = −1,

0 if v = 0,
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or in the 2× 2 payoffs matrix form,

dt yt+1 = 1 yt+1 = 0

ŷt+1|t = 1 0 π̄t

ŷt+1|t = 0 1− π̄t 0

This “discrete” loss function will allow us to evaluate directional forecasts.

2.4 Asymmetric loss

The most widespread loss function is quadratic: c(u) = 1
2
u2. Its popularity can be explained

by a simple form of optimal predictor, the conditional mean of returns, and tractability due

to the linearity of the first derivative. However, in real life symmetric loss functions do not

correspond to the actual behavior of economic agents. Examples of such situations are given

by Granger (1969), Capistrán-Carmona (2005), Elliott, Komunjer and Timmermann (2008),

and others.

Among asymmetric loss functions are linear exponential (Linex) c(u) = exp (θu)−θu−1,

θ 6= 0 and doubly quadratic (Quadquad) c(u) =
(
(1− ϕ) I{u<0} + ϕI{u>0}

)
u2, ϕ ∈ (0, 1) as

well as the most popular doubly linear (Linlin) loss

c(u) =
(
(1− α) I{u<0} + αI{u>0}

)
|u| , α ∈ (0, 1). (3)

In all these cases an additional known parameter θ, ϕ or α is present that indicates the degree

of asymmetry. The Linex and Quadquad loss functions are not robust to outliers, especially

the Linex one because of the presence of exponent. The optimal predictor under Linex is

quite involved and is a certain nonlinear transformation of the conditional expectation of

exponent of the variable being forecast (Zellner, 1986), and moment requirements may not

hold when the Linlin loss applied to financial data. At the same time, while the Quadquad

loss is less prone to the effects of heavy tails, the closed-form optimal predictor does not

exist in this case (Christoffersen and Diebold, 1996).

The “tick” function corresponding to Linlin does not have these shortcomings. The

corresponding optimal predictor is a conditional α-quantile qα(rt+1|Ωt) which is a much more

robust regression measure. In addition, the fact that the quantiles are important in the VaR
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analysis, makes the Linlin loss very popular and important. The drawback of the Linlin

loss functions is non-differentiability at zero which complicates estimation and inference

to a certain degree. However, recent financial econometric literature has been showing an

increased interest in modeling conditional quantiles (e.g., McNeil and Frey, 2000; Engle and

Manganelli, 2004; Kuester, Mittnik and Paolella, 2006).

There is also another, more technical reason why we prefer the Linlin loss function. The

threshold π̄t that links the conditional “success” probability to the optimal sign forecast via

(2) is generally time varying and may have various forms. For example, for the commonly

used quadratic loss, it equals

− E(rt+1|rt+1 < 0,Ωt)

E(rt+1|rt+1 ≥ 0,Ωt)− E(rt+1|rt+1 < 0,Ωt)
,

while for the Linex loss it is

1− E(eαrt+1|rt+1 < 0,Ωt)

E(eαrt+1|rt+1 ≥ 0,Ωt)− E(eαrt+1|rt+1 < 0,Ωt)
.

In these two examples, to compute π̄t one additionally needs models for certain complicated

conditional expectations. In contrast, for the Linlin loss the threshold π̄t is simply

1− α,

which is not only time invariant, but also known in advance. This is established, in particular,

in Lee and Yang (2006).

3 Forecasting models and forecasts

We use three types of models with decreasing complexity of the modeled object in order to

produce forecasts of return indicators. The most complex model (the “density model”, D)

describes the dynamics of the conditional density of returns. The less complex model (the

“return model”, R) describes the dynamics of return levels. Finally, the simplest model (the

“sign model”, S) describes the dynamics of return signs themselves. Put differently, the D

model produces indirect sign forecasts, the R model produces semi-direct sign forecasts, and

the S model produces direct sign forecasts.
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3.1 The “density model”

As the D model we use the NGARCHSK model of León, Rubio and Serna (2005):

rt = µt + εt, εt = h
1/2
t ηt, ηt|Ωt−1 ∼ Ft,

where the conditional distribution Ft is described in terms of the conditional density as

follows:

ft(x) =
ϕ(x)ψ2

t (x)

Γt
,

where ϕ(x) is the standard normal density,

ψt(x) = 1 +
st
3!

(x3 − 3x) +
kt − 3

4!
(x4 − 6x2 + 3)

comes from the Gram–Charlier expansion,

Γt = 1 +
s2
t

3!
+

(kt − 3)2

4!

is a normalizing term, and st and kt are associated with the conditional third and fourth

order moments. The NGARCHSK model is a flexible fully parametric model in the spirit

of Hansen’s (1994) autoregressive conditional density (ARCD), which models not only the

conditional mean and variance, but also time-varying skewness and kurtosis. The idea be-

hind it is to use the Gallant and Tauchen (1989) seminonparametric family of densities as

a parametric class (see also León, Menćıa, and Sentana, 2009). These densities are based

on the Gram–Charlier expansion around the normal density. After squaring and renor-

malization the resulting conditional density ft(x) is automatically a valid density function,

as it is non-negative and integrates to one. One can construct the loglikelihood function

in a straightforward way. Another advantage is that this class nests the normal density

corresponding to the case st = 0 and kt = 3.

For the conditional mean we use a linear AR(1) specification which is traditionally em-

ployed for financial data in order to capture slight autocorrelatedness:

µt = µ+ ρrt−1.

The conditional second moment follows a GARCH-type dynamics as in León, Rubio and

Serna (2005):

ht = β0 + β1ht−1 + β2(εt−1 + β3

√
ht−1)2,
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hence the familiar GARCH letters in the acronym NGARCHSK. Next, the letter N stands

for “nonlinear”. The nonlinear term in the variance equation accounts for the leverage effect.

Its form is taken from Engle and Ng (1993), and the coefficient β3 turns out to be statistically

significant for all financial series used in León, Rubio and Serna (2005). Finally, the letter S

in the acronym NGARCHSK stands for “skewness” and K for “kurtosis” which indicates the

possibility that these conditional characteristic are allowed to be time varying. In our basic

density specification, however, while we keep the nonlinear dynamics for the conditional

variance, we set the conditional third and fourth moments to be constant: st = σ0, kt = κ0.

This is because the empirical performance with these moments constant is not worse than

with varying ones. We however also try time varying conditional third and fourth moments

when we check for robustness (see subsection 4.4).

The NGARCHSK model is, of course, not the only way to flexibly parameterize the

conditional density. Earlier Harvey and Siddique (1999) proposed a flexible parameteriza-

tion on the basis of non-central t distribution which allowed for time varying conditional

skewness but not conditional kurtosis. Other parameterizations with time-varying skewness

and kurtosis have been suggested in the literature as well, for example, in Jensen and Lunde

(2001) and Wilhelmsson (2009). The NGARCHSK model, however, has a more intuitive

design and bigger flexibility (see León, Menćıa, and Sentana, 2009).

The directional forecast ŷ
(D)
t+1|t is extracted from f̂t(x), the estimated conditional density

of standardized errors ηt, as follows:

ŷ
(D)
t+1|t = I{π̂(D)

t ≥ 1− α},

where the predictor π̂
(D)
t of the positive return probability πt is obtained from the estimated

predictive density via integration:

π̂
(D)
t =

+∞∫
0

ĝt(r)dr,

where ĝt(x) is the estimated predictive density of rt+1, which is a transformation of f̂t(x).

The integration is performed numerically.

9



3.2 The “return model”

As the R model we utilize the Conditional Autoregressive Value at Risk (CAViAR) model

of Engle and Manganelli (2004) for conditional quantiles qα,t ≡ qα(rt|Ωt−1). The general

CAViAR(p, s) specification has the GARCH-type autoregressive dynamics

qα,t = λ+

p∑
i=1

ψiqα,t−i +
s∑
i=1

χilt−i,

where the driving process lt is a function of a finite number of observations from Ωt. Engle

and Manganelli (2004) suggest several specifications of the driving process tied to the VaR

nature of the variables, i.e. very small α like 1% or 5%. In contrast, we are interested in a

central tendency, i.e. in middle sized α. In this light, we select the most reasonable, called

asymmetric slope, version of the CAViAR(1, 1) model

qα,t = γ0 + γ1qα,t−1 + γ2r
+
t−1 + γ3r

−
t−1,

where x+ = max(x, 0) and x− = −min(x, 0). Engle and Manganelli (2004) discuss other

three specifications: adaptive slope, symmetric absolute value, indirect GARCH. The asym-

metric slope version is more general than the symmetric absolute value model and reflects

the leverage effect. We also try the adaptive slope version when we check for robustness (see

subsection 4.4).

A sign forecast ŷ
(R)
t+1|t is generated from the estimated quantile prediction q̂α,t+1|t by the

familiar rule:

ŷ
(R)
t+1|t = I{q̂α,t+1|t ≥ 0}.

3.3 The “sign model”

As the S model we use the binary autoregressive moving average (BARMA) model of Startz

(2008) where the directions-of-change are modeled directly as functions of their own past:

πt =
exp(θt)

1 + exp(θt)
, θt = λ+

p∑
i=1

ψiyt−i +

q∑
i=1

χiθt−i.

We set the orders p and q to unity. The logit link is traditional in financial applications (e.g.,

Rydberg and Shephard, 2003; Christoffersen and Diebold, 2006; Anatolyev and Gospodinov,

10



2010), while the past indicators usually perform better as driving variables than, say, past

returns.

The BARMA model generates probability forecasts π
(S)
t whose estimated values π̂

(S)
t are

used to produce the sign forecasts by the same rule as in the D model:

ŷ
(S)
t+1|t = I{π̂(S)

t ≥ 1− α}.

4 Empirical evidence

4.1 Data

We use the following six time series, each having T = 1200 observations.

• Returns S&P500 (SP500m). Frequency: 15 minutes. Time period: from 01.02.2007 to

11.04.2007. Source: finam.ru.

• Exchange rates DM to USD (DMUSDh). Frequency: hourly. Time period: from

22.03.2007 to 11.06.2007. Source: finam.ru.

• Returns S&P500 (SP500d). Frequency: daily. Time period: from 26.01.1989 to

22.10.1993. Source: finance.yahoo.com.

• Exchange rates DM to USD (DMUSDd). Frequency: daily. Time period: from

02.01.1990 to 15.04.1993. Source: oanda.com.

• Returns S&P500 (SP500w). Frequency: weekly. Time period: from 03.01.1950 to

02.01.1973. Source: finance.yahoo.com.

• Exchange rates DM to USD (DMUSDw). Frequency: weekly. Time period: from

19.12.1984 to 26.12.2007. Source: oanda.com.

The start and end dates are picked without reference to any particular reasons, with an

eye only on data availability. Here we have two series of ultra high frequency, two series of

daily returns and two series of weekly returns. Figure 1 depicts the return series on the left

side. The right side of Figure 1 shows cumulative sign series (i.e. values of the sign function
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accumulated from the start to the present dates). Descriptive statistics are presented in the

following table. All return series show unconditional leptokurtosis and skewness of various

degree, tending to be higher for higher frequencies. The stock market was largely bullish,

while the exchange market went up and down exhibiting slight appreciation of the dollar in

the long run specific for each frequency.

SP500m DMUSDh SP500d DMUSDd SP500w DMUSDw

mean 0.00 −0.00 0.04 0.00 0.16 0.07

median 0.00 0.00 0.03 0.00 0.28 0.06

standard deviation 0.11 0.05 0.58 0.61 1.28 1.23

skewness 1.36 −0.33 −0.18 −0.36 −0.51 0.07

kurtosis 40.94 17.14 5.48 6.13 4.10 4.25

how many up 611 605 630 610 718 623

how many down 576 586 569 588 481 576

From the return statistics and graphs one can see that using conditional quantiles (and

hence implicitly the Linlin loss), the conditional median in particular, may be preferred to

using conditional moments, the conditional mean in particular, as the former exhibit clear

robustness and always exist while the latter may not. These issues may be quite important

especially for the highest frequency data where outliers are quite pronounced.

4.2 Forecasting procedure

We use the first R = 1000 observations for in-sample modeling and the rest P = 200

observations for an out-of-sample forecasting experiment. We use the rolling scheme of

generating out-of-sample forecasts. That is, when the pth forecast is made, p = 1, ..., P, the

estimates are recomputed using observations from t = p to t = R + p− 1. All programs are

written and run in MATLAB.2

We do all experiments for α from the following grid: 0.30, 0.40, 0.45, 0.50, 0.55, 0.60,

0.70. We pay more attention to α near 0.50 and hence quantiles near the median. Larger

deviations from 0.50 are less interesting as they are empirically less plausible, and for α too

2For CAViAR models, we have used Simone Manganelli’s code.
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high or too low there are too little observations on one of sides of the distribution rendering

statistics collected from such samples unreliable. Note that Cenesizoglu and Timmermann

(2008) document larger predictability of return quantiles, albeit for monthly stock returns,

for larger deviations of α from 0.50.

The quality criterion is the average value of the “discrete” loss function

d(v) =


α if v = 1,

1− α if v = −1,

0 if v = 0,

applied to the forecast errors. Thus, the in-sample criterion is

DLin =
1

R

R∑
t=1

d(yt − ŷt|t−1),

where R = 1, 000 is the size of the (initial) estimation subsample. The out-of-sample criterion

is

DLout =
1

P

T∑
t=T−P+1

d(yt − ŷt|t−1),

where P = 200 is the size of the forecasting subsample. The letters d and D above stand

for “discrete”. Smaller values of DL imply better performance. It is this loss function that

is consistent with the optimizing behavior of agents, and it would be ridiculous to use other

performance measures (for example, the one that just counts “successes” and “failures”).

As simplest benchmarks we use trivial directional forecasts: one that always predicts 0

(i.e. down) and one that always predicts 1 (i.e. up).

4.3 Empirical results

Table 1 presents criteria values attained for different configurations. The information is

arranged in the following way. Part (a) refers to the highest frequency data, part (b) to the

daily data, and part (c) to the weekly data. In each, the upper part relates to the SP500

index, the lower part – to the DM/USD exchange rate; the left half – to the in-sample

computations, the right half – to the out-of-sample computations. The minimal criterion

value(s) across each half of each line is in boldface. Figure 2 shows the cumulative “discrete”

loss (i.e. values of the loss function accumulated from the first to the present forecast
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dates) for out-of-sample sign forecasts of the SP500 index returns, the most clear-cut case,

for selected values of α: two on the opposite sides of the conditional distribution and one

implying exactly the conditional median. Several important observations follow.

For the stock market returns characterized by some perceptible predictability the semi-

direct approach provides much better directional forecasts. The superiority of the semi-

direct approach is much sharper for the daily frequency than for the other two frequencies.

The ranking of the other two approaches, indirect and direct, is fuzzy, although by and

large the sign model tends to produce directional forecasts of a bit better quality. The

superiority of the semi-direct approach is more pronounced for less extreme values of α. This

evidence is a bit unexpected in light of Cenesizoglu and Timmermann (2008) who discover

less predictability of conditional quantiles near the conditional median. However, Cenesizoglu

and Timmermann (2008) used monthly data and prediction by exogenous predictors; in

addition, indirect and direct approach may be prone to the same tendency even more.

For the exchange rate returns characterized by little, if any, predictability, the differences

across approaches are much more blurry. Most blurry they are for the daily frequency, while

in the case of higher frequency the semi-direct approach is a little better, at least in-sample,

and in the case of weekly frequency the sign forecasts are a bit better, at least out-of-sample.

The differences though, if any, are small in magnitude. The differences across approaches

are also most blurry for higher deviations of α from 0.50, when sometimes trivial forecasts

more often are not worse than model-based forecasts.

In it important to note that, in general, the discovered patterns agree in in-sample and

out-of-sample experiments. While the customary tension between in-sample and out-of-

sample predictability may make one expect disagreement, this tension evidently does not

apply to the comparison across approaches.

4.4 Robustness check

We run some experiments with model modifications to make sure that our numbers are robust

to minor deviations in specifications, so that adding or removing some parametric elements

do not change our conclusions dramatically. We restrict ourselves to experimentation with

the daily S&P500 index. The results are shown in Table 2.
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First we try to remove the AR(1) component from the conditional mean, or replace it

with an ARCH-M term δht. Note that the former modification is equivalent to a random

walk with a complex density superimposed on the innovations. Both modifications lead to

significantly worse forecast performance (not shown), both in and out of sample, and the

forecasts practically coincide with trivial ones. It seems that there is some dynamics in the

conditional mean, but it can be successfully captured by the linear autoregressive term.

In columns 2 to 4 of Table 2 we give the results for various density models. Column 2

replicates the results for the basic NGARCHSK specification from Table 1b, with constant

skewness and kurtosis parameters. Column 3 contains those when the skewness and kurtosis

are allowed to be time-varying as in León, Rubio and Serna (2005):

st = σ0 + σ1st−1 + σ2η
3
t−1,

kt = κ0 + κ1kt−1 + κ2η
4
t−1.

It is worth noting that the parameters σ1, σ2, κ1, κ2 are statistically insignificant in roughly

half of cases in León, Rubio and Serna (2005) when the authors apply the model to returns

from stock indices and exchange rates but no particular pattern emerges. The resulting

differences in forecast performance, both in and out of sample, are different in direction but

small in magnitude. Hence, time variation in higher order conditional moment is not that

significant to justify estimation of four extra parameters.

Next we exploit the simple normal AR(1)–GARCH(1,1) model whose variance equation

is plainly

ht = β0 + β1ht−1 + β2ε
2
t−1.

This is a most simple volatility model which is often used in practice. The results are shown

in Column 4. The values of forecast performance criteria are a bit larger than in the previous

case; occasional minor improvements however fall short of the solid improvements provided

by the semi-direct approach.

As for the return model, we have also tried the adaptive slope variation of the CAViaR

model also used in Engle and Manganelli (2004):

qα,t = qα,t−1 + γ1

(
1

1 + exp (G (rt−1 − qα,t−1))
− α

)
,
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where G = 10. This specification is tied to small α, and the corresponding forecasts practi-

cally coincide with trivial ones, hence not shown. It is clear that careful specification of the

dynamics of conditional quantiles is a key to its superior performance.

Finally, we check the robustness to an order specification of BARMA models, see Columns

5 and 6 in Table 2. While Column 5 replicates the results of fitting the BARMA(1,1) equa-

tion from Table 1b, Column 6 contains those for a higher order sign model, BARMA(2,2).

Allowing higher orders does not practically change the forecasts.

Thus, our earlier conclusion of the superiority of the semi-direct approach for stock

returns remains valid. As for the exchange rate returns, although we did not run similar

experiments with the DM/USD series, it is clear that changing dynamic specifications even

in minor ways is able to kill or revert those tiny discrepancies between the approaches when

predictability is low.

5 Concluding remarks

Modeling and estimating the entire conditional density (constituting the indirect approach),

with the noise arising from modeling uncertainty and estimation error, turns out to be too

complex task for prediction of directions-of-change. On the other hand, existing models

for binary up/down indicators (constituting the direct approach) do not possess flexibility

sufficient to generate reliable forecasts. An intermediate way, by modeling and estimating

the dynamics of conditional quantiles (constituting the semi-direct approach), proves to be

more effective as these models warrant an optimal degree of flexibility and parsimony. This

is especially true for stock returns as a relatively more predictable series, while the patterns

for exchange rate returns are much more fuzzy.
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Table 1a. In-sample and out-of-sample, high frequency data

In-sample loss Out-of-sample loss

α Dynamic models Trivial forecast Dynamic models Trivial forecast

D R S 1 0 D R S 1 0

SP500m

0.30 0.154 0.152 0.151 0.347 0.151 0.150 0.178 0.177 0.280 0.180

0.40 0.180 0.179 0.189 0.298 0.202 0.194 0.179 0.190 0.240 0.240

0.45 0.188 0.179 0.189 0.273 0.227 0.210 0.179 0.186 0.220 0.270

0.50 0.189 0.174 0.190 0.248 0.252 0.188 0.168 0.185 0.200 0.300

0.55 0.182 0.172 0.192 0.223 0.277 0.170 0.172 0.194 0.180 0.330

0.60 0.172 0.168 0.187 0.198 0.302 0.166 0.147 0.158 0.160 0.360

0.70 0.145 0.129 0.149 0.149 0.353 0.125 0.121 0.119 0.120 0.420

DMUSDh

0.30 0.149 0.147 0.154 0.340 0.154 0.150 0.150 0.150 0.350 0.150

0.40 0.184 0.179 0.200 0.292 0.206 0.190 0.175 0.215 0.300 0.200

0.45 0.192 0.185 0.205 0.267 0.231 0.193 0.197 0.218 0.275 0.225

0.50 0.203 0.187 0.205 0.243 0.257 0.195 0.200 0.230 0.250 0.250

0.55 0.198 0.186 0.206 0.219 0.283 0.195 0.183 0.246 0.225 0.275

0.60 0.185 0.176 0.179 0.194 0.308 0.183 0.170 0.271 0.200 0.300

0.70 0.151 0.142 0.146 0.146 0.360 0.146 0.152 0.275 0.150 0.350

Notes: Table shows discrete loss values. The upper part relates to the SP500 index, the

lower part – to the DM/USD exchange rate; the left half – to the in-sample computations,

the right half – to the out-of-sample computations. The minimal criterion value(s) across

each half of each line is in boldface.
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Table 1b. In-sample and out-of-sample, daily data

In-sample loss Out-of-sample loss

α Dynamic models Trivial forecast Dynamic models Trivial forecast

D R S 1 0 D R S 1 0

SP500d

0.30 0.138 0.105 0.144 0.335 0.157 0.144 0.109 0.145 0.319 0.164

0.40 0.150 0.120 0.165 0.287 0.209 0.174 0.114 0.170 0.273 0.218

0.45 0.154 0.121 0.164 0.263 0.235 0.194 0.119 0.175 0.250 0.245

0.50 0.166 0.123 0.164 0.239 0.261 0.173 0.120 0.175 0.228 0.273

0.55 0.166 0.124 0.160 0.215 0.287 0.166 0.129 0.171 0.205 0.300

0.60 0.160 0.121 0.163 0.191 0.313 0.159 0.129 0.167 0.182 0.327

0.70 0.135 0.109 0.129 0.143 0.365 0.126 0.113 0.129 0.137 0.382

DMUSDd

0.30 0.151 0.151 0.151 0.347 0.151 0.162 0.162 0.162 0.322 0.162

0.40 0.202 0.202 0.202 0.298 0.202 0.216 0.216 0.216 0.276 0.216

0.45 0.227 0.227 0.229 0.273 0.227 0.241 0.251 0.237 0.253 0.243

0.50 0.242 0.242 0.236 0.248 0.252 0.235 0.248 0.233 0.230 0.270

0.55 0.223 0.223 0.226 0.223 0.277 0.207 0.200 0.212 0.207 0.297

0.60 0.198 0.198 0.198 0.198 0.302 0.184 0.182 0.184 0.184 0.324

0.70 0.149 0.149 0.149 0.149 0.353 0.138 0.138 0.138 0.138 0.378

Notes: Table shows discrete loss values. The upper part relates to the SP500 index, the

lower part – to the DM/USD exchange rate; the left half – to the in-sample computations,

the right half – to the out-of-sample computations. The minimal criterion value(s) across

each half of each line is in boldface.
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Table 1c. In-sample and out-of-sample, weekly data

In-sample loss Out-of-sample loss

α Dynamic models Trivial forecast Dynamic models Trivial forecast

D R S 1 0 D R S 1 0

SP500w

0.30 0.162 0.148 0.155 0.274 0.182 0.142 0.128 0.145 0.312 0.167

0.40 0.160 0.151 0.153 0.235 0.243 0.153 0.131 0.147 0.267 0.222

0.45 0.158 0.148 0.153 0.216 0.274 0.158 0.138 0.147 0.245 0.250

0.50 0.154 0.142 0.153 0.196 0.304 0.158 0.123 0.148 0.223 0.278

0.55 0.151 0.136 0.150 0.176 0.334 0.149 0.126 0.149 0.200 0.305

0.60 0.139 0.135 0.143 0.157 0.365 0.142 0.129 0.138 0.178 0.333

0.70 0.114 0.110 0.115 0.118 0.426 0.113 0.126 0.124 0.134 0.389

DMUSDw

0.30 0.153 0.156 0.154 0.342 0.154 0.174 0.168 0.168 0.308 0.168

0.40 0.189 0.189 0.201 0.293 0.205 0.211 0.207 0.196 0.264 0.224

0.45 0.199 0.196 0.202 0.268 0.230 0.219 0.218 0.180 0.242 0.252

0.50 0.202 0.207 0.202 0.244 0.256 0.178 0.185 0.178 0.220 0.280

0.55 0.207 0.203 0.202 0.220 0.282 0.188 0.190 0.178 0.198 0.308

0.60 0.187 0.185 0.195 0.195 0.307 0.177 0.184 0.173 0.176 0.336

0.70 0.148 0.145 0.146 0.146 0.358 0.135 0.131 0.132 0.132 0.392

Notes: Table shows discrete loss values. The upper part relates to the SP500 index, the

lower part – to the DM/USD exchange rate; the left half – to the in-sample computations,

the right half – to the out-of-sample computations. The minimal criterion value(s) across

each half of each line is in boldface.
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Table 2. Robustness check, daily SP500 data (SP500d)

Density models Sign model

α Constant s and k Varying s and k Normal Logit Logit

NGARCHSK NGARCHSK GARCH(1,1) BARMA(1,1) BARMA(2,2)

In-sample

0.30 0.138 0.135 0.127 0.144 0.145

0.40 0.150 0.147 0.147 0.165 0.166

0.45 0.154 0.162 0.154 0.164 0.164

0.50 0.166 0.168 0.164 0.164 0.164

0.55 0.166 0.166 0.164 0.160 0.161

0.60 0.160 0.157 0.156 0.163 0.160

0.70 0.135 0.136 0.137 0.129 0.129

Out-of-sample

0.30 0.144 0.143 0.136 0.144 0.150

0.40 0.174 0.184 0.178 0.174 0.162

0.45 0.194 0.190 0.190 0.194 0.172

0.50 0.173 0.170 0.175 0.173 0.173

0.55 0.166 0.168 0.165 0.166 0.171

0.60 0.159 0.159 0.167 0.159 0.158

0.70 0.126 0.134 0.127 0.126 0.129

Notes: Table shows discrete loss values for various experiments with the SP500 index. The

upper part relates to the in-sample computations, the lower part – to the out-of-sample

computations.
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Figure 1: Data on returns and signs



Cumulative discrete loss with alpha = 0.3
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Cumulative discrete loss with alpha = 0.5
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Cumulative discrete loss with alpha = 0.7
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Figure 2: Out-of-sample forecasts for daily S&P500


