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Abstract

This paper studies the asymptotic validity of the Anderson�Rubin (AR) test and

the J test of overidentifying restrictions in linear models with many instruments.

When the number of instruments increases at the same rate as the sample size, we

establish that the conventional AR and J tests are asymptotically incorrect. Some

versions of these tests, that are developed for situations with moderately many

instruments, are also shown to be asymptotically invalid in this framework. We

propose modi�cations of the AR and J tests that deliver asymptotically correct

sizes. Importantly, the corrected tests are robust to the numerosity of the moment

conditions in the sense that they are valid for both few and many instruments. The

simulation results illustrate the excellent properties of the proposed tests.
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1 Introduction

In the pursuit of improved precision of the instrumental variable (IV) estimator, re-

searchers often face situations in which the number of instruments represents a nontrivial

fraction of the sample observations available for estimation. For example, a large number

of instruments can be constructed by interacting di¤erent variables (Angrist and Krueger,

1991) or using lagged dependent variables in panel data models (Arellano and Bond, 1991).

While the conventional asymptotic setup implies that the increased dimensionality of the

instrument matrix should lead to e¢ ciency gains, the �nite-sample behavior of the IV

estimator and various test statistics is markedly deteriorated (Andersen and Sorensen,

1996; Burnside and Eichenbaum, 1996; among others).

Despite the voluminous recent literature on estimation in the presence of many (and

possibly weak) instruments (Bekker, 1994; Chao and Swanson, 2005; Hansen, Hausman

and Newey, 2006; among others), the asymptotic behavior of the tests for parameter and

overidentifying restrictions has not been fully investigated. Andrews and Stock (2007) and

Donald, Imbens and Newey (2003) derive the asymptotic distributions of some parameter

and speci�cation tests in models withmoderately many instruments, i.e. when the number

of instruments grows asymptotically but slowly relative to the sample size. We argue that

in order to obtain a good asymptotic approximation for some of these tests one has to

acknowledge the numerosity of instruments via a many instruments assumption of Bekker

(1994).

It turns out that when the number of moment conditions is proportional to the sample

size, the conventional J test for overidentifying restrictions tends to underreject and the

size of the test is practically zero when the ratio of the number of moment conditions

to sample size is close to one. Interestingly, despite its similar structure, the asymptotic

size of the standard Anderson�Rubin (AR) test exceeds the nominal level when there

are many instruments. Thus, the AR test tends to overreject and the size of the test is

near 50% when the ratio is close to one. Similar conclusions apply to the asymptotically

normal J and AR tests developed in Donald, Imbens and Newey (2003) and Andrews and

Stock (2007). Intuitively, the asymptotic size distortions arise from the fact that there is

a �nite number of observations per moment condition, in contrast to their in�nite number

in the standard and moderately many instruments frameworks.

We propose modi�cations of the conventional J and AR tests that are based on critical

values of a chi-squared distribution and are easy to implement. Importantly, the proposed

�corrected�tests are robust to the numerosity of the moment conditions, in the sense that

they do not require an a priori choice of asymptotic framework because they are valid

under both �xed and many instrument asymptotics.

The rest of the paper is structured as follows. Section 2 introduces the model and the
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tests. The main theoretical results are established and discussed in Section 3. Section 4

presents Monte Carlo simulation results for the size properties of tests under consideration

in �nite samples. Section 5 concludes. All proofs are relegated to the Appendix.

2 Model, Assumptions and Tests

Consider the standard linear IV regression model

yi = x
0
i� + ei; E [xiei] 6= 0;

where fyi; xi; zigni=1 is a random sample and zi denotes a vector of valid instruments.

The model can be written in matrix form as

y = X� + e; (1)

where y = (y1; � � � ; yn)0 is n � 1; X = (x1; � � � ; xn)0 is n � k; Z = (z1; � � � ; zn)0 is n � `;
e = (e1; � � � ; en)0 is n� 1: In this paper, we consider the case when the dimension of � is
small relative to n; but ` is large and comparable to n; although constrained to be smaller

than n:

The model and the data are assumed to satisfy the following conditions.

Assumption 1 The errors ei satisfy E [ejZ] = 0; E [ee0jZ] = �2In and E
�
jeij4

�
<1.

Assumption 2 As n!1, `=n = �; where 0 < � < 1.

Assumption 1 imposes homoskedasticity and a �nite fourth moment of the errors.

Assumption 2 adopts the many instruments asymptotic framework of Bekker (1994) when

the number of instruments is a nontrivial fraction of the sample size (see also Newey,

2004). If the number of instruments is �xed (conventional framework) or grows more

slowly than the sample size (moderately many instruments framework), the noise that

arises from the large dimensionality of Z vanishes in the limit which validates the use

of conventional asymptotics for inference (Koenker and Machado, 1999). The advantage

of the parameterization in Assumption 2 is that it explicitly recognizes the presence of

this source of uncertainty and eventually leads to a better approximation to the exact

distribution of the statistic of interest.

For convenience, the vector of instruments zi will be treated as nonrandom.

Assumption 3 Under the asymptotics of Assumption 2, max1�i�n jz0i(Z 0Z)�1zi � �j !
0:
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Assumption 3 requires that all diagonal elements of the projection matrix P =

Z(Z 0Z)�1Z 0 converge to � (recall that under the standard or moderately many instru-

ments asymptotics they converge to zero). When the instruments are generated in the

random sampling framework or under stationarity, the expected value of z0i(Z
0Z)�1zi is

equal to �. Indeed,

E
�
z0i(Z

0Z)�1zi
�
=
1

n
E

"
tr

 
(Z 0Z)�1

X
i

ziz
0
i

!#
=
1

n
E [tr (I`)] = �;

where the �rst equality follows by symmetry over observations and properties of trace. In

addition, Assumption 3 requires that the variance of each z0i(Z
0Z)�1zi is zero, which is to

be expected because the dimensionality of zi linearly grows. The validity of Assumption

3 follows from the literature on large dimensional covariance matrices (Silverstein, 1995)

in case the elements of Z are IID both across rows and columns, possibly after a rotating

transformation, and have �nite fourth moments (which, in particular, includes the case of

normality of zi). The IID requirement for the elements in zi can be relaxed at the expense

of existence of higher order moments (Ledoit andWolf, 2004). Moreover, a limited amount

of endogeneity is allowed; for example, lagged elements of xi or yi may be present among

elements of zi as long as they occupy only an asymptotically �nite number of columns of

Z.

Let �̂ be an estimator of �: Later we will impose restrictions on the asymptotic

behavior of �̂: Also, let

ê = y �X�̂ (2)

denote the vector of residuals and

�̂2 =
ê0ê

n� k (3)

be the residual variance. Under Assumption 1, the standard J test for overidentifying

restrictions is given by

J =
ê0P ê

�̂2
; (4)

and, under the null of correct moment restrictions H0 : E [eizi] = 0, is distributed as

�2(` � k) in the conventional framework of �xed ` asymptotics. Alternatively, in the
framework of moderately many instruments (more precisely, when `2=n! 0 as `; n!1),
Donald, Imbens, and Newey (2003) base their (right-sided) test on

JDIN =
J � `p
2`

d! N (0; 1) :

To construct the J statistic, a consistent estimator �̂ is needed. It turns out that the

choice of �̂ is not important for the asymptotic behavior of J as long as the following

conditions hold. Let � and V denote the matrices of observations and disturbances of

the reduced form X = �+ V with E [V ] = 0:
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Assumption 4 (a) The estimator �̂ satis�es
p
n(�̂��) = Op(1), (b) �0�=n! Q, where

Q is a positive de�nite matrix, (c) E
�
jvijj4

�
<1.

In our numerical work, we use the LIML estimator

�̂LIML = (X
0(In � kM)X)�1X 0(In � kM)y;

where k is the smallest characteristic root of (Y
0
Y )(Y

0
MY )�1, Y = (y;X) andM = In�P:

Note that part (a) of Assumption 4 permits the use of asymptotically ine¢ cient and even

non-normal estimators, as long as their rate of convergence is not slower than
p
n: Also,

while part (b) of Assumption 4 rules out lack of identi�cation (� = 0), it allows for

possibly weak instruments as the addition of new instruments does not provide additional

information (Newey, 2004).

A popular test for H0 : � = �0 and the validity of the overidentifying restrictions is

based on the Anderson�Rubin (AR) statistic

AR = (T � `) e
0
0Pe0
e00Me0

; (5)

where e0 = y�X�0 is a vector of restricted errors. The Anderson�Rubin statistic possesses
some appealing robustness properties, e.g. robustness to weak instruments, and is �2(`)

distributed under �xed ` asymptotics. Alternatively, in the framework of moderately

many instruments (more precisely, when `3=n ! 0 as `; n ! 1), Andrews and Stock
(2007) show that

ARAS =
p
`

�
AR

`
� 1
�

d! N (0; 2) :

3 Asymptotic Results

We �rst investigate the behavior of the conventional J and AR tests when one neglects

the presence of many instruments, and carries out testing in the standard way, i.e. rejects

when J > q
�2(`�k)
� and AR > q

�2(`)
� . The following theorem describes the size of the

conventional J and AR tests, along with the JDIN and ARAS tests, when the number of

instruments grows at the same rate as the sample size.

Let � (x) be the standard normal cumulative distribution function, ��1 (x) be its

quantile function, and � < 0:5 be the target test size.

Theorem 1

(a) Suppose assumptions 1�4 hold. Then, the asymptotic size of the conventional and

Donald, Imbens, and Newey (2003) J tests equals

�

�
��1 (�)p
1� �

�
:
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(b) Suppose assumptions 1�3 hold. Then, the asymptotic size of the conventional and

Andrews and Stock (2007) AR tests equals

�
�p
1� ���1 (�)

�
:

Theorem 1 establishes that, under Bekker�s asymptotics, the asymptotic size of the

conventional J test is smaller than � and the asymptotic size of the conventional AR test

exceeds � for all � > 0: Consequently, the J test will underreject and the AR test will

overreject in large samples. The same applies to the JDIN and ARAS tests. It turns out

that the moderately many instruments framework cannot fully acknowledge the presence

of many instruments, while Bekker�s asymptotics can.

To visualize the e¤ect of � on the asymptotic behavior of the tests, Figure 1 plots

the asymptotic p-value function of the J test at 1%, 5% and 10% nominal level which is

identical to the asymptotic size of the AR test. Figure 1 shows that the over- (under-)

rejection rates of the AR (J) test are not very large for � � 0:5 but increase substantially
as � gets closer to one.

Note that, aside from �; only � enters the asymptotic size formulas. Interestingly,

some characteristics of the DGP that may potentially a¤ect asymptotic sizes of the con-

ventional tests are asymptotically negligible. In particular, the estimation uncertainty

contained in
p
n(�̂ � �) does participate in various parts of the stochastic expansion of

the J statistic, but eventually cancels out, so the estimation uncertainty does not a¤ect

the asymptotic size. Another interesting feature of the asymptotic analysis is that the

fourth moments of errors do not enter the asymptotic sizes, even though the formulas for

the J and AR statistics do contain second powers of regression errors.

Given the results in Theorem 1, one approach to achieving asymptotically correct size

in the presence of many instruments is to divide the JDIN statistic and multiply the ARAS
statistic by

p
1� � (see Lemma 1 in the Appendix). However, we prefer, for a reason

to be explained shortly, to correct the critical values of the conventional J and AR tests

in such a way that their asymptotic size matches the target size. The corrected J test

rejects when

J > q
�2(`�k)
�(
p
1����1(�))

: (6)

Similarly, the corrected AR test rejects when

AR > q
�2(`)

�(��1(�)=
p
1��)

: (7)

Below we state the asymptotic validity of the corrected J and AR tests under Bekker�s

asymptotics.
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Theorem 2

(a) Suppose assumptions 1�4 hold. Then, the asymptotic size of the corrected J test

equals �:

(b) Suppose assumptions 1�3 hold. Then, the asymptotic size of the corrected AR test

equals �:

One appealing property of the corrected J and AR tests is that they are robust to

numerosity of instruments. This follows from noticing that when ` is �xed, �! 0; and the

corrected J and AR tests reduce to their conventional forms. By contrast, the corrected

versions of the JDIN and ARAS tests based on asymptotic normality are not robust to

numerosity of instruments and are invalid when ` is �xed.

Another important advantage of the corrected tests is their straightforward computa-

tion. The corrected tests are based on the J and AR statistics that are routinely produced

by the standard statistical software packages and the �2 critical values. The only new

input for the J test is �
�p
1� ���1 (�)

�
instead of � which can be computed easily (for

example, cdfn(sqrt(1-lambda)*cdfni(alpha)) in GAUSS and norm(sqrt(1-lambda)*

invnorm(alpha)) in STATA for prespeci�ed values of lambda and alpha). Similar com-

putation is required for �
�
��1 (�) =

p
1� �

�
to construct the corrected AR test.

4 Simulation Study

To evaluate the �nite-sample performance of the proposed tests, we conduct a small

simulation study. The data for the Monte Carlo experiment are generated from the

model

yi = �0 + �1xi + ei; (8)

xi = 
0 +

`�1X
j=1


jzij + vi;

where
�
ei
vi

�
= chol(�)�i;

�
�i
zi

�
� iidN (0; I`+1) ; �=

 
0:25 0:20

0:20 0:25

!
; �0 = 0; �1 = 1;


0 = 0 and 
j = 1=
p
` for j = 1; :::; ` � 1. The local-to-zero 
j�s� allow for a drifting

strength of each individual instrument but keep the information contained in all instru-

ments �xed (see Assumption 4). The J statistic is used to test the validity of the ` � 2
overidentifying restrictions and the AR statistic is used to test the joint hypothesis of

(�0; �1) = (0; 1) and validity of overidentifying restrictions.

Tables 1 and 2 present the empirical size at 5% and 10% nominal level of the con-

ventional and corrected versions of the AR and J tests based on 5,000 Monte Carlo

6



replications. We also include the tests proposed by Andrews and Stock (2007) and Don-

ald, Imbens and Newey (2003) which are obtained under moderately many instruments.

The purpose is to compare the quality of the three approximations corresponding to three

di¤erent asymptotic frameworks (�xed, moderately large and large `).

In order to assess the robustness of the tests to di¤erent degrees of overidenti�cation,

we consider values of � = `=n equal to 0.04, 0.2, 0.5 and 0.8. While � = 0:8 may seem

excessive, it bears some relevance to empirical applications since situations with similar

ratios of number of moment conditions to sample size often arise in evaluating linear

asset pricing models of large portfolios and estimating structural macroeconomic models

by matching impulse response functions. The values of � are used in combination with

sample sizes of 100, 200 and 500.

Table 1 reports the results for the J test. For � = 0:04 and 0:2, the size distortions

of the standard J test are relatively small but the empirical rejection rate of this test

quickly approaches zero as � increases. The JDIN test performs only slightly better

than the conventional test for � � 0:2 but it tends to overreject for � = 0:04 since the

asymptotic normality appears to require much larger values of `. Our corrected J test

has coverage very close to the nominal level for all values of � and sample sizes.

The results for the AR tests are presented in Table 2. As part (b) of Theorem 1

suggests, the standard AR and ARAS tests overreject and the rejection rates increase to

25�30% at 5% nominal level for � = 0:8: Our corrected AR test performs much better

although it slightly overrejects for large values of �. As the sample size increases, the

rejection rates approach the nominal level but this appears to be slower than in the case

of testing for overidentifying restrictions.

5 Conclusions

This paper shows the asymptotic invalidity of the standard AR and J tests of parameter

and overidentifying restrictions in the presence of many instruments. If the number of

moment conditions is a nontrivial fraction of the sample size, the J test tends to under-

reject whereas the AR test tends to overreject even in large samples. The versions of

the tests by Donald, Imbens and Newey (2003) and Andrews and Stock (2007), obtained

under the assumption of moderately many instruments, exhibit an asymptotically equiv-

alent behavior. By allowing the number of instruments to grow at the same rate as the

sample size, we propose �corrected�J and AR tests that are chi-square distributed and

are asymptotically valid for any number of moment conditions. Due to their simplicity

and robustness, we recommend the use of these modi�ed statistics in applied work. A

future research agenda includes an extension to non-IID environments, in particular the

cases of heteroskedasticity and serial correlation.
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A Appendix: Proofs

Lemma 1 Under the conditions of Theorem 1,

p
`

�
J

`
� 1
�

d! N (0; 2 (1� �)) ; JDIN
d! N (0; 1� �)

and p
`

�
AR

`
� 1
�

d! N (0; 2= (1� �)) ; ARAS
d! N (0; 2= (1� �)) :

Proof. First, consider

J0
`
� e0Pe

`�2
=
e0Z (Z 0Z)�1 Z 0e

`�2
:

Now,

E

�
J0
`
� 1
�
=

1

`�2
E
h
tr
�
e0Z (Z 0Z)

�1
Z 0e
�i
� 1

=
1

`�2
tr
�
(Z 0Z)

�1
Z 0E [ee0]Z

�
� 1 = 1

`
tr (I`)� 1 = 0;

and

J0
`
� 1 =

1

`

nX
i=1

nX
j=1

z0i (Z
0Z)

�1
zj
eiej
�2

� 1

=
1

`

nX
i=1

z0i (Z
0Z)

�1
zi

�
e2i
�2
� 1
�
+
1

`

X
i6=j

z0i (Z
0Z)

�1
zj
eiej
�2

= A1 + A2:

By the iid and moment condition assumptions, A1 and A2 are uncorrelated. Let � =

E [e4i ] : The variances of A1 and A2 are

var (A1) =
n

`2

�
z0i (Z

0Z)
�1
zi

�2
(�� 1) = O

�
1

`

�
;

var (A2) =
1

`2
E

"X
i6=j

X
k 6=l

z0i (Z
0Z)

�1
zjz

0
k (Z

0Z)
�1
zl
eiej
�2
ekel
�2

#

=
2

`2

X
i6=j

�
z0i (Z

0Z)
�1
zj

�2
=
2

`2

nX
i=1

z0i (Z
0Z)

�1

 
nX

j=1;j 6=i

zjz
0
j

!
(Z 0Z)

�1
zi

=
2

`2

nX
i=1

�
z0i (Z

0Z)
�1
zi �

�
z0i (Z

0Z)
�1
zi

�2�
� 2

`2
n = O

�
1

`

�
:

Thus, the variance of A1 + A2 is of order O (1=`) and hence

J0
`
� 1 = Op

�
1p
`

�
: (9)
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Second,

ê0P ê

`�2
=

�
e�X(�̂ � �)

�0
Z (Z 0Z)�1 Z 0

�
e�X(�̂ � �)

�
`�2

=
J0
`
� 2(�̂ � �)0X

0Pe

`�2
+ o

�
1p
`

�
: (10)

Analogously,

�̂2

�2
� 1 =

n

n� k

�
e�X(�̂ � �)

�0 �
e�X(�̂ � �)

�
n�2

� 1

=

�
e0e

n�2
� 1
�
� 2(�̂ � �)0�X

0e

`�2
+ o

�
1p
`

�
:

Third,

J

`
� 1 =

�
ê0P ê

`�2
� 1
�
�2

�̂2
+

�
�2

�̂2
� 1
�

=

�
J0
`
� 1
�
�
�
e0e

n�2
� 1
�
� 2

��2
(�̂ � �)0X

0 (P � �I) e
n

+ op

�
1p
`

�
; (11)

by (9) and (10) and because �̂2 = �2 +O
�
1=
p
`
�
. Consider the third term

X 0 (P � �I) e
n

=
�0 (P � �I) e

n
+
V 0 (P � �I) e

n
: (12)

The �rst term has mean zero and variance

�0 (P � �I) (P � �I)�
n2

= (1� 2�) �
0P�

n2
+ �2

�0�

n2
! 0

because of Assumption 4 and the Cauchy�Schwarz inequality implying�0Z (Z 0Z)�1 Z 0� �
�0�: Therefore, the �rst term in (12) is op (1) : Along the lines of Newey (2004, proof of

Lemma 1) one can see that the second term in (12) has expected value

E

�
V 0 (P � �I) e

n

�
= E

�
V 0Pe

n

�
� �E

�
V 0e

n

�
=
`

n
E [viei]� �E [viei] = 0

and variance that is O (1=n). Therefore, the whole term (12) is op (1). Thus, up to a

op (1) remainder,

p
`

�
J

`
� 1
�

A
=

1p
`

nX
i=1

�
z0i (Z

0Z)
�1
zi � �

�� e2i
�2
� 1
�
+
1p
`

X
i6=j

z0i (Z
0Z)

�1
zj
eiej
�2

= B1+B2:

Exactly as before, we compute the variance of the zero-mean term B1 which yields

var (B1) =
n

`

�
z0i (Z

0Z)
�1
zi � �

�2
(�� 1)! 0:
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Therefore, B1 = op(1): In order to derive the asymptotics for B2; we check the condi-

tions for the central limit theorem by Kelejian and Prucha (2001, Theorem 1) for linear

quadratic forms where bi;n � 0. Assumption 1 of this CLT is satis�ed for "i;n � ei=�.

Next, we verify Assumption 2 of this CLT for

aij;n �
1p
`
z0i (Z

0Z)
�1
zj:

First, aij;n is clearly symmetric. Second,

nX
i=1

jaij;nj �
1p
`

nX
i=1

���z0i (Z 0Z)�1 zj��� �rn`
 

nX
i=1

�
z0i (Z

0Z)
�1
zj

�2!1=2

=

r
1

�

�
z0j (Z

0Z)
�1
zj

�1=2
�
r
1

�
:

Consequently, sup1�j�n;n�1
Pn

i=1 jaij;nj <1 in Assumption 2 of the CLT of Kelejian and

Prucha (2001, Theorem 1) is satis�ed. Finally, in their assumption 3(a) sup1�i�n;n�1E
�
j"i;nj2+�

�
<

1 holds by Assumption 1. Hence, the variance of B2 is

var (B2) =
2

`

nX
i=1

�
z0i (Z

0Z)
�1
zi �

�
z0i (Z

0Z)
�1
zi

�2�
=
2

`
n
�
�� �2

�
+ o (1)! 2 (1� �)

and the limiting distribution of
p
` (J=`� 1) is

p
`

�
J

`
� 1
�

d! N (0; 2 (1� �)) :

For the AR test, note that

AR

`
= (1� �)

�
e0e

n�2
� �J0

`

��1
J0
`
;

so

(1� �)
�
AR

`
� 1
�
=

�
J0
`
� 1
�
�
�
e0e

n�2
� 1
�
+ op

�
1p
`

�
;

and, proceeding as before with (11), we get

(1� �)
p
`

�
AR

`
� 1
�

d! N (0; 2 (1� �)) :

Proof of Theorem 1. From Peiser (1943) it follows that

q�
2(`�k)
� = `� k + ��1 (1� �)

p
2 (`� k) +O (1) (13)

or
q
�2(`�k)
�

`
� 1 = ��1 (1� �)

r
2

`
+O

�
1

`

�
:
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Then, the size of the conventional J test is

Pr
n
J > q�

2(`�k)
�

o
= Pr

(s
`

2 (1� �)

�
J

`
� 1
�
>

s
`

2 (1� �)

 
q
�2(`�k)
�

`
� 1
!)

= Pr

�
N (0; 1) + od(1) >

��1 (1� �)p
1� �

+O

�
1p
`

��
= 1� �

�
��1 (1� �)p

1� �

�
+ o(1)! �

�
��1 (�)p
1� �

�
:

Using Lemma 1, the size of the Donald, Imbens, and Newey (2003) J test is

Pr
n
JDIN > q

N(0;1)
1��

o
= Pr

�
N (0; 1� �) + od(1) > ��1 (1� �)

	
! �

�
��1 (�)p
1� �

�
:

Similarly, the size of the conventional AR test is

Pr
n
AR > q�

2(`)
�

o
= Pr

(r
` (1� �)

2

�
AR

`
� 1
�
>

r
` (1� �)

2

 
q
�2(`�k)
�

`
� 1
!)

= Pr

�
N (0; 1) + od(1) >

p
1� ���1 (1� �) +O

�
1p
`

��
= 1� �

�p
1� ���1 (1� �)

�
+ o(1)! �

�p
1� ���1 (�)

�
:

Using Lemma 1, the size of the Andrews and Stock (2007) AR test is

Pr
n
ARAS > q

N(0;2)
1��

o
= Pr

�
N

�
0;

2

1� �

�
+ od(1) >

p
2��1 (1� �)

�
! �

�p
1� ���1 (�)

�
:

Proof of Theorem 2. Using expansion (13), the actual size of the corrected J test
(6) is

Pr

�
J > q

�2(`�k)
�(
p
1����1(�))

�
= Pr

(s
`

2 (1� �)

�
J

`
� 1
�
>
��1

�
1� �

�p
1� ���1 (�)

��
p
1� �

+O

�
1p
`

�)
= Pr

�
N (0; 1) + od (1) > ���1 (�)

	
= 1� �

�
���1 (�)

�
+ o(1)! �:

Similarly, the actual size of the corrected AR test (7) is

Pr

�
AR > q

�2(`�k)
�(��1(�)=

p
1��)

�
= Pr

(r
` (1� �)

2

�
AR

`
� 1
�
>
p
1� ���1

�
1� �

�
��1 (�) =

p
1� �

��
+O

�
1p
`

�)
= Pr

�
N (0; 1) + od (1) > ���1 (�)

	
! �:
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Figure 1: Asymptotic size (p-value) of the conventional AR (J) test as a function of

� 2 [0; 1).
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Table 1. Empirical rejection rates at 5% and 10% nominal level of the J tests.

5% 10%

� = :04 � = :2 � = :5 � = :8 � = :04 � = :2 � = :5 � = :8

n = 100

J 5.06% 2.66% 0.52% 0.00% 10.38% 7.40% 3.08% 0.02%

JDIN 7.12% 4.08% 0.92% 0.00% 10.66% 8.08% 3.52% 0.02%

Jcorrected 5.50% 4.54% 4.76% 4.52% 10.88% 9.96% 10.30% 10.54%

n = 200

J 4.92% 3.00% 0.84% 0.00% 10.14% 7.40% 3.02% 0.02%

JDIN 7.00% 3.84% 1.02% 0.00% 10.84% 7.92% 3.22% 0.02%

Jcorrected 5.24% 4.94% 4.44% 4.96% 10.56% 9.98% 10.00% 10.54%

n = 500

J 5.44% 3.28% 0.62% 0.00% 10.50% 8.02% 2.82% 0.01%

JDIN 6.90% 4.04% 0.82% 0.00% 11.14% 8.42% 2.92% 0.01%

Jcorrected 5.94% 5.20% 4.20% 4.62% 10.98% 10.44% 9.54% 10.44%

Notes: J , JDIN and Jcorrected denote the conventional J test, the J statistic of Donald,

Imbens and Newey (2003) and the test proposed in this paper, respectively.
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Table 2. Empirical rejection rates at 5% and 10% nominal level of the AR tests.

5% 10%

� = :04 � = :2 � = :5 � = :8 � = :04 � = :2 � = :5 � = :8

n = 100

AR 6.28% 7.40% 14.52% 29.04% 11.58% 12.96% 20.40% 33.97%

ARAS 8.58% 8.80% 15.68% 29.97% 12.22% 13.94% 20.86% 34.36%

ARcorrected 5.94% 5.22% 6.96% 9.36% 11.08% 10.10% 12.28% 14.86%

n = 200

AR 5.26% 7.90% 13.34% 27.03% 10.80% 13.56% 19.46% 31.95%

ARAS 7.32% 9.12% 14.46% 27.79% 11.52% 14.06% 19.76% 32.29%

ARcorrected 4.96% 5.78% 5.98% 8.40% 10.36% 10.78% 11.34% 13.52%

n = 500

AR 6.12% 8.00% 13.34% 25.15% 11.46% 13.94% 19.26% 29.67%

ARAS 7.36% 8.94% 13.92% 25.67% 12.16% 14.44% 19.68% 29.90%

ARcorrected 5.78% 5.86% 4.98% 6.80% 10.76% 11.10% 10.52% 12.34%

Notes: AR, ARAS and ARcorrected denote the conventional Anderson�Rubin test, the AR

statistic of Andrews and Stock (2007) and the test proposed in this paper, respectively.
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