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Abstract

Sequential procedures of testing for structural stability do not provide enough guidance on the shape

of boundaries that are used to decide on acceptance or rejection, requiring only that the overall

size of the test is asymptotically controlled. We introduce and motivate a reasonable criterion for

a shape of boundaries which requires that the test size be uniformly distributed over the testing

period. Under this criterion, we numerically construct boundaries for most popular sequential tests

that are characterized by a test statistic behaving asymptotically either as a Wiener process or

Brownian bridge. We handle this problem both in a context of retrospecting a historical sample

and in a context of monitoring newly arriving data. We tabulate the boundaries by �tting them

to certain �exible but parsimonious functional forms. Interesting patterns emerge in an illustrative

application of sequential tests to the Phillips curve model.
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1 Introduction

From mid-seventies, in applied econometric and statistical work one could encounter applica-

tions of sequential testing tools. Sequential testing methods are usually used in the context

of testing for structural stability of coe¢ cients in a regression, although not necessarily. The

CUSUM and CUSUM of squares tests introduced in Brown, Durbin, and Evans (1975) be-

long to this class and can be found in many textbooks, including those of an introductory

level.

Consider a linear regression framework of testing for structural stability. Let us be

interested in the stability of the regression relationship

y� = x0��� + u� (1)

over time indexed by � . Formally, the stability of the regression relationship (1) is formulated

as the null hypothesis H0 : �� = � for all � , where � is unknown. From this point, one may

take a number of approaches to test this null. One approach starts from formulating a

speci�c alternative hypothesis that assumes a particular type of non-stability of coe¢ cients,

and proceeds by constructing a test designed speci�cally for this alternative. Such test

is expected to also have power against other alternatives than the one it is designed for.

Typically, this speci�c alternative assumes one or more abrupt changes in coe¢ cients at

speci�c dates, and then a standard Wald test may be used. This leads to a usual decision

rule when a scalar test statistic is compared to a critical value. A radically di¤erent approach,

called sequential or recursive testing, is, while avoiding to specify any particular alternative,

to construct a sequential statistic, which is a sequence of the same statistic computed over

(usually) an expanding time window. The decision rule involves a comparison of a trajectory

or path (i.e. a sequence of values) of this sequential statistic to a boundary (i.e. a sequence

of separate critical values for each time period). The typical outcome of the sequential test

is �do not reject�if the entire trajectory stays below the boundary, and �reject�if it crosses

the boundary at least once. An example is the celebrated CUSUM test of Brown, Durbin,

and Evans (1975); other examples will be given shortly. Some of existing tests are in fact a

mixture of the two extreme approaches. For example, the test for a single structural break

of Andrews (1994) and its extensions to multiple breaks of Bai and Perron (1998) have a
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structure of a classical test, but still can be interpreted as sequential tests with a particular

sequential statistic and a particular boundary (see section 2.3).

It is worthwhile to mention the relationship of sequential testing to multiple testing,

i.e. testing several hypotheses (see, e.g., Romano and Wolf, 2007). Even though there

are certain similarities between the two setups, they have very little in common. Under

sequential testing the null is the same each period, and the number of periods is large and

asymptotically in�nite. Under multiple testing the nulls are typically di¤erent and even

may be quite heterogenous, and the number of these nulls is limited and asymptotically

�xed. Among common properties is ambiguity of a size control criterion. Another shared

feature is a need for adjustment, typically upward, of critical values for each one-shot test

(see a forceful argument for such adjustment for sequential tests in Inoue and Rossi, 2005).

Yet another common feature is a need to take into account the dependence among one-shot

test statistics. This dependence is a nuisance feature under multiple testing and may often

lead to imprecise size control (e.g., the Bonferroni method), while for sequential testing the

dependence is an important building block which, in particular, motivates asymptotically

continuous boundaries.

More formally, the sequential statistic Q� , also called a detector, of a sequential test

is computed on various subintervals indexed by � , typically, although not necessarily, on

[1 + k; � ] ; where k is dimensionality of �: Denote the corresponding boundary by b� . The

decision rule is: reject H0 if the path of Q� hits the boundary b� at least once, otherwise

do not reject. The requirement for b� to be a valid boundary is that the test size � be

asymptotically controlled. In case H0 is rejected, the researcher gets as a by-product an

idea about timing of the structural instability; note however that such speculations do not

formally belong to an outcome of the testing procedure.

Before formulating our objectives and contribution, let us distinguish two environments

where sequential testing is used. The �rst one is classical, which we call retrospection,

when one tests for structural stability in a given historical sample, i.e. for � = k + 1; :::; T:

Most of sequential testing tools are developed for this retrospective context, in particular,

Ploberger, Krämer and Kontrus (1989), Ploberger and Krämer (1992), Inclán and Tiao

(1994), and others. However, starting from Chu, Stinchcombe, andWhite (1996), researchers
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got interested in implementing sequential testing in the monitoring context, using data

arriving in real time, i.e. for � = T + 1; T + 2; :::; conditional on that H0 holds for the

historical interval. The monitoring literature also includes Leisch, Hornik, and Kuan (2000),

Zeileis, Leisch, Kleiber and Hornik (2005), Andreou and Ghysels (2006), Inoue and Rossi

(2005) and Anatolyev (2008). In what we do in this paper we handle both retrospection and

monitoring situations, placing some more weight on the latter because it is more natural for

sequential testing and because it poses more interesting challenges.

The critical issue in sequential testing is a choice of which boundary to use. Consider for

simplicity one-sided testing when rejection occurs for large positive values of a statistic. The

only formal requirement imposed on the boundary is that the test size be controlled, which

leaves many degrees of freedom as far as the boundary shape is concerned. While in their

original paper Brown, Durbin, and Evans (1975) derived linear boundaries for retrospective

CUSUM tests, the choice of a linear shape is arbitrary. For example, Inclán and Tiao (1994)

and Anatolyev (2008) used horizontal retrospective boundaries. In the monitoring context,

Chu, Stinchcombe, and White (1996) derived so called parabolic monitoring boundaries

for some tests, where �parabolic� is an informal term indicating that the shape of such

boundaries is close to a root of the time index. Later, Zeileis, Leisch, Kleiber, and Hornik

(2005) criticized the parabolic shape and suggested linear monitoring boundaries instead.

Indeed, one may suggest many legitimate boundaries with di¤erent shapes, because �xing

the asymptotic test size, which is just one number, is insu¢ cient to pin down the shape

of a boundary. There is no consensus in the literature on which shape is more reasonable,

although, clearly, the shape of boundaries may strongly a¤ect outcomes of the test. The

arguments that are typically given in favor of one shape or in criticism of another are twofold.

The �rst argument is that some boundaries, such as horizontal retrospective and parabolic

monitoring ones, can be derived analytically as functions of size in a closed form. The second

argument is that some boundaries, such as linear monitoring ones, tend to distribute the

test size more evenly over time than others do, even though one has to employ simulations

to deduce parameters of their shape.

In this paper, we suggest a reasonable criterion that allows one to �x the shape of a

boundary. This criterion requires that the prescribed asymptotic test size be uniformly
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distributed over the retrospective or monitoring interval. In other words, the likelihood of

rejecting true stability in any speci�c time period, given that it is not rejected yet, does not

depend on the time period. Such requirement leads to a fair and dynamically consistent

testing procedure, as the test size is equally allocated to equal-sized time subintervals. For

example, under structural stability the type I error of rejecting stability during the �rst half of

the historical sample should be equal to that during the second half. As we already know (see

the previous paragraph), the monitoring literature tends to favor more even distribution of

size over time (in particular, linear boundaries are motivated as advantageous to parabolic

ones). Arguably, in various circumstances other distributions of size may well also have

perfect sense, in particular those with time discounting, possibly motivated by a desire to

reject the truth earlier if reject at all. In such cases, corresponding boundaries can be

constructed using the guidelines and algorithms we provide in this paper.

It is true that a chosen shape of boundaries, motivated by a particular distribution of

size, will a¤ect the power of a test. This power will of course also depend on what type

of non-stability is in e¤ect. However, recall that under sequential testing no alternative is

preferred to others; if there is preference ordering over alternatives, this should have been

taken into account while constructing the test statistic in the �rst place. A researcher�s being

completely agnostic to an alternative is consistent with the uniform distribution of size.

The next thing we do in this paper is a derivation of boundaries under the criterion

of uniform size distribution, using the integral equations for determination of �rst passage

probabilities (Durbin, 1971). While this famous result has been heavily used in the statistical

literature to derive the distribution of size given a boundary, we switch the input and output

and instead derive the boundary given a distribution of size. This task turns out to be much

more challenging due to the nature of the integral equation and to be further complicated

by the presence of singularities. To attain the goal, we use numerical methods of integration

and solving equations that also take account of the singularities. This technology has been

previously applied by the authors in a related problem of �nding critical values for the

Andrews (1993) test (Anatolyev and Kosenok, 2011).

We construct the boundaries for two large classes of tests most often encountered in

the sequential testing literature. These classes are characterized by the processes that are
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asymptotic analogs of a detector: Wiener process and Brownian bridge. We consider each of

the two cases separately, managing both one- and two-sided testing. As mentioned before,

in doing this we handle both retrospection and monitoring situations. When asymptotically

the detector is a Wiener process, it turns out that one �baseline� retrospective boundary

derived for a particular value of size can be exploited in other situations (i.e. for other

values of size and any �nite monitoring horizons) by using a scaling transformation. That

is, di¤erent boundaries are �homothetic� to each other, possibly after a rightward shift.

The case where asymptotically the detector is a Brownian bridge is more complex. Here,

in contrast, boundaries are speci�c for the value of size in the retrospection context, and

additionally for the monitoring horizon in the monitoring context.

Because the boundaries are computed numerically, we provide a user with a tabulated

version of the boundaries. We handle this by �tting the computed boundaries to a certain

parametric functional form, very �exible though parsimonious. The degree of �t is very high:

the regression (in logs) R2 is about 99.99%, and the computed and parameterized boundaries

are practically indistinguishable, both visually and in terms of maximal discrepancy. We

demonstrate via simulations that the parameterized boundaries do possess the property of

distributing the size uniformly.

Finally, we apply sequential testing tools to the Phillips curve model using US monthly

data. We perform a few testing experiments, both retrospective and monitoring, using

di¤erent boundaries and di¤erent testing intervals. The application illustrates interesting

patterns that one can encounter in practice.

The rest of the paper is organized as follows. Section 2 gives some technical details

on sequential testing. Section 3 describes the method of obtaining the boundaries with a

particular distribution of test size. Sections 4 and 5 report some details and give results

of constructing the �uniform�boundaries for the two classes of sequential tests. In Section

6 we report asymptotic simulation results on the distribution of size using our boundaries.

In Section 7 we illustrate the properties of our and alternative procedures in an empirical

application. Finally, Section 8 concludes. Some proofs are contained in the Appendix.
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2 Sequential testing: details

2.1 Setup and asymptotics

To recapitulate, a sequential test has the following elements: a detector Q� ; a boundary b�

with the property

Pr fQ� < b� 8 � 2 T jH0g = 1� �

in case testing is one-sided or

Pr fjQ� j < b� 8 � 2 T jH0g = 1� �

in case testing is two-sided,1 where

T =

8<: fk + 1; k + 2; :::; T � 1; Tg in the retrospective context,

fT + 1; T + 2; :::; KT � 1; KTg in the monitoring context,

and K is a �nite monitoring horizon (see below on why K has to be �nite), and, �nally, a

decision rule prescribing to reject structural stability if the detector hits the boundary at

least once.

Usually, the test size can be controlled only asymptotically, as T !1: Asymptotically

we have:

Q�
d! Q (r)

on R and

b� ! b (r) ;

where Q (r) is the limiting continuous time process for the detector,

R =

8<: [0; 1] in the retrospective context,

[1; K] in the monitoring context.

and b (r) is a deterministic asymptotic boundary. Asymptotic control of the size means that

Pr fQ (r) < b (r) 8 r 2 RjH0g = 1� �

1It is conventional that two-sided boundaries are symmetric in the sense that the lower boundary is �b�
when the upper boundary is b� for detector Q� that is asymptotically a gaussian (and therefore symmetric)

process.
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when testing is one-sided or

Pr f�b (r) < Q (r) < b (r) 8 r 2 RjH0g = 1� �

when testing is two-sided.

While b (r) is arbitrary subject to the size control requirement, the asymptotic process

Q (r) depends on the detector used in testing (see the next subsection for examples of de-

tectors). Typically, Q (r) is one of the following two processes:

� Wiener process W;

Q (r) =

8<: W (r) ; r 2 [0; 1] for retrospection,

W (r � 1) ; r 2 [1; K] for monitoring.

� Brownian bridge B;

Q (r) =

8<: B (r) ; r 2 [0; 1] for retrospection,

B (r) ; r 2 [1; K] for monitoring.

Remark 1. Note that for the process B which is tied down at r = 1 the argument of

asymptotic process is r irrespective of whether it is retrospection or monitoring, while for

the untied process W the argument is r � 1 in case of monitoring. We focus on cases the

asymptotic process starts o¤from the non-random value (typically, zero). We conjecture that

it is possible to construct �uniform�boundaries in cases when the starting point is random,

but such boundaries will have a strange shape starting o¤ from in�nity at the beginning of

the monitoring period. The reason is that for any boundary starting o¤ from a �nite value

there is a positive probability mass of the process concentrated above this boundary, which

is incompatible with uniform size distribution over a continuum. Most importantly though,

such setup would be inconsistent with the monitoring paradigm where it is assumed that the

historical period is stable. Our choice thus precludes some versions of monitoring detectors

that have been encountered in the literature (see footnote 2).

2.2 Detectors

Let us consider examples of detectors for sequential tests that can be encountered in the

literature. We list their simple versions; many exist in several variations which do not di¤er
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in asymptotic properties. Generally, a detector is a standardized (so that it is asymptotically

pivotal) cumulative sum in an expanding window, possibly contrasted with a similar measure

on the whole historical interval. Without contrasting, the asymptotic process is likely a

Wiener process. When there is contrasting, explicit or implicit, the asymptotic process is

likely a Brownian bridge.

The classical retrospective CUSUMdetector (Brown, Durbin and Evans, 1975; Ploberger,

Krämer and Alt, 1988) is

Q� =
1

�̂
p
T � k

�X
t=k+1

!t; � = k + 1; :::; T;

where �̂2 is a consistent estimate of the variance of u� in the regression (1), !t are recursive

residuals

!t =
yt � x0t(X

0
1:t�1X1:t�1)

�1X 0
1:t�1Y1:t�1p

1 + x0t(X
0
1:t�1X1:t�1)�1xt

and data matrices X1:t�1 and Y1:t�1 contain observations from 1 to t� 1: Asymptotically, as

T !1;

Q�
d! W (r) ; r 2 [0; 1] :

The same asymptotics is shared by the sequential analog of a t-statistic in Anatolyev (2008),

for example, in a problem of testing for predictability of g(yt) by h(xt); where g and h are

known functions of stationary series yt and xt:

Q� =
1p
T V̂�

�X
t=1

(g(yt)� �g(y1:� ))h(xt);

where �g(y1:� ) is a sample average of g(yt) from t = 1 to t = � ; and V̂� is an estimate

of asymptotic variance computed in the same window, i.e. from t = 1 to t = � . Chu,
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Stinchcombe and White (1996) extend the CUSUM detector to the monitoring situation:2

Q� =
1

�̂
p
T � k

�X
t=T+1

!t; � = T + 1; :::; KT:

Asymptotically, as T !1;

Q�
d! W (r)�W (1) � W (r � 1) ; r 2 [1; K] :

The modern version of the retrospective CUSUM of squares detector (Brown, Durbin

and Evans, 1975; Deng and Perron, 2008) is

Q� =

r
1

'̂T

 
�X

t=k+1

!2t �
�

T

TX
t=k+1

!2t

!
; � = k + 1; :::; T;

where '̂ is a consistent estimate of the long run variance of u2� : A similar structure is taken

by the detector in the Kokoszka and Leipus (2000) test and by that of the Inclán and Tiao

(1994) test for detection of changes in variance; see also Andreou and Ghysels (2002). For

all these detectors, asymptotically

Q�
d! B (r) ; r 2 [0; 1]

as T ! 1: The same asymptotics holds for the OLS-based CUSUM detector proposed by

Ploberger and Krämer (1992),

Q� =
1

�̂
p
T

 
�X

t=k+1

ût

!
;

where ût = yt � x0t(X
0
1:TX1:T )

�1X 0
1:TY1:T are OLS residuals, and for the �uctuation test

detector proposed by Ploberger, Krämer and Kontrus (1989)

Q� =
�

�̂T

h
(X 0

1:TX1:T )
1=2
�
�̂� � �̂T

�i
i
;

2Chu, Stinchcombe and White (1996) also suggest an alternative version of the monitoring CUSUM

detector

Q� =
1

�̂
p
T � k

�X
t=k+1

!t

for � = T + 1; :::;1: This version has one objective shortcoming: it is not consistent with the monitoring

paradigm where it is assumed that the historical period is stable; this version of Q� instead accumulates

instability-driven deviations during the historical period too. As a result, its asymptotic process starts o¤

from a random value at r = 1 (see Remark 1).
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where [�]i denotes taking the ith element of a vector, and �̂� is an OLS estimate of � computed

from the observations k + 1; k + 2; :::; � � 1; � : All these detectors can be extended to the

monitoring context in a natural way, with

Q�
d! B (r) ; r 2 [1; K]

as T !1:

2.3 Boundaries

As explained above, in practice one uses a boundary from a small set of possibilities suggested

in the literature. Let us list those suggestions that are documented in the literature, in the

case of two sided testing.

When the asymptotic process is Wiener process W; and the context is retrospective, one

has a choice between a linear boundary

b (r) = � (2r + 1)

derived in Brown, Durbin and Evans (1975) for the CUSUM test, where � = 0:948 for

� = 5%; and a horizontal boundary from Anatolyev (2008):

b (r) = �;

where � = 2:241 for � = 5%: In an attempt to distribute the size relatively evenly, Zeileis

(2004) suggests an ad hoc boundary

b (r) = �
p
r

where � = 3:15 for � = 5%; motivated by its proportionality to the standard deviation

of the Wiener process. In the monitoring context, the parabolic boundary derived in Chu,

Stinchcombe and White (1996) is

b (r) =
�
r log

r

�2

�1=2
:

This is an exact formula presuming that the monitoring horizon is in�nite.
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When the asymptotic process is Brownian bridge B and the context is retrospective, the

most widespread boundary is horizontal (e.g., Brown, Durbin and Evans, 1975; Inclán and

Tiao, 1994)

b (r) = �;

where � = 1:358 for � = 5%; which is implicit in the usually used functional supr2[0;1] : An

alternative choice is again suggested in Zeileis (2004):

b (r) = �
p
r (1� r);

where � = 3:37 for � = 5%; which is proportionate to the standard deviation of the Brownian

bridge. The same boundary shape lies in the construction of the Andrews (1993) test, but

the test period is restricted to be [�; 1� �] with 0 < � < 1
2
: In the monitoring context, the

leading choice is the nearly linear boundary derived in Chu, Stinchcombe and White (1996)

b (r) =

�
r (r � 1)

�
a2 + log

r

r � 1

��1=2
;

where a2 depends only on �. The monitoring horizon is presumed in�nite. A truly linear

boundary

b (r) = �r

was suggested in Zeileis, Leisch, Kleiber and Hornik (2005). The authors give critical values

for � for integer values of the monitoring horizon K from 2 to 10.

As was stated in the Introduction, we aim at constructing the �uniform�boundaries, i.e.

such that the size is uniformly distributed over the relevant testing horizon. More formally,

when testing is one-sided, we want to �nd the retrospective boundary bR� (r) such that for

all s 2 [0; 1]

Pr
�
Q (r) < bR� (r) 8 r 2 [0; s] jH0

	
= 1� �s

or the monitoring boundary bM� (r) such that for all s 2 [1; K]

Pr
�
Q (r) < bM� (r) 8 r 2 [1; s] jH0

	
= 1� �

s� 1
K � 1 :

Similarly the �uniform�boundaries are de�ned when testing is two-sided.

Remark 2. Of course, uniform distribution over a monitoring period is possible only

if the monitoring horizon K is �nite. In the monitoring literature, the monitoring horizon
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is typically in�nite, which is an approximation for �very long�monitoring and is convenient

for analytic work (for example, the parabolic boundaries are speci�c for ever-lasting mon-

itoring and derived from certain statistical properties of the Wiener process, see Robbins

and Siegmund, 1970). However, an in�nite horizon is implausible in practice, and may be

an inadequate approximation for �very long�monitoring, in cases when most of the size is

�consumed�only after an implausibly long period of monitoring is elapsed (see an example

below). Interestingly, some published simulation studies verify properties of tests relying on

�nite monitoring horizons, even though the boundaries are derived for the in�nite horizon.3

Figures 1a, 1b, 1c and 1d present distributions of size4 in the four situations with the

Wiener process described at the beginning of this subsection. One can easily see that in all

cases the distribution of size is far from even. In particular, because the linear, horizontal

and parabolic boundaries do not start o¤ from zero, the chances of crossing it near the

beginning of the testing period are very slim. Obviously, the �uniform�boundaries have to

take o¤ from zero, with an in�nite slope. The Zeileis (2004) boundary does start o¤ from

zero and have an in�nite slope, but, among other things, the curvature at zero is too high.

Special attention deserves Figure 1d with parabolic monitoring boundaries corresponding to

an in�nite monitoring horizon. One can see that a signi�cant portion of size corresponds

to the period beyond K = 10; in fact, only about 2% out of 5% are used before 10T time

periods elapsed (about 3% before 30T periods, and about 4% before 100T periods) . Suppose

that the data are quarterly covering 25 years, so the historical interval has length T = 100:

This means that even in 250 years even half of the prescribed size will not be used, and in

a plausible exercise only a tiny fraction of it will. Hence, in practice the actual size in a

plausible procedure is likely to have little to do with the nominal size, when the monitoring

horizon is assumed in�nite.

Figures 2a and 2b show a couple of situations for the Brownian bridge. Analogously,

with the horizontal boundaries most of crossings are concentrated in the middle of the unit

3It is usually veri�ed that the size actually used does not exceed the total size, and that the rate of its

accummulation makes it unlikely that it will ever exceed the total size.
4In these simulations, one million trajectories of an appropriate asymptotic process are generated. Each

trajectory corresponding to the Wiener process is approximated by a relevant portion of a suitably normalized

sum of 100,000 standard normals.
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interval. With the Zeileis (2004) boundary (the suggestion closest to what should implement

the idea of the �uniform�boundary), most of crossings lie near the endpoints of the unit

interval.

From these �gures one can see that if a boundary starts o¤ too high, crossings near zero

are very rare. Obviously, the �uniform�boundary has to start from zero at zero. On the other

hand, it should start o¤ steeply enough so that not the whole crossing mass is concentrated

at zero. Two theorems below formalize these observations by stating conditions that rule

out a possibility of uniform distribution of size.

Let us denote

`(r) =
p
2r ln (� ln r):

This is a familiar �knife-edge�boundary for the Brownian motion that �gures in the �zero-

time�law of iterated logarithms (LIL, see, e.g., Karatzas and Shreve, 1988, theorem 9.23i):

lim
r#0

W (r)

`(r)
= 1: (2)

Consider a smooth boundary b(r). The �rst impossibility result covers the boundaries that

start o¤ not from (or, if applicable, arrive not at) zero. The second impossibility result

rejects the boundaries that do start o¤ from zero, but with an insu¢ ciently high rate.

Theorem 1 It is impossible to distribute the size uniformly if

(i) b(0) > 0 when Q (r) =W (r), r 2 [0; 1] ;

(ii) b(0) > 0 or b(1) > 0 when Q (r) = B (r), r 2 [0; 1] ;

(iii) b(1) > 0 when Q (r) =W (r) or Q (r) = B (r), r 2 [1; K] :

Theorem 2 It is impossible to distribute the size uniformly if

(i) Q (r) =W (r), r 2 [0; 1] ; b(0) = 0 and

lim
r#0

b(r)

`(r)
< 1: (3)
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(ii) Q (r) = B (r), r 2 [0; 1] ; b(0) = b(1) = 0 and

lim
r#0

b(r)

`(r)
< 1 (4)

or

lim
r"1

b(r)

`(1� r)
< 1: (5)

(iii) Q (r) =W (r) or Q (r) = B (r), r 2 [1; K] ; b(1) = 0 and

lim
r#1

b(r)

`(r � 1) < 1: (6)

According to Theorem 1, the linear and horizontal boundaries in the retrospective context

b(r) = � (2r + 1) and b (r) = � do not satisfy the necessary requirements, and so does not

the linear boundary b (r) = �r in the monitoring context. According to Theorem 2, the

retrospective Zeileis boundaries bR(r) = �
p
r when Q (r) = W (r) and bM(r) = �

p
r (1� r)

when Q (r) = B (r) do not satisfy the necessary requirements:

lim
r#0

bR(r)

`(r)
=

�p
2
lim
r#0

1p
ln (� ln r)

= 0;

lim
r#0

bM(r)

`(r)
=

�p
2
lim
r#0

s
1� r

ln (� ln r) = 0;

lim
r"1

bM(r)

`(1� r)
=

�p
2
lim
r"1

r
r

ln (� ln (1� r))
= 0:

The retrospective parabolic boundary

b (r) =
�
r ln

r

�2

�1=2
does satisfy the necessary condition of Theorem 1 as b(1) = 0; but it does not satisfy that

of Theorem 2:

lim
r#1

bM(r)

`(r � 1) =
�
lim
r#1

ln r

ln (� ln (r � 1))

�1=2
= 0:

The monitoring parabolic boundary, however, b (r) = (r (r � 1) (a2 + ln r= (r � 1)))1=2 does

satisfy both necessary conditions:

bM(1) =

�
lim
r#1

r (r � 1)
�
a2 + ln

r

r � 1

��1=2
=

�
lim
s!+1

a2 + ln (1 + s)

s

�1=2
= 0;

where the change of variable s = 1= (r � 1) is employed, and

lim
r#1

bM(r)

`(r � 1) =
�
1

2
lim
s#0

a2 + ln (1 + s�1)

ln (� ln s)

�1=2
= +1;

where the change of variable s = r � 1 is employed.
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3 Determination of boundaries

The integral equation relating the boundaries to �rst passage probabilities was derived in

Durbin (1971). Subsequently, this technique was intensively used in the statistical literature

(in particular, numerous articles in subsequent issues of the Journal of Applied Probability)

to derive the distribution of crossing probabilities for boundaries of various shape. Here, we

�reverse� the usual procedure and derive the boundary for a particular (namely, uniform)

distribution of crossing probabilities over the relevant interval. We show the technique in

the retrospective context; the monitoring situation is handled similarly.

Denote by pr (y) the unconditional density of Q (r) ; and by prjs (yjx) the conditional

density of Q (r) given that Q (s) took the value x: The exact forms of pr (y) and prjs (yjx)

will be speci�ed later when we move on to concrete processes for Q (r) :

Let 	(r) be a one-sided boundary on [0; 1] such that the distribution of size is �(r);

r 2 [0; 1] : According to Durbin (1971, sec.2), it is implicitly de�ned by the integral equation

pr (	(r)) =

Z r

0

prjs (	(r)j	(s)) d�(s) (7)

that should hold for all r 2 [0; 1] : Intuitively, the meaning of the equality in (7) is the

following: the unconditional density of Q (r) at the boundary 	(r) can be alternatively

obtained via the law of total probability by counting, along the boundary from 0 to r; the

total measure for those trajectories that pass through 	(r) for the �rst time.

When 	(r) is the upper (positive) part of the symmetric two-sided boundary on [0; 1] ;

according to Durbin (1971, sec.4) it is implicitly de�ned by the integral equation

pr (	(r)) =
1

2

Z r

0

prjs (	(r)j	(s)) d�(s) +
1

2

Z r

0

prjs (	(r)j �	(s)) d�(s) (8)

that should hold for all r 2 [0; 1] :5 Now at the right hand one counts the total measure from

0 to r along both positive and negative parts of the boundary.

Suppose we need the size � to be uniformly distributed over [0; 1]. Then we set

d�(s) = �ds:

5For gaussian processes and symmetric boundaries the �rst passage density is the same when evaluated

at both upper and lower boundaries.
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For our two gaussian processes the integral equations (7) or (8) belong to the class

of nonlinear Volterra equations of the second kind with weak singularity of Abel type

(e.g., Brunner and van der Houwen, 1986). Singularities occur when s is near r because

prjs (	(r)j	(s)) ! 1 as s ! r from the left. Of course, there is no hope for an analytical

solution, so we use numerical methods of integration and solving equations. More exactly, we,

moving from r = 0 to r = 1, construct a piecewise linear boundary, at each step determining

the slope of a current linear segment by using the bisection method in equating the left and

right sides of (7) or (8), each time computing integrals at the right-side of (7) or (8) using

trapezoid method and analytically derived asymptotic solutions near singularity points. The

trapezoid method is utilized for the following reasons. First, the rate of convergence is close

to higher order approximations requiring much more complicated programming. Second, it

is the best method given that our functions are at most twice continuously di¤erentiable.

Third, Diogo et al. (2005) prove that the trapezoid method has the property of uniform

convergence for this type of integral equations.

Some details about parameters of the numerical algorithm follow. There are 500 knots

in the piecewise linear boundary that approximates the smooth one. These knots are not

uniformly distributed on [0; 1] ; but rather the closer to zero, the more dense they are. In

the numerical integration, approximately 10,000 gridpoints are uniformly distributed over

the domain of integration.

4 Boundaries for Wiener process

4.1 Construction of boundaries

When the asymptotic process Q (r) is Wiener process Q (r) =W (r) ; we know that for s < r;

Q (r) � N (0; r) ;

Q (r) jQ (s) � N (Q (s) ; r � s) :
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Therefore, the densities entering (7) and (8) are

pr (y) =
1p
2�r

exp

�
�y

2

2r

�
;

prjs (yjx) =
1p

2� (r � s)
exp

�
� (y � x)2

2 (r � s)

�
:

It turns out that we only need to derive two (one for one-sided testing, another for two-

sided testing) what we call baseline boundaries corresponding to the maximum needed test

size A; 20% say. As it will be shown below, both retrospective and monitoring boundaries

corresponding to any size � � A can be easily obtained from the baseline boundaries by

using an appropriate transformation.

Now suppose we have derived a baseline boundary 	(r) over [0; 1] corresponding to the

maximum needed test size A. However, one is interested in a retrospective boundary bR� (r)

corresponding to the test size � � A, or a monitoring boundary bM� (r) over the period [1; K]

corresponding to the test size � < A: It turns out that the transformations

bR� (r) =
p
��	

�
��1� r

�
(9)

and

bM� (r) =
q
��;K	

�
��1�;K (r � 1)

�
; (10)

where

�� �
A

�
; ��;K �

A

�
(K � 1) ; (11)

accomplish this job, which can be easily seen from the integral equation (7) or (8).

For simplicity, we will demonstrate this property using the retrospective one-sided case.

We need to show that bR� (r) in (9) is the solution of

1p
2�r

exp

 
�b

R
� (r)

2

2r

!
= �

Z r

0

1p
2� (r � s)

exp

 
�
�
bR� (r)� bR� (s)

�2
2 (r � s)

!
ds:

Substituting (9) here, we obtain

1p
2�r

exp

 
�
��	

�
��1� r

�2
2r

!
=

= �

Z r

0

1p
2� (r � s)

exp

 
�
�p

��	
�
��1� r

�
�
p
��	

�
��1� s

��2
2 (r � s)

!
ds:

17



After changing the variable of integration s0 = ��1� s; or s = ��s
0; we obtain

1p
2�r

exp

 
�
��	

�
��1� r

�2
2r

!
=

= ���

Z ��1� r

0

1p
2� (r � ��s

0)
exp

 
�
(
p
��	

�
��1� r

�
�
p
��	(s

0))2

2 (r � ��s
0)

!
ds0:

Finally by multiplying both sides of equality by
p
��, rearranging terms and noticing that

��� = A we get the equation

1q
2�(��1� r)

exp

 
�
	
�
��1� r

�2
2(��1� r)

!
=

Z ��1� r

0

1q
2�
�
��1� r � s0

� exp
 
�
�
	
�
��1� r

�
�	(s0)

�2
2
�
��1� r � s0

� !
Ads0

that de�nes the baseline boundary 	(r) :

Intuitively, as the size is distributed uniformly over [0; 1], the baseline boundary 	(r)

accumulates exactly � over the segment
�
0; ��1�

�
: This portion of 	(r) should be extended

over the retrospective or monitoring interval and then scaled to restore the target size.

4.2 Tabulation of boundaries

To report the baseline boundary so that it can be used in practice, we �t to it a �exible, but

parsimonious parametric function, and report the parameters of this function. Concretely,

the baseline boundary 	(r) is parameterized by the following functional form:

	(r) = exp

 
JX
j=0

 jr
j

!
� r

PJ�1
j=0 'j(ln r)

j

: (12)

This form turns out to be su¢ ciently �exible even for low values of J; and quite convenient.

The convenience comes from the fact that after taking logs, ln	(r) is a linear form in

powers, up to J th; of r and ln r; which allows us to easily estimate the coe¢ cients in (12) by

least squares. Note that we sacri�ce conformity to Theorems 1 and 2 for the sake of better

approximation on the likely working range of r in �nite samples.

Up to cubic terms corresponding to the choice J = 3; the parameterization of baseline

boundary 	(r) is

	(r) = exp
�
 0 +  1r +  2r

2 +  3r
3
�
� r'0+'1 ln r+'2(ln r)

2

:
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For A = 20%; the �regression�was run using the computed boundaries on a uniform grid of

5,000 values (dictated by the precision of the piecewise approximation for the boundary) of

r on [0; 1]. The coe¢ cients are tabulated in the following table up to four signi�cant digits:

One-sided Two-sided

 0 0:6607 0:6628

 1 �0:3370 �0:3430

 2 0:03328 0:03936

 3 �0:04116 �0:04986

'0 0:3271 0:3282

'1 �0:01176 �0:01159

'2 �0:0003522 �0:0003435

As mentioned in the Introduction, the degree of �t turns out to be very high even with J = 3:

the regression (in logs) R2 is about 99.99%, and the computed and parameterized boundaries

are practically indistinguishable, both visually and in terms of maximal discrepancy.

According to the transformations (9)�(10), an arbitrary target boundary b�(r) corre-

sponding to target size � may be obtained as

bR� (r) = exp

 
JX
j=0

cjr
j

!
� r

PJ�1
j=0 dj(ln r)

j

in the retrospective case and

bM� (r) = exp

 
JX
j=0

cj (r � 1)j
!
� r

PJ�1
j=0 dj(ln(r�1))j

in the monitoring case, where the coe¢ cients cj; j = 0; :::; J and dj; j = 0; :::; J � 1 are

functions of  j; j = 0; :::; J , 'j; j = 0; :::; J�1 and �� or ��;K de�ned in (11). In particular,

in the case J = 3; we have the following correspondences:

c0 =
1

2
ln �� +  0; c1 = ��1�  1; c2 = ��2�  2; c3 = ��3�  3;

d0 = '0 + ln
�
��1�
�
'1 +

�
ln
�
��1�
��2

'2; d1 = '1 + 2 ln
�
��1�
�
'2; d2 = '2;

in the retrospective case, and

c0 =
1

2
ln ��;K +  0; c1 = ��1�;K 1; c2 = ��2�;K 2; c3 = ��3�;K 3;

d0 = '0 + ln
�
��1�;K

�
'1 +

�
ln
�
��1�;K

��2
'2; d1 = '1 + 2 ln

�
��1�;K

�
'2; d2 = '2;

in the monitoring case.
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4.3 Shape of boundaries

Figures 3a and 3b depict the retrospective and monitoring, respectively, �uniform�bound-

aries corresponding to the three conventional levels of size.

5 Boundaries for Brownian Bridge

In the case of Brownian bridge, in contrast to the case of Wiener process, the retrospective

and monitoring boundaries have to be handled separately. This is due to the property of

Brownian bridge of being tied down at r = 1:

5.1 Construction of retrospective boundaries

When the asymptotic process Q (r) is the Brownian bridge process

Q (r) = B (r) =W (r)� rW (1) ;

we can derive that when s < r � 1;

Q (r) � N (0; r (1� r)) ;

Q (r) jQ (s) � N

�
1� r

1� s
Q (s) ;

1� r

1� s
(r � s)

�
:

Therefore, the densities entering (7) and (8) are

pr (y) =
1p

2�r (1� r)
exp

�
� y2

2r (1� r)

�
;

prjs (yjx) =
1p
2�

s
(1� s)

(r � s) (1� r)
exp

�
� ((1� s) y � (1� r)x)2

2 (r � s) (1� r) (1� s)

�
:

It turns out that now, in contrast to the case of Wiener process, we cannot obtain a

retrospective boundary corresponding to some value of � from a boundary corresponding to

a di¤erent value of �: In other words, there does not exist a baseline boundary that would

be able to generate a whole family of size-speci�c boundaries. This is, of course, due to the

property of the Brownian bridge of being tied down at r = 1:
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5.2 Tabulation of retrospective boundaries

Thus, to report the family of boundaries in the case of retrospection, we �t the whole family

to a parametric function not only of r; but also of �: For �xed �; we use a functional form

similar to (12), which takes into account tiedness to zero at r = 1:

bR� (r) = exp

 
JX
j=0

 j (�) r
j

!
� r

PJ�1
j=0 'j(�)(ln r)

j � (1� r)
PJ�1
j=0 �j(�)(ln(1�r))j : (13)

The coe¢ cients  j (�) ; 'j (�) and �j (�) in (13) are parameterized as functions of � in the

following way:

 j (�) =  
(0)
j +  

(1)
j �+  

(2)
j �2 +  

(3)
j ln�+  

(4)
j (ln�)2 ;

and similarly for 'j (�) and �j (�) : In total then, there are 5 (3J + 1) parameters, which

equals 50 in case J = 3:

The coe¢ cients for the J = 3 are given below. The size � is unitless, i.e., for example,

� = 0:05: The �regression�was run using the computed boundaries on a uniform grid of

values of � from 0:1% to 20% with a step of 0:1%. The results are reliable only for this range

of sizes. As before, the grid for r contains 5,000 values uniformly distributed over [0; 1].

One-sided

i 0 1 2 3 4

 
(i)
0 0:4602 �0:5542 0:2309 �0:1748 �0:007571

 
(i)
1 �0:2816 �1:445 0:5633 �0:06012 �0:003685

 
(i)
2 0:05853 0:1270 �3:135 0:01125 0:0005935

 
(i)
3 �0:02170 0:1858 1:223 �0:005589 �0:0003766

'
(i)
0 0:2932 �0:1606 0:0009169 �0:03151 �0:001708

'
(i)
1 �0:01538 �0:01785 �0:007254 �0:002907 �0:0001697

'
(i)
2 �0:0005173 �0:0007062 �0:0005508 �0:0001057 �6:375� 10�6

�
(i)
0 0:2251 �0:4767 �0:4754 �0:04716 �0:002717

�
(i)
1 �0:02241 �0:05068 �0:06861 �0:004532 �0:0002748

�
(i)
2 �0:0007729 �0:001904 �0:003227 �0:0001645 �1:019� 10�5
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Two-sided

i 0 1 2 3 4

 
(i)
0 0:6181 �0:4409 0:4119 �0:1490 �0:006098

 
(i)
1 �0:2241 �0:7720 0:2311 �0:04802 �0:002986

 
(i)
2 0:06212 0:001011 �0:5197 0:01440 0:0009509

 
(i)
3 �0:02084 0:1260 0:1200 �0:005842 �0:0004257

'
(i)
0 0:3261 �0:1292 0:1112 �0:02467 �0:001279

'
(i)
1 �0:01207 �0:01468 0:01181 �0:002155 �0:0001203

'
(i)
2 �0:0003905 �0:0005949 0:0004533 �7:543� 10�5 �4:338� 10�6

�
(i)
0 0:2758 �0:3071 0:09167 �0:03592 �0:001990

�
(i)
1 �0:01724 �0:03356 0:01098 �0:003314 �0:0001934

�
(i)
2 �0:0005772 �0:001302 0:0004428 �0:0001170 �6:937� 10�6

Having a particular values of �; a researcher may �nd the parameterization of bR� (r)

using the tabulated coe¢ cients, and use this bR� (r) as a retrospective boundary on [0; 1] :

5.3 Construction of monitoring boundaries

When r > s � 1;

Q (r) � N (0; r (r � 1)) ;

Q (r) jQ (s) � N
�r
s
Q (s) ;

r

s
(r � s)

�
:

Therefore, the densities entering (7) and (8) are

pr (y) =
1p

2�r (r � 1)
exp

�
� y2

2r (r � 1)

�
;

prjs (yjx) =
1p
2�

r
s

(r � s) r
exp

�
� (sy � rx)2

2 (r � s) rs

�
:

As could be expected, we cannot obtain a monitoring boundary from a retrospective

one. This is again due to the property of the Brownian bridge of being tied down at r = 1:

5.4 Tabulation of monitoring boundaries

Compared to the case of retrospection, here we have, along with �; an additional parameter

K; that determines the boundary. Fortunately, a particular boundary can be characterized
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by a single combination of � and K; namely the �crossing intensity�

 =
�

K � 1 :

This property can be easily con�rmed by analyzing the integral equation (7) or (8).

Thus, we can �t the whole family of monitoring boundaries to a parametric function of

r and : For �xed ; we use a familiar functional form

bM� (r) = exp

 
JX
j=0

 j () (r � 1)
j

!
� (r � 1)

PJ�1
j=0 'j()(ln(r�1))j : (14)

The coe¢ cients  j () and 'j () in (14) are parameterized as functions of  in the same

way:

 j () =  
(0)
j +  

(1)
j  +  

(2)
j 2 +  

(3)
j ln  +  

(4)
j (ln )2 ;

and similarly for 'j () :

The coe¢ cients for the J = 3 are given below. The size  is unitless, i.e., for example,

 = 0:05=(5 � 1) = 0:0125: The �regression�was run using the computed boundaries on

a uniform grid of values of  from 0:001 to 0:200 with a step of 0:001; with additional

constraints that � � 20% and K � 11: The results are reliable only for this range of sizes

and monitoring horizons. As before, the grid for r contains 5,000 values uniformly distributed

over [0; 1].

One-sided

i 0 1 2 3 4

 
(i)
0 0:2806 �0:8330 1:086 �0:3391 �0:02238

 
(i)
1 0:2448 �0:1961 0:04355 0:1021 0:01075

 
(i)
2 0:008895 �0:4043 �3:3319 0:0008031 �0:0002008

 
(i)
3 �0:001507 0:02280 0:1640 �0:0003989 �2:091� 10�5

'
(i)
0 0:06110 �0:04315 0:3132 �0:1797 �0:01488

'
(i)
1 �0:09482 0:09669 �0:04245 �0:04541 �0:003909

'
(i)
2 �0:007929 0:01370 �0:01170 �0:003717 �0:0003222
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Two-sided

i 0 1 2 3 4

 
(i)
0 0:4769 �0:8774 1:6011 �0:3012 �0:01988

 
(i)
1 0:2641 0:4160 �0:9827 0:1044 0:01072

 
(i)
2 0:008394 �0:4297 �1:295 0:0007877 �0:0001942

 
(i)
3 �0:001179 0:01783 0:3586 �0:0003104 �1:477� 10�5

'
(i)
0 0:1266 �0:1507 0:7325 �0:1628 �0:01361

'
(i)
1 �0:08363 0:06429 0:05871 �0:04230 �0:003669

'
(i)
2 �0:007269 0:01125 �0:004592 �0:003534 �0:0003082

Having particular values of � and K; a researcher can compute ; �nd the parameteriza-

tion of bM� (r) using the tabulated coe¢ cients, and use this b
M
� (r) as a monitoring boundary

on [1; K] :

5.5 Shape of boundaries

Figures 3c and 3d depict the retrospective and monitoring, respectively, �uniform�bound-

aries corresponding to the three conventional levels of size. All boundaries except the Brown-

ian bridge retrospective boundaries, as expected, start o¤ from zero with an in�nite deriv-

ative, and are increasing throughout entire intervals. The Brownian bridge retrospective

boundaries (see Figure 3c) have an inverted U-shape and come to zero at the end of the

retrospective interval, also with an in�nite derivative. Their shape is similar to that of the

Zeileis boundaries (see Figure 2b), but they are asymmetric (for example, the maximum is

reached at 0.48 rather than at 0.50 when � = 5%). Also, they are steeper at the beginning

and end of the interval, in the sense that, for example, bUniform� (r)=bZeileis� (r) = +1 as r ! 0

or r ! 1:

The relative positioning of boundaries of di¤erent type can be observed in Figures 5a�5d,

see Section 7.
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6 Distribution of size

Finally, Figures 4a and 4b present the results of asymptotic simulations in two situations:

one-sided monitoring boundary (with K = 5) for the Wiener process and two-sided retro-

spective boundary for the Brownian bridge. It is clear that the constructed boundaries do

distribute the size uniformly across the appropriate interval.

All imperfections in these distributions are due to insu¢ cient accuracy of approximations

during numerically solving an integral equation, or to insu¢ cient �exibility of a parameteriza-

tion, or to insu¢ cient number of simulation repetitions. All three sources can be potentially

driven to nullity if desired, although at non-negligible expense.

7 Empirical illustration

In this Section we illustrate sequential testing tools using an empirical application. We per-

form a few testing experiments, both retrospective and monitoring, using di¤erent detectors,

di¤erent boundaries and di¤erent testing intervals. The purpose of this exercise is to show

interesting patterns that one may encounter in practice rather than to contrast the merits

of di¤erent boundaries or detectors.

We use the Phillips curve model analogous to one of applications in Bai and Perron

(2003). However, we use monthly US data instead of annual UK data, for the sake of larger

sample sizes.6 The Phillips curve equation we estimate is

E [�wtj�t�1; �t�2; :::; ut; ut�1; :::] = 1 + 2�t�1 + 3�t�2 + 4ut + 5ut�1 + 6ut�2;

where wt is nominal log wage, �t is in�ation (di¤erence of log nominal price index), ut is

unemployment. Here, in contrast to Bai and Perron (2003), we allow one more lag for

in�ation and unemployment because of the higher data frequency.

We carry out four experiments, two retrospective and two monitoring, in each case

carrying out two-sided testing at the 5% signi�cance level. We use two detectors: the

CUSUM and OLS-based CUSUM. Recall that the CUSUM detector asymptotically behaves

6The (seasonally adjusted) data are taken from the FRED database of the Federal Reserve Board at

http://research.stlouisfed.org/fred2 (series AHETPI, CPIAUCNS, UNRATE).
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as a Wiener process, and the OLS-based CUSUM detector �as a Brownian bridge. The

results are presented in Figures 5a through 5d which show the (absolute values of) detectors

(in ragged bold) and various boundaries (the �uniform�boundaries are in solid bold).

We start from retrospective testing with a historical interval spread from 1965:02 till

1970:11 (70 observations) which is presumably stable: the Andrews (1993) stability test with

the truncation parameter � = 0:20 does not reject stability even at the 10% signi�cance.

Figure 5a attests that according to sequential testing there is no evidence of structural

instability either. Both detectors uniformly lie below all corresponding boundaries: the

�uniform�(solid), horizontal (short dashes), Zeileis (long dashes) and, in the case of CUSUM,

linear (dots and dashes).

Next we carry out two monitoring experiments, one with a shorter horizon, one with

a longer horizon. Figure 5b shows the results for K = 2 (so that monitoring starts from

1970:12 and a researcher commits to continue it till 1976:09), and Figure 5c �for K = 5

(so that monitoring starts from 1970:12 and continues till 1984:03). In the case of CUSUM

monitoring, we check the �uniform� (solid) and �parabolic� (short dashes) boundaries; in

the case of OLS-based CUSUM, we check the �uniform�(solid), �parabolic�(short dashes)

and linear (long dashes) boundaries.

In the case of the shorter monitoring interval, the CUSUM detector passes through the

�uniform�boundary in 14 time periods (i.e. on 1972:01). Note that the instability is not

detected by the parabolic boundary at all, the main reason being that it is relying on the

in�nite horizon (which is too di¤erent from the actual horizon) and thus starts o¤ too high

(in other words, only a small portion of 5% size is �utilized�when K = 2). The OLS-based

CUSUM detector touches on both the �uniform�and parabolic boundaries even faster, in 6

time periods (i.e. on 1971:05), and the linear boundary more than twice as late, in 13 time

periods (i.e. on 1971:12).

In the case of the longer monitoring interval, the CUSUM detector again hits the �uni-

form�boundary for the �rst time in 14 time periods (i.e. on 1972:01). Now the instability

is detected by the parabolic boundary too, but very much later, after 190 time periods pass

(i.e. only on 1986:09). Thus, the parabolic CUSUM boundaries, even when they detect an

instability, may make an impression of a very late break when in fact it is very early. The
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OLS-based CUSUM detector touches on the parabolic boundaries �rst, in 6 time periods

(i.e. on 1971:05), the �uniform�boundary in 9 time periods (i.e. on 1971:08), and the linear

boundary in 14 time periods (i.e. on 1972:01).

Finally, we repeat a retrospection experiment on a longer historical interval, which now

presumably includes structural instability evidenced by the previous monitoring tests. We

set the end of the historical interval now to 1984:11 (so that the interval contains 237 ob-

servations). The results are presented on Figure 5d. Interestingly, no boundary detects

instabilities when the CUSUM detector is used. In the case of the OLS-based detector,

however, the structural instability is sensed by the �uniform�(solid) boundary in the 208th

time period (i.e. on 1982:06) and by the Zeileis (long dashes) boundary a bit later, in the

217th time period (i.e. on 1983:03). Both time periods are quite late compared to when

the structural instability must in fact have taken place, but note an important fact that the

horizontal boundary (short dashes), which is implicit in the most popular sup functional, is

very far at all from detecting this instability.

8 Concluding remarks

We have numerically derived boundaries for major classes of sequential (CUSUM-type) tests,

both retrospective and monitoring, both one-sided and two-sided, such that the overall test

size is uniformly distributed over the testing (historical or monitoring) interval. We have

reported these boundaries as tables of coe¢ cients of �tted parsimonious but �exible para-

metric forms. We have also provided asymptotic simulation evidence that these (parametric)

boundaries do an excellent job in distributing test size uniformly.

The two major classes of sequential tests considered are those resulting in a detector

asymptotically behaving as a Wiener process or Brownian bridge. Nevertheless, in the

literature one can encounter, although much more rarely, other asymptotic processes for

sequential detectors, which are usually functions of the two processes above. For example,

recursive predictability tests (Inoue and Rossi, 2005) yields as an asymptotic process a

squared Bessel process Wp(r)
0Wp(r); where Wp(r) is a p-variate Wiener process; predictive

testing for parameter constancy (Ghysels, Guay and Hall, 1997) yields as an asymptotic
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process Bp(r)0Bp(r) +Wq�p(r)
0Wq�p(r); where Bp(r) is a p-variate Brownian bridge. Some

of such cases (those where the transitional density has a convenient analytical form) can be

handled similarly to the technique we have proposed. More problematic may be MOSUM-

type tests (Chu, Hornik and Kuan, 1995), where the asymptotic process is increments of the

Brownian bridge B(r)�B(r�h) for �xed h 2 (0; 1) because of the presence of an additional

parameter. The problems just described may constitute an agenda for future work.
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A Appendix: proofs

Lemma 1 Parts (ii) and (iii) of Theorems 1 and 2 follow from part (i).

Proof Observe that

lim
r#0

B(r)

`(r)
= lim

r#0

W (r)� rW (1)

`(r)
= lim

r#0

W (r)

`(r)
�W (1) lim

r#0

r
r

2 ln (� ln r) = limr#0
W (r)

`(r)
;

therefore the same LIL holds for the Brownian bridge at zero. Also, observe that

lim
r"1

B(r)

`(1� r)
= lim

s#0

B(1� s)

`(s)
= lim

s#0

B(s)

`(s)
;

where the change of variable s = 1� r and equality in distribution of B(r) and B(1� r) are

employed. Therefore the same LIL holds for the Brownian bridge at unity. Thus, all steps

of the proof of part (i) can be carried over to the case (ii).

Next, observe that, because for r > 1

B(r)
d
= (r � 1)W

�
1 +

1

r � 1

�
;

we have

lim
r#1

B(r)

`(r � 1) = lim
s!+1

s�1W (1 + s)

`(s�1)
= lim

s!+1

W (s)p
2s ln (ln s)

;

where the change of variable s = 1=(r� 1) is employed. This is unity by the �in�nite-time�

LIL (Karatzas and Shreve, 1988, theorem 9.23iii). Thus, all steps of the proof of part (i) can

be carried over to the case (iii). �

Proof of Theorem 1 (i) For su¢ ciently small " > 0 there is 0 < �r < 1 such that b(r) >

`(r) + " for all r 2 [0; �r] ; and by the LIL (2) the equality

Pr fW (r) =`(r) > 1 + " for some r 2 [0; �r]g = 0

holds. Then

Pr fW (r) > b(r) for some r 2 [0; �r]g � Pr fW (r) =`(r) > 1 + " for some r 2 [0; �r]g = 0;

i.e. W (r) never hits b(r) on [0; �r] almost surely, which makes uniform distribution of �nite

size impossible. For parts (ii) and (iii), apply Lemma 1. �
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Proof of Theorem 2 (b) From (3) and positivity of b(r) and `(r) it follows that for

su¢ ciently small " > 0 there exists �r such that b(r)=`(r) < 1 � " for all r 2 (0; �r] ; and by

the LIT (2),

Pr fW (r) =`(r) � 1� " for some r 2 (0; �r]g = 1:

These two statements imply that

Pr fW (r) � b(r) for some r 2 (0; �r]g = 1;

i.e. W (r) hits b(r) on (0; �r] almost surely, which makes uniform distribution of �nite size

impossible. For parts (ii) and (iii), apply Lemma 1. �
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Figure 1a. Two-sided linear boundary for W (r) on [0, 1] with distribution of size α = 5%

Figure 1b. Two-sided horizontal boundary for W (r) on [0, 1] with distribution of size
α = 5%



Figure 1c. Two-sided Zeileis boundary for W (r) on [0, 1] with distribution of size α = 5%

Figure 1d. Two-sided parabolic boundary for W (r − 1) on [1,∞) with distribution of size
α = 5%



Figure 2a. Two-sided horizontal boundary for B(r) on [0, 1] with distribution of size
α = 5%

Figure 2b. Two-sided Zeileis boundary for B(r) on [0, 1] with distribution of size α = 5%



Figure 3a. Shapes of boundaries for W (r) on [0, 1] with uniform distribution of sizes 1%,
5% and 10%

Figure 3b. Shapes of boundaries for W (r − 1) on [1, 5] with uniform distribution of sizes
1%, 5% and 10%



Figure 3c. Shapes of boundaries for B(r) on [0, 1] with uniform distribution of sizes 1%,
5% and 10%

Figure 3d. Shapes of boundaries for B(r) on [1, 5] with uniform distribution of sizes 1%,
5% and 10%



Figure 4a. One-sided boundary for W (r − 1) on [1, 5] with uniform distribution of size
α = 5%

Figure 4b. Two-sided boundary for B(r) on [0, 1] with uniform distribution of size α = 5%



Figure 5a. CUSUM and OLS-based CUSUM retrospection with various boundaries in
empirical application, shorter historical interval, size 5%

Figure 5b. CUSUM and OLS-based CUSUM monitoring with various boundaries in
empirical application, horizon 2, size 5%



Figure 5c. CUSUM and OLS-based CUSUM monitoring with various boundaries in
empirical application, horizon 5, size 5%

Figure 5d. CUSUM and OLS-based CUSUM retrospection with various boundaries in
empirical application, longer historical interval, size 5%


