NES

ECONUM

EDUCATIONAL LECTURES FROM THE BEST ECONOMISTS

With the support of SAFMAR foundation

Daria Dzyabura Professor NES

MARKETING SCIENCE DATA

ONOMIC

With the support of SAFMAR foundation

Amazon challenged by product returns

Subscribe Now | Sign In

SPECIAL OFFER: JOIN NOW

Europe Edition ▼ May 23, 2018 Today's Paper

Life & Arts Real Estate Business Tech Markets Opinion WSJ. Magazine

Q

TECH

Banned From Amazon: The Shoppers Who Make Too Many Returns

Customers say their accounts were closed without warning; it happens when 'you're creating a lot of headaches for Amazon'

May 22, 2018 5:30 a.m. ET

Even Amazon.com Inc. has its limits.

By Khadeeja Safdar and Laura Stevens

Buy Bitcoin

Fashion categories suffer from highest return rates

U.S. online shoppers who returned items back to retailers 2016, by product type

Note:

United States; 2016; 18 years and older; 1,005 Respondents, Statista 2018

ECONOMIC

Product returns with substantial costs

Processing returns in the online channel is very expensive*:

Price	Cost	Return cost	Return rate	Online profit (returns)	Offline profit (no returns)
€ 30.00	€ 10.00	€ 9.31	53%	€ 4.47	€ 20.00

ECONOMIC

*El Kihal, Schulze, Skiera 2018

Product returns with substantial costs

Processing returns in the online channel is very expensive*:

Price	Cost	Return cost	Return rate	Online profit (returns)	Offline profit (no returns)
€ 30.00	€ 10.00	€ 9.31	53%	€ 4.47	€ 20.00
€ 30.00	€ 10.00	€ 9.31	68%	€ 0.07	€ 20.00
€ 30.00	€ 10.00	€ 9.31	40%	€ 8.28	€ 20.00

MOMIC

Heterogeneity in product return rates

ECONOMIC

Is there something systematic about products with high return rates?

Product return rate as important input for several complex decisions

- Online and offline product assortment optimization
- Reverse logistics decisions
- Rank order decisions

• • •

NES

ECONON

Profit input necessary to rank order products

Rank by expected profit: $(Price - Cost) \cdot Pr(Buy)$

With Returns:

 $(Price - Cost) \cdot \Pr(Buy) \cdot (1 - \Pr(return|buy)) - Cost_{return} \cdot \Pr(Buy) \cdot \Pr(return|buy)$

NES

ECONE

Cami fit and flare dress \$49.95 Now \$38.00

Cami fit and flare dress \$49.95 Now \$38.00

Short sleeve fit and flare dress \$59.95 New \$45.00

Now \$45.00 gap.com exclusive style

Short sleeve fit and flare dress \$59.95 New \$45.00

gap.com exclusive style

Main reason behind high return rates in the fashion industry

Gap

Online Channel

Offline Channel

MES

ECTORIC

Main reason behind high return rates in the fashion industry

Online Channel

Purchase Decision

Return/keep?

53% Return Rate

Offline Channel

Purchase Decision

3% Return Rate

...with huge costs associated for each return in online channel

NES

ECONO

Online vs. offline demand and product returns

Online Channel		Offline Channel
<i>U</i> _{on} Purchase Decision*	VS.	U _{off} Purchase Decision
U _{off} Return/keep?		

- Difference in preferences* → discrepancy in online/offline demand
- High discrepancy in demand → high return rate
- Implications for product, place, price & promotion decisions
- Accurate forecasting of return rate using all available product info (attributes, image)

Return rates by category

ECONOMIC

Popular categories online vs. offline

ECONOMIC

Product level online & offline demand and returns

Indeed,...

$$salesOff = \beta_0 + \beta_1 * salesOn + \beta_2 * returns$$

	coef	std err	\mathbf{z}	$\mathbf{P}{>} \mathbf{z} $
${\bf Intercept}$	138.4729	$7.370 e{+00}$	$1.879\mathrm{e}{+01}$	9.561e-79
salesOn	1.0936	1.831e-01	$5.974\mathrm{e}{+00}$	2.311e-09
ret	-0.5717	2.162 e-01	$-2.645\mathrm{e}{+00}$	8.174e-03

NES

FCONO!!

CTORIUN

Hypothesis: High $u_j^{online} - u_j^{offline} \leftrightarrow$ high return rate

$$returnRate = \beta_0 + \beta_1 * propOn + \beta_2 * propOff$$

IV's are sales relative to channel and category:

$$prop0n = \frac{sales0n}{\sum_{\text{category}} sales0n}$$
$$prop0n = \frac{sales0ff}{\sum_{\text{category}} sales0ff}$$
$$returnRate = \frac{returns}{sales0n}$$

	coef	std err	${f z}$	P> z
Intercept	0.4600	6.149e-03	$7.481\mathrm{e}{+01}$	$0.000\mathrm{e}{+00}$
propOn	0.0395	4.999e-03	$7.898e{+00}$	2.823e-15
propOff	-0.0266	2.411e-03	$-1.101\mathrm{e}{+01}$	3.320e-28

NES

ECONO

LECTOR

What we know so far

- High & expensive product returns
- Great variance in product return rates
- Profits very sensitive to product return rates
- Knowledge about product's offline performance would be valuable!

CONOMIC

Offline performance often not accessible pre-launch

- Retailer might not have an offline channel
- Retailer might want to launch products simultaneously in both channels
- Retailer might not be able to wait until he has enough data on offline performance
- Retailer needs often pre-launch predictions of return rate to optimize product lines
- Online & offline category management do not share information on product performance
- •

MES

How do marketers predict demand pre-launch?

- Define consumer preferences over product characteristics
- But in fashion characteristics are not quantifiable,
 so we use images (contain relevant product information)
- To convince you that visual features contain important information which is predictive

ECONOMIC

Color analysis: Blue and Black sell better offline

 $salesOff = \beta_0 + \beta_1 * salesOn + \beta_2 * pink + \beta_3 * purple + \cdots$

	coef	std err	\mathbf{z}	P> z	[0.025]	0.975]
Intercept	227.2432	20.642	11.009	0.000	186.786	267.700
salesOn	0.6016	0.207	2.901	0.004	0.195	1.008
\mathbf{Pinks}	-23.5886	32.552	-0.725	0.469	-87.390	40.213
$\operatorname{Purples}$	8.7271	26.023	0.335	0.737	-42.276	59.730
Reds	49.9117	27.795	1.796	0.073	-4.565	104.389
Oranges	0.6168	101.987	0.006	0.995	-199.274	200.508
Yellows	-43.3496	63.669	-0.681	0.496	-168.138	81.439
Greens	-38.2311	40.546	-0.943	0.346	-117.700	41.238
Cyans	160.1235	107.095	1.495	0.135	-49.778	370.025
Blue	94.7550	26.560	3.568	0.000	42.698	146.812
Browns	-84.8600	24.471	-3.468	0.001	-132.823	-36.897
Whites	28.1769	24.963	1.129	0.259	-20.751	77.104
Greys	-17.3652	16.370	-1.061	0.289	-49.450	14.720
Black	92.3267	22.894	4.033	0.000	47.456	137.198
priceOn	-1.6030	0.218	-7.341	0.000	-2.031	-1.175

CTORIUM

Color analysis: Pink more likely to be returned

returns $= \beta_0 + \beta_1 * salesOn + \beta_2 * Pinks + \beta_3 * Purples + \dots + \beta_{14} * price$

	\mathbf{coef}	std err	${f z}$	P> z	[0.025]	0.975]
Intercept	-9.4306	0.912	-10.340	0.000	-11.218	-7.643
salesOn	0.5423	0.011	49.733	0.000	0.521	0.564
Pinks	3.5295	0.929	3.800	0.000	1.709	5.350
Purples	1.0744	0.976	1.101	0.271	-0.838	2.987
Reds	-0.3147	1.041	-0.302	0.762	-2.356	1.726
Oranges	1.0611	2.109	0.503	0.615	-3.072	5.194
Yellows	-2.8983	2.373	-1.221	0.222	-7.549	1.753
Greens	0.0020	1.402	0.001	0.999	-2.747	2.751
Cyans	-18.5559	4.258	-4.358	0.000	-26.902	-10.210
Blue	-0.4504	1.067	-0.422	0.673	-2.542	1.641
${\bf Browns}$	5.4571	1.094	4.988	0.000	3.313	7.601
Whites	1.7661	0.787	2.244	0.025	0.224	3.309
Greys	2.2107	0.563	3.927	0.000	1.107	3.314
Black	-2.3121	0.808	-2.861	0.004	-3.896	-0.728
priceOn	0.1228	0.014	9.000	0.000	0.096	0.150

ONOMIC

Examples of product images

MES

FORIUM

Image classification

Feature Extraction

- Color features: RGB histograms
- Texture/pattern features: capture periodicity in the image,
 e.g. striped or checkered pattern
- Deep learned features: second to last layer of pre-trained CNN (VGG-19, Simonyan and Zisserman 2014)

Model: Gradient boosted regression trees (GBRT)

Train on 75% of data, predict on 25%, average over 100 splits

MES

Predicting return rates for new products

$$\bullet R_{model}^2 = 1 - \frac{\sum_{i \in K_{test}} (RR_i - \widehat{RR}_i^{model})}{\sum_{i \in K_{test}} (RR_i - \widehat{RR}_i^{random})}$$

Features	Holdout R ²	St. Dev.
Category, price	33.88	2.93
Category, price, color descriptions	35.51	2.79
Category, price, image – RGB	44.12	2.44
Category, price, image - Gabor	42.16	2.57
Category, price, image - Deep learned	44.64	2.45

Predicting return rates for new products

$$\bullet R_{model}^2 = 1 - \frac{\sum_{i \in K_{test}} (RR_i - \widehat{RR}_i^{model})}{\sum_{i \in K_{test}} (RR_i - \widehat{RR}_i^{random})}$$

Features	Holdout R ²	St. Dev.
Category, price	33.88	2.93
Category, price, color descriptions	35.51	2.79
Category, price, image – RGB	44.12	2.44
Category, price, image - Gabor	42.16	2.57
Category, price, image - Deep learned	44.64	2.45
Category, price, image, offline sales	45.86	2.40

NES

ECIL

Summary & Future Directions

- Returns are an important issue with implications for firm marketing decisions
- Discrepancy in performance of products in online and offline channels
- Products that sell well online but poorly offline likely to be returned
- Use product visual features to accurately predict product return rates
- Methodologically, incorporating images can also be used for pre-launch demand forecasting

MES

Primary data: measuring discrepancy between online and offline preferences

• Keeping the customer constant, measure preferences

• Specifically interested in preferences for particular product ATTRIBUTES

ECONOMIC

Product attributes and willingness to pay

CLICK IMAGE TO ENLARGE

Electronics

iSonic Protab 7 HD Google Android 4.2 Dual-Core 1.9GHz 8GB 2-in-1 Pico Projector & 7" Dual-Camera Tablet PC

Tablets are unbeatable when it comes to slimline handheld computing convenience, but this iSonic Protab 7 Pico Projector Tablet PC combines all the functionality of a very capable tablet with the versatility of a built-in DLP projector. It's a real performer for anyone who gives presentations or more simply wants to be able to watch digital content "big screen" style on any wall or other clear right-angled surface. Google Android 4.2 and a dual-core 1.9GHz CPU plus 8GB of memory give the Protab 7 HD plenty of processing pep and 1024p HD playback is standard for watching on the 7" HD display. You're able to project images from 5 to 80" away at 35 lumens

\$389.00 Our Price
\$799.00 Retail

Protab 7 HD

Quantity: 1

BUY NOW

51%
SAVINGS

TIME LEFT
12:43:39

SHARE & EARN UP TO \$1.000

OMIC

ECONOMIN

LEU

Preference elicitation

- Respondents select the utility maximizing product from those available
- Products vary on several attributes
- Which of the following Tablet PCs would you prefer?

- A. Apple with 12 hour battery life, no built-in projector, 10 inch screen, for \$500
- B. Toshiba with 10 hour battery life, built-in projector, 7 inch screen, for \$400

Suppose you are designing a Maserati SUV

What features should you include and emphasize in marketing?

- automatic parking
- auto-adjust acceleration fuel saver, normal, sport, OMG
- Bose active suspension
- fire suppression
- four vs. five seats
- true off-road capability
- Jeep vs. Ferrari engine
- towing capability
- active cruise control
- standard transmission
- Etc.

NOMIC

ECTORIUM

Willingness to Pay

Maserati SUV

- Auto-adjust acceleration = \$1,250
- Off-road capability = -\$500
- Auto parking = \$2,000
- Etc.

Market share predictions, design of optimal products/services, pricing

Consider segments, combinations of features, competition, and core strengths.

18,000 + Applications yearly

- EZPass highway payment system
- Courtyard by Marriott
- RIM's Blackberry smartphones
- SiriusXM service
- AMEX card service
- Intel chips
- Hallmark Cards
- Procter & Gamble (pricing)
- GM (OnStar, Northstar engine, bumper-to-bumper warranty)
- Audi product-line design
- Boeing employees credit union
- Canadian Dept of Fisheries and Oceans
- Woman's health in rural Tanzania
- Apple iPhone
- Microsoft
- Lifetime Products, Inc. (integrated manufacturing)
- Consumer goods: bar soaps, shampoos, carpet cleaners, synthetic-fiber garments, gasoline pricing, panty hose, lawn chemicals, cameras, batteries
- B2B products: copiers, printing equipment, data transmission, enterprise software, portable computers
- Financial services: branch bank services, auto insurance policies, health insurance, credit cards, auto-retailing facilities
- Transportation: domestic airlines, transcontinental airlines, train service, electric cars, car rentals
- Other: automotive styling, automotive tires, ethical drugs, telephone services, employment agencies, medical laboratories
- Non-marketing: forest health, HR benefits, energy savings programs, food safety, recreation

MES

LECTORIU

Ratings-Based Elicitation Task

Size: Small (10 x 19 x 14 in)

Price: \$140

Strap pad: Yes

Water bottle pocket: No

Inside Compartment: Empty bucket with no

dividers

Definitely Would Not Would Not Might Not Buy

Probably Buy

Might or Buy

Probably Definitely Would Buy Would Buy

Do you think any of these are likely to change offline?

Attribute	Level	Partworth	
	Reflective	-0.31**	
Colon	Colorful	-1.06**	
Color	Blue	-0.22**	
	Black		
Cino	Large	0.27**	
Size	Small		
Price	\$120 – \$180	-0.22**	
Ctuan nad	Yes	0.51**	
Strap pad	No		
Matau battla	Yes	0.45**	
Water bottle	No		
	Divider for files	0.41**	
Interior	Laptop sleeve	0.62**	
	No dividers		
Intercept		3.72**	

ONOMIC

We checked

NES

ECONU

ECTORIE

Regression results

Attribute	Level	Online Partworth	Offline Partworth	Difference
	Reflective	-0.31**	-0.60**	-0.28*
Color	Colorful	-1.06**	-0.71**	0.36**
Color	Blue	-0.22**	-0.11	-0.12
	Black			
Cino	Large	0.27**	-0.31**	-0.58**
Size	Small			
Price	\$120 – \$180	-0.22**	-0.15**	0.06**
Ctura us a d	Yes	0.51**	0.25**	-0.26**
Strap pad	No			
\	Yes	0.45**	0.17**	-0.28**
Water bottle	No			
	Divider for file	es 0.41**	0.52**	0.11
Interior	Laptop sleeve	0.62**	0.88**	0.26**
	No dividers			
Intercept		3.72**	3.39**	-0.33

ECONOMIC CTORIUM

Discrepancy between preferences

• Why?

Lack of information

Abstract vs. concrete thinking

Attribute salience

So what?

Product returns

Product assortments

MES

ECTORIUM

The causal question: why change?

- Two hypotheses:
 - Information gain through offline evaluation
 - Inherent property of the format
- Test using the order conditions

Why change?

First Second measurement measurement 1. Inherent salience difference+ Offline information gain Condition 1: **Online** Offline Online-first 4. Offline information gain 2. Inherent salience difference+ Offline information gain Condition 2: Offline **Online** Offline-first 3. Inherent salience difference

ECONOMIC

Why change?

ECTORIUM ECTORIUM

New Economic School

www.nes.ru lectorium@nes.ru