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Abstract. The  project aims to study network markets for electricity, gas and other homogeneous goods. One problem under consideration is to develope a method for evaluation of imperfect competition impact on the network auctions. Another task is to study the market including vesting contracts between producers and consumers besides the day before auction. For every model, we aim to find Nash equilibrium outcome and  compare it with Walrasian outcome.
1. Setting of the problem.

The main objects of this project are as follows. Construction of a game-theoretic model for  the electricity market including vesting contracts under uncertain demand at the first stage and a network supply function auction at the second stage. Evaluation of market power of market agents depending on characteristics of the market, in particular, for the network electricity auction . Development of methods for analysis and computation of Nash equilibria. Obtaining recommendations on the market rules in order to reduce the market price and the loss of the social welfare.

Importance of the study. On the 1st of November 2003 the competitive segment was introduced on Wholesale Russian Electricity Market. It allows to sell up to 15 % of working capacity (or to buy up to 30% of hour electricity consumption) at marginal node prices or through the system of vesting contracts. During last 17 months the market has developed significantly, the number of participants of bargains has grown from 14  till 90, and now there are up to 23 sellers and up to 57 buyers (some participants act as producers and as consumers simultaneously), including such companies as Sverdlovenergo, Tumenenergo, Rosenergoatom, Lenenergo, Novgorodenergo, Permskaya GRES, Transnefteservis Verhnevolzhskih GES Cascade. The daily consumption volume of the competitive sector reaches 185 mln kWth, that is about 11 % of the total consumption of European Russia and Ural. About 25% of this value is sold via vesting contracts. Besides participants of regulated wholesale market, the large consumers of retail market, where regulated prices are significantly higher than in the wholesale market, gradually enter the competitive sector. In May of 2005 it is planned to spread the market area on the territory of Siberia.  The actual model of the market should change in 2006: the regulated sector of market will be transformed into the market of long-lasting regulated vesting contracts.

The behavior of agents on Russian electricity market as well as conditions of its functioning are not yet settled. For more developed markets the data (see Baldick et al., 2000) shows that large firms actively use market power for lifting prices and their revenue in comparison to a competitive equilibrium. In our previous papers (Vasin et al., 2003, 2005) we obtain a method for evaluations of the Nash equilibrium deviation from the competitive equilibrium for a model of the local auction under the current market rules and also for the Vickrey auction with reserve prices. The following table shows competitive equilibrium price and the expected deviation from it depending on demand elasticity, market structure and the auction type for the Central economical zone of Russia. 

Table.  Walrasian, Cournot,Vickrey and modified Vickrey prices  for the Central economical zone of Russia, market structures with 3 and 5 companies, 
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	0.1
	0,1
	135
	4.24
	5.65
	1.59
	2.19
	0.51
	0.62

	0.2
	0,2
	150
	2.45
	3.10
	1.49
	1.92
	0.44
	0.57

	0.4
	0,4
	172.5
	1.56
	1.87
	1.49
	1.76
	0.42
	0.49

	0.6
	0,6
	219.67
	1.15
	1.34
	1.30
	1.46
	0.33
	0.38


However, the current plan of the electricity market developement does not include mechanisms similar to Vickrey auction. According to this plan, the number of large generating companies is about 70. Thas, if we proceed from the spot market model, the expected deviation from the Walrasian price andthe welfare loss are sufficiently small. However, for more accurate estimation of possible deviation it is necessary to investigate the standard  supply function auction with account of network structure of the market. In contrast to many other countries, this structure is essential for  price determination at the Russian market due to rather large transmission losses and transmission restrictions on some parts of the network. In our paper (2005) we made an analysis of Nash equilibria for a supply function auction on the simple network with two nodes. Recently we generalized these results for a linear network where all nodes are on one line. Our discussion with RAO UES experts shows that an important problem is to develope an efficient method for Cournot equilibrium computation for networks with cicles. The difficulty is that electricity networks are more complicated, they work under Kirhgoff laws. In particular, transmitting capacities are limited not on the edges but on cross sections of the network.

Another important task is to study the impact of vesting contracts on the market Nash equilibrium. According to the current plan, such contracts are to play an important role in price stabilization. However, this assumptions is dautful and requires investigation. In contrast to the day before auction, the contracts are made under significant uncertainty on the future supply-demand relation. Papers in this sphere (Дьякова, 2003, Wolfram, 1999) consider a local market with linear supply theoretical and empirical functions that is not in accordance with Russian wholesale market rules and cost structure of energetic companies. We plan to study a market with step cost functions and network structure. 

2. Literature Review. 

Our paper Vasin et al (2005) provides the last findings on existence and properties of the Nash equilibrium for the Cournot oligopoly and the model of competition via supply functions. In every case, the underlying market includes a fixed finite number of producers that are heterogeneous in production capacities and non-decreasing marginal costs of production. Consumers do not play any active role in the models. Their behavior is characterized by the demand function that is the common knowledge.

We show that there exists a unique Nash equilibrium in the Cournot model for any non-increasing demand function with the non-decreasing demand elasticity under mild assumptions on the demand asymptotics as the price tends to infinity. We develop a descriptive method for computation of the Cournot outcome under any affine demand function and piece-wise constant marginal costs of producers. In the general case, we obtain an explicit upper estimate of the deviation of the Cournot outcome from the Walrasian outcome proceeding from the demand elasticity and the maximal share of one producer in the total supply at the Walrasian price.

Amir (1996) and Amir and Lambson (2000) study existence and uniqueness of the Nash equilibrium in the Cournot model for logconvex and logconcave inverse demand functions. (Note that 
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.) Thus, the first property is stronger than increasing of the demand elasticity while the second may hold or not hold in our case. A typical example of the demand function with increasing elasticity that does not meet the both properties is the demand for a necessary good with the low elasticity for low prices and the high elasticity for high prices, such that consumers prefer some substitute.

We consider a model where the market price is determined by the sealed bid auction, and producers set multi-step supply functions as their strategies. We show that, besides the Cournot outcome, there exist other Nash equilibria. For any such equilibrium the cut price lies between the Walrasian price and Cournot price. Vice versa, for any price between the Walrasian price and the Cournot price, there exists the corresponding equilibrium. However, we show that only the Nash equilibrium corresponding to the Cournot outcome is stable with respect to some adaptive dynamics under general conditions.

This result echoes Moreno and Ubeda (2002) who obtained a similar proposition for a two-stage model where at the first stage producers choose production capacities, and at the second stage they compete by setting the reservation prices. The difference is that in our model the Cournot type equilibrium always exists under fixed production capacities since the agents set the production volumes as well as the reservation prices.

Our results differ from Klemperer and Meyer (1989) who study competition with arbitrary supply functions reported by producers. Under similar conditions, they obtain an infinite set of Nash equilibria corresponding to all prices above the Walrasian price. Our constraint that permits only non-decreasing step functions is reasonable in context of development of electricity markets. 

The estimates of the Cournot outcome deviation from competitive equilibrium as well as the results of calculations for the concrete market show that market price in the supply function auction can essentially (3-5 times) exceed the Walrasian price under the current market organization. Thus, investigation of alternative variants of auction organization is of great theoretical and practical interest. Our report(2005) considers Vickrey auction with reserve prices. In such auction the cut-off price and production volumes are determined in the same way as in the standard supply function auction. However, the good obtained from a producer  is paid at the reserve prices. The marginal price is a minimum of the marginal cost of the same output for other producers and the marginal reserve price of this output for consumers. The marginal cost is calculated on the basis of reported supply functions, but in this case reporting the actual costs  and production capacities is a weakly dominating strategy. In absence of information on production costs the guaranteed value of total profit reaches its maximum at the corresponding Nash equilibrium. 

Our results generalize the results of Ausubel and Cramton (1999) who studied Vickrey auction on trading a divisible good. In their model the players are consumers. Moreover, we show that the specified outcome corresponds to the so-called truthful equilibrium for the menu auction introduced in the paper by Bernheim and Whinston (1986), see also Bolle, 2004. At this equilibrium each producer obtains the  profit equal to the increase  of the total welfare of all participants of the auction due to his participation in the auction. However, the construction of this equilibrium in the specified papers needs the complete information on consumers’ reserve prices (in our case, on production costs). In framework of the Vickrey auction, the equilibrium in dominant strategies realizes this outcome under any actual cost functions and private information of each participant on his function.

Our calculations for the Central Economic Region of Russia show that Vickrey auction  price for consumers exceeds the Walrasian price only 1,5 times (to compare with 3,5-5 times for the standard auction). However, such increase seems to be also rather essential. Besides, there exists reasonable arguing that participants of the auction typically would not  reveal their actual costs, that is, the specified equilibrium in dominant strategies is not realized (see Rothkopf et al., 1990).  The main argument is that reporting the actual costs gives an advantage to the auctioneer (and also to other economic partners) in the further interactions with this producer.

The situation differs significantly if the marginal costs and the maximal capacity of each generator are a common knowledge, and the uncertainty relates to a decrease of capacities due to breakdowns and repairs. In this case current information on the working capacities is weakly correlated with the future state, and the specified argument against revealing the actual costs turns out to be invalid.  Moreover, the common information may be used for redistribution of the total income in favor of consumers. We specify the rule for calculation of reserve prices with account of such information. This rule provides the maximal guaranteed value of the total profit of consumers. Under this rule, reporting the actual producer’s characteristics stays his dominant strategy, and the total welfare still reaches the maximum.

The second part of our paper (2005) considers a simple network market – the market with two nodes. As above, each local market is characterized by the demand function and the finite set of producers with non-decreasing marginal costs. For every producer his strategy is supply function that determines his supply of the good depending on the price. The markets are connected by the transmitting line with the fix share of loss under transmission. Under given strategies of producers, the network administrator first computes the cut prices for the separated markets. If the ratio of the prices is sufficiently close to one then transmutation is unprofitable with account of the loss. In this case, the outcome is determined by the cut prices for isolated markets. Otherwise the network administrator sets the flow to the market with the higher cut price (for instance market 2). This flow reduces the supply and increases the cut price at the market 1. Simultaneously it increases the supply and reduces the cut price at the market 2. The network administrator determines the transmitted volume so that the ratio of the final cut prices corresponds to the loss coefficient. Thus, he acts as if perfectly competitive intermediaries transmit the good from one market to the other. It is easy to show that such strategy maximizes the total welfare if the reported supply functions correspond to the actual costs.

First we consider the Cournot competition model for this market. Our study shows that there exist three possible types of Nash equilibrium: 1) an equilibrium with zero flow between the markets and the ratio of the prices close to 1; 2) an equilibrium with a positive flow and the ratio of the prices corresponding to the loss coefficient; 3) an equilibrium with a flow equal to a transmitting capacity of the line. We develop a method how to compute them. We study under what conditions the local equilibrium is a real Nash equilibrium. For the market with constant marginal costs and affine demand functions, we determine the set of Nash equilibria depending on the parameters. 

A generalization of these results for the network with general structure is an important and non-trivial problem. 

3. Research Methodology. We propose to develop methods of Nash equilibrium computation for a model of competition via supply functions and Vickrey auction with reserve prices and to obtain the estimates of for the Nash equilibrium deviation from the competitive equilibrium, proceeding from the following models (see also Vasin et al., 2003).

The basic model of the local market.
Consider a market with a homogenous good and a finite set of producers 
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. Consumers’ behavior is characterized by the demand function 
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Consider a model of Cournot competition for this market. Then a strategy of each producer 
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. Producers set these values simultaneously. Let 
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 The payoff function of producer 
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 Thus, the interaction in the Cournot model corresponds to the normal form game 
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Recall basic definitions.
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 of production volumes is Cournot equilibrium (CE) if it is a NE in the game 
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Then the F.O.C. for Nash equilibrium is 
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The supply function auction.
Consider the following closed bid auction: every producer 
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In order to define the payoff functions, we should consider two cases. Let 
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Note that there are three possible types of Nash equilibria for 
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Proposition 1.3. a) For every Nash equilibrium without rationing, the production volumes correspond to the local Cournot equilibrium. Vice versa, if 
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1) there exists at most one producer 
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Thus, the bound of deviation obtained for the Cournot outcome is valid for any Nash equilibrium of this auction. 

A network market with two nodes

Consider two local markets connected with a transmitting line. Every local market 
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Consider the Cournot competition in this model. Then each producer sets 
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Besides that, 
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For the second-type outcome with 
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Similarly, producers in the market 2 face the demand 
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for any 
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The given conditions are necessary but not sufficient for strategy combination to be a Nash equilibrium.

Consider a local equilibrium of the type 1 (with zero flow between the markets). Under a sufficiently large increase of production volume by player 
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Figure 3.

 EMBED Equation.3  
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Proposition 2.2. The local equilibrium point of the type a) is not a Nash equilibrium if and only if for some producer 
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Note. In this proposition we assume that transmission capacity constraint 
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The necessary and sufficient condition for strategy combination to be a Nash equilibrium of the second and third types are obtained in a similar way (see our paper, 2003).

Topics for investigation: a generalization of results for a larger number of nodes; study  of equilibria set structure depending on parameters of the model; study of the network Vickrey auction.

Vesting Contracts.

We propose to study the following 2-stage model: at the first stage, producers and consumers make vesting contracts under uncertainty about the future demand liable to exogenous shocks. At the second stage, the agents take part in the Cournot auction, where the bids of producers are limited with the residual production capacities and consumers’ behavior is determined by the residual demand function. There are several variants of the formal description for the firs t stage of the model: Cournot competition, Bertrand competition, the  regulated market (according to the current plan of the market organization). Kamat and Smuel (2005) consider some models in the similar framework.

Topics for investigation: study  different variants of this 2-stage model.
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