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Abstract

When a nuisance parameter is weakly identified under the null hypothesis, the usual asymp-

totic theory breaks down and standard tests may exhibit significant size distortions. We

provide asymptotic approximations under a drifting parameter DGP for distributions of

classical tests and of those designed for the case of complete non-identification. Simulations

with a simple SETAR model show that the usual asymptotic theory does fail, although ac-

tual sizes of the classical Likelihood Ratio test display surprising robustness to the degree of

identification.
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1 Introduction and setup

In the standard scenario of testing econometric models, a researcher applies classical asymp-

totic tests and uses critical values provided by the normal and chi-squared distributions.

When there is a non-identified parameter under the null hypothesis, however, the classi-

cal tests yield misleading results. In such cases the suitable approach is sharply different:

one applies instead non-standard tests developed by Davies (1987), Andrews and Ploberger

(1994) and Hansen (1996), among others.

Even in the standard scenario, however, some parameters may not be precisely estimated

when the restrictions being tested are imposed, and the situation is essentially close to that

characterized by the presence of a non-identified parameter. It arises, for example, when

testing for equality of slopes in different regimes in some regime switching model when the

corresponding intercepts are close to each other, or the other way round. Even though

formally in such circumstances the standard tests are appropriate, their application for

typically available samples may lead to drastic size distortions. In this paper, we provide

alternative asymptotic approximations to some test statistics under a drifting parameter

DGP. This approach has been recently used in the context of linear models with weak

instruments (e.g., Staiger and Stock (1997)) and nonlinear models estimated by GMM (e.g.,

Stock and Wright (2000)). We then run simulations with a simple SETAR model and show

that the standard asymptotic theory does fail to approximate well the critical values for

most existing tests.

Consider a nonlinear regression model similar to that in Hansen (1996):

yt = x′tα0 + h1 (zt, γ0)′ θ0 + h2 (zt, γ0)′ ϕ0 + εt,

where α is kx × 1, θ is k1 × 1, ϕ is k2 × 1, γ ∈ Γ is scalar, Γ is a compact set, and zero

subscripts refer to true values. The error εt is an MDS relative to information embedding

present and past xt and zt and its own history, and has constant (for simplicity) conditional

variance σ2. All variables are strictly stationary. The null hypothesis of interest is

H0 : ϕ0 = 0.

Suppose that under H0 the parameter γ0 is only weakly identified, which we model by a

drifting parameter DGP with α0 = const and θ0 = π/
√
T , where π 6= 0. When π = 0, there

is complete non-identification under H0.

As a leading example, we consider a two regime self-exciting threshold first-order autore-

gression, and test the equality of AR coefficients in the two regimes. In this case
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xt = (1 yt−1)′ , (h1 (zt, γ) h2 (zt, γ))′ = xtI [yt−1 > γ] , α = (µ ρ)′ , θ = ∆µ, ϕ = ∆ρ,

where I [·] denotes the indicator function, γ is a threshold value, µ and ρ are an intercept

and AR coefficient in the first regime, and ∆µ and ∆ρ are their increments across the

regimes. The null hypothesis corresponds to testing whether the persistence is the same

across the regimes, while the mean is allowed to differ. When the mean shift in the data is

small, the threshold parameter γ0 is weakly identified. Note that the regression function is

non-differentiable with respect to γ.

Let vector e and matrices X, H1(γ), Hx1(γ), H2(γ) and H(γ) consist of rows εt, x
′
t,

h1 (zt, γ)′ ,
(
x′t, h1 (zt, γ)′

)
, h2 (zt, γ)′ and ht (γ)′ ≡

(
x′t, h1 (zt, γ)′ , h2 (zt, γ)′

)
, respectively,

for t = 1, · · · , T. Let us also introduce selector matrices Jx =
(
Ikx 0kx×(k1+k2)

)′
, J1 =

(0k1×kx Ik1 0k1×k2)′ , J2 =
(
0k2×(kx+k1) Ik2

)′
, J12 =

(
0(k1+k2)×kx Ik1+k2

)′
, Jx1 =

(
Ikx+k1 0(kx+k1)×k2

)′
,

and Jx2 =

(
Ikx

0k2×kx
0(kx+k2)×k1

0kx×k2

Ik2

)′
, so that X = H(γ)Jx, H1(γ) = H(γ)J1, etc.

Under suitable conditions spelled out in Hansen (1996),

H(γ1)′H(γ2)

T

AS→ Q(γ1, γ2) ≡ E
[
ht (γ1)ht (γ2)′

]
uniformly over γ1, γ2 ∈ Γ, and

H(γ)′e√
T
⇒ Ψ(γ),

where Ψ(γ) is a (kx + k1 + k2)-variate Gaussian process with covariance kernel σ2Q(γ1, γ2),

and ⇒ denotes weak convergence with respect to the uniform metric.

The model is estimated by minimizing the average squared residual (ASR) via the concen-

tration method: the ASR is minimized for fixed values of γ, and the resulting ASR function

is minimized with respect to γ. When γ is fixed, the ASR under H0 equals

ASR(γ) = T−1
(
e+Xα0 +H1(γ0)π/

√
T
)′ (

I −H(γ) (H(γ)′H(γ))
−1
H(γ)′

)
×
(
e+Xα0 +H1(γ0)π/

√
T
)

=
e′e

T
− 1

T

e′H(γ)√
T

(
H(γ)′H(γ)

T

)−1
H(γ)′e√

T
+

1

T
π′
H1(γ0)′H1(γ0)

T
π

− 1

T
π′
H1(γ0)′H(γ)

T

(
H(γ)′H(γ)

T

)−1
H(γ)′H1(γ0)

T
π

+
2

T

e′H1(γ0)√
T

π − 2

T

e′H(γ)√
T

(
H(γ)′H(γ)

T

)−1
H(γ)′H1(γ0)

T
π.
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Suppose we impose ϕ = 0. Then for fixed γC , the ASR under H0 equals, similarly,

ASRC(γC) =
e′e

T
− 1

T

e′Hx1(γC)√
T

(
Hx1(γC)′Hx1(γC)

T

)−1
Hx1(γC)′e√

T
+

1

T
π′
H1(γ0)′H1(γ0)

T
π

− 1

T
π′
H1(γ0)′Hx1(γC)

T

(
Hx1(γC)′Hx1(γC)

T

)−1
Hx1(γC)′H1(γ0)

T
π

+
2

T

e′H1(γ0)√
T

π − 2

T

e′Hx1(γC)√
T

(
Hx1(γC)′Hx1(γC)

T

)−1
Hx1(γC)′H1(γ0)

T
π.

2 Estimators and their asymptotic behavior

When γ is fixed, the unconstrained ASR under H0 is

ASR (γ) = Terms that do not depend on γ

− 1

T

(
H(γ)′e√

T
+
H(γ)′H1(γ0)

T
π

)′(
H(γ)′H(γ)

T

)−1(
H(γ)′e√

T
+
H(γ)′H1(γ0)

T
π

)
.

Thus the minimizer γ̂ of ASR (γ) converges almost surely to

γ∗ = arg sup
γ∈Γ

{
(Ψ(γ) +Q(γ, γ0)J1π)′Q(γ, γ)−1 (Ψ(γ) +Q(γ, γ0)J1π)

}
.

Note that if not for the first term in the round brackets, the maximizer would be γ0 because

Q(γ0, γ)Q(γ, γ)−1Q(γ, γ0) ≤ Q(γ0, γ0)

by the matrix Cauchy–Schwarz inequality (e.g., Tripathi (1999)). This fact reflects consis-

tency of γ̂ when γ0 is well identified, in which case π is proportional to
√
T and the first term

asymptotically disappears. Under weak identification, the first term in the round brackets of

the objective function makes the solution γ∗ different from γ0 and random. Under complete

non-identification when π = 0, the true γ0 does not enter into the objective function at all.

Analogously, the minimizer γ̂C of ASRC (γ) converges almost surely to

γ∗C = arg sup
γ∈Γ

{
(Ψ(γ) +Q(γ, γ0)J1π)′ Jx1 (J ′x1Q(γ, γ)Jx1)

−1
J ′x1 (Ψ(γ) +Q(γ, γ0)J1π)

}
.

Note thatASR (γ̂) andASRC (γ̂C) are consistent for σ2 underH0 in spite of the inconsistency

of γ̂ and γ̂C .

Next, for fixed γ, under H0
α̂(γ)

θ̂(γ)

ϕ̂(γ)

 = (H(γ)′H(γ))
−1
H(γ)′

(
e+Xα0 +H1(γ0)

π√
T

)
AS→


α0

0

0

 ,
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and

√
T


α̂(γ)− α0

θ̂(γ)− θ0

ϕ̂(γ)

 =

(
H(γ)′H(γ)

T

)−1
H(γ)′e√

T
+

(
H(γ)′H(γ)

T

)−1
H(γ)′H1(γ0)

T
π − J1π

⇒ Q(γ, γ)−1 (Ψ(γ) + (Q(γ, γ0)−Q(γ, γ)) J1π) .

When γ0 is estimated, under H0

√
T


α̂− α0

θ̂ − θ0

ϕ̂

 d→ Q(γ∗, γ∗)−1 (Ψ(γ∗) + (Q(γ∗, γ0)−Q(γ∗, γ∗)) J1π) .

Thus, the asymptotic distributions of α̂, θ̂ and ϕ̂ are non-normal under H0.

3 Test statistics and their asymptotic behavior

We start by deriving asymptotic distributions of the classical test statistics under a drifting

parameter DGP. By “classical” we mean the standard Wald, Likelihood Ratio and Lagrange

Multiplier tests constructed for fixed values of γ and γC when the model is linear with respect

to the other parameters, with these values set to the estimates γ̂ and γ̂C . This approach is

motivated by the non-differentiability of ht (γ) in our leading SETAR example in which the

standard test statistics so constructed are asymptotically χ2 when γ0 is well identified even

though it is estimated.

When γ is fixed, the Wald statistic equals

W (γ) =
1

ASR (γ)

((
H(γ)′H(γ)

T

)−1
H(γ)′e√

T
+

(
H(γ)′H(γ)

T

)−1
H(γ)′H(γ0)

T
J1π

)′

×J2

(
J ′2

(
H(γ)′H(γ)

T

)−1

J2

)−1

J ′2

×

((
H(γ)′H(γ)

T

)−1
H(γ)′e√

T
+

(
H(γ)′H(γ)

T

)−1
H(γ)′H(γ0)

T
J1π

)
.

When γ0 is estimated, the Wald statistic W is asymptotically distributed as follows:

W
d→ 1

σ2
ζ ′W ζW ,

where

ζW =
(
J ′2Q(γ∗, γ∗)−1J2

)− 1
2 J ′2Q(γ∗, γ∗)−1 (Ψ(γ∗) +Q(γ∗, γ0)J1π) .
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When γ and γC are fixed, the Likelihood Ratio statistic equals

LR (γ, γC) = T log

((
H(γ)′e√

T
+
H(γ)′H(γ0)

T
J1π

)′(
H(γ)′H(γ)

T

)−1

×
(
H(γ)′e√

T
+
H(γ)′H(γ0)

T
J1π

))−1((
H(γC)′e√

T
+
H(γC)′H(γ0)

T
J1π

)′
×Jx1

(
J ′x1

H(γC)′H(γC)

T
Jx1

)−1

J ′x1

(
H(γC)′e√

T
+
H(γC)′H(γ0)

T
J1π

))
.

When γ0 is estimated, the Likelihood Ratio statistic LR has the following asymptotic dis-

tribution, also shared by k2 times the classical F statistic:

LR
d→ 1

σ2
(ζ ′CLRζCLR − ζ ′LRζLR) ,

where

ζLR = Q(γ∗, γ∗)−
1
2 (Ψ(γ∗) +Q(γ∗, γ0)J1π) ,

ζCLR = (J ′x1Q(γ∗C , γ
∗
C)Jx1)

− 1
2 J ′x1 (Ψ(γ∗C) +Q(γ∗C , γ0)J1π) .

When γ and γC are fixed, the Lagrange Multiplier statistic equals

LM (γ, γC) =
1

ASRC (γC)

(
e+

H(γ0)√
T

J1π

)′
×

(
I − Hx1(γC)√

T

(
Hx1(γC)′Hx1(γC)

T

)−1
Hx1(γC)′√

T

)
H(γ)√
T

(
H(γ)′H(γ)

T

)−1

×H(γ)′√
T

(
I − Hx1(γC)√

T

(
Hx1(γC)′Hx1(γC)

T

)−1
Hx1(γC)′√

T

)(
e+

H(γ0)√
T

J1π

)
,

and has the following asymptotic distribution when γ0 is estimated:

LM
d→ 1

σ2
ζ ′LMζLM ,

where

ζLM = Q(γ∗, γ∗)−
1
2

(
Ψ(γ∗) +Q(γ∗, γ0)J1π −Q(γ∗, γ∗C)Jx1 (J ′x1Q(γ∗C , γ

∗
C)Jx1)−1

×J ′x1 (Ψ(γ∗C) +Q(γ∗C , γ0)J1π)

)
.

The null distributions for the three tests are nonstandard, and resemble asymptotic distri-

butions under local alternatives. Moreover, they depend on a host of nuisance parameters

and consistently non-estimable value of π, thus tabulation of critical values is problematic.

The distributions are in general different from each other. It can be shown though that

W ≥ LR, which implies that the Wald test rejects more often than the Likelihood Ratio

test.
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It is also interesting to investigate the tests that are designed for the case of complete non-

identification under H0. Such tests are developed in Davies (1987), Andrews and Ploberger

(1994) and Hansen (1996), among others. We will consider the most popular class of tests,

the ones with the supremum functional; the others can be treated similarly. In the present

context these tests may be applied in two variations.

In the first variation, the researcher neglects some identifiability of γ0 and treats it as

completely non-identified, effectively testing the hypothesis H ′0 : θ0 = ϕ0 = 0. In this case,

the sup-Wald statistic supW1, sup-Likelihood Ratio statistic supLR1 and sup-Lagrange

Multiplier statistic supLM1 have the following asymptotic behavior under H0:

T1
d→ 1

σ2
sup
γ∈Γ

ζ1(γ)′ζ1(γ),

where T1 is supW1, supLR1, or supLM1, and

ζ1(γ) =
(
J ′12Q(γ, γ)−1J12

)− 1
2 J ′12Q(γ, γ)−1 (Ψ(γ) +Q(γ, γ0)J1π)

(cf. Hansen (1996, Theorem 1)).

In the second variation, the researcher acknowledges the smallness of θ0 and simply sets it

equal to zero. In this case, the sup-Wald, sup-Likelihood Ratio and sup-Lagrange Multiplier

statistics supW2, supLR2 and supLM2 have the following asymptotic behavior under H0:

T2
d→ 1

σ2
sup
γ∈Γ

ζ2(γ)′ζ2(γ),

where T2 is supW2, supLR2, or supLM2, and

ζ2(γ) =
(
J ′2Jx2 (J ′x2Q(γ, γ)Jx2)

−1
J ′x2J2

)− 1
2
J ′2Jx2 (J ′x2Q(γ, γ)Jx2)

−1
J ′x2 (Ψ(γ) +Q(γ, γ0)J1π) .

4 Threshold autoregression

To assess the size distortions provided by the tests under study in the situation with weak

identifiability, we consider our leading example of a two regime self-exciting threshold first-

order autoregression, reparameterized for the sake of symmetry:

yt = εt +

{
(µ0 −∆µ/2) + (ρ0 −∆ρ/2) yt−1 if yt−1 ≤ γ0,

(µ0 + ∆µ/2) + (ρ0 + ∆ρ/2) yt−1 if yt−1 > γ0.

The null hypothesis is H0 : ∆ρ = 0. When ∆µ is big, the conventional asymptotic theory

is expected to yield adequate approximation to distributions of standard test statistics;

when ∆µ = 0, it is appropriate to apply the Davies–Andrews&Ploberger–Hansen statistics

(in which case it is a test for linearity), and when ∆µ is small but non-zero, the actual
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distributions of test statistics of both types may deviate significantly from predictions of the

standard asymptotic theory.

We set T = 300, µ0 = ρ0 = 0, γ0 = 0, and Υ = [0.1, 0.9] , where Υ is the image of the

transformation by the EDF of yt with domain Γ (for more details about Υ, see Hansen (1996,

p. 420)). The number of repetitions is 10, 000 implying that the standard error is 0.22% for

the actual size of 5%, and does not exceed 0.46% for a maximal reported actual size. We use

the Hansen (1997) procedure to compute asymptotic p-values for sup tests, while the critical

value for classical tests is the 95% quantile of chi-squared distribution. All computations are

performed using GAUSS, version 4.0.23.

Figure 1 presents distributions of threshold estimates in the unrestricted and restricted

models when ∆µ = 0.2. These distributions are quite dispersed, and look like a mixture of

two distributions, one of which is tightly concentrated around γ0, and the other is completely

uninformative about γ0. The distribution of the unrestricted threshold estimates is even

triple-peaked, although it is only for a small range of values of ∆µ. The correlation coefficient

between the two threshold estimates equals 0.55 and is nearly invariant to the value of ∆µ.

Figure 2 depicts the actual sizes for the nominal size of 5% when ∆µ varies between 0 and

1, with a fine step of 0.02 when ∆µ is small, a medium step of 0.05 when ∆µ is moderate,

and a rough step of 0.25 when ∆µ is large. The classical tests, except the LR, exhibit severe

overrejection not only when ∆µ is very small but also for its moderate values. In contrast,

the classical LR statistic displays surprising robustness to the degree of identification, the

actual size not exceeding 9% even under near non-identification. The T1 tests that ignore

some identifiability of γ0 (we show the plots for only LR associated sup tests because the

others are extremely close) work well only in a close neighborhood of non-identifiability, the

size distortion beginning to rise sharply when ∆µ exceeds 0.1 (so that π exceeds ≈ 2). The

T2 tests that remove the problematic term reject much less frequently than they should for

a wide range of identification degrees, but exhibit serious overrejection when γ0 is very well

identified.

We also run several experiments to assess the robustness of sizes to parameter values.

Starting from the DGP with basic parameter values, we change the threshold value γ0 to

0.5, 1.0, 1.5; or the set Υ to [0.05, 0.95] , [0.15, 0.85] , [0.2, 0.8]; or the sample size T to 100, 200,

400, 500 simultaneously changing ∆µ so that π = ∆µ
√
T is held constant; or the persistence

parameter ρ0 to 0.3, 0.6, 0.9, 0.99. Most test statistics turn to be pretty robust for changes

in all parameters, with the following notable exceptions. As Υ is shrinking, the sizes of the

classical W and LM tests quickly drop and reach about 15% when Υ = [0.2, 0.8] , while that

of the classical LR test drops from 8% to 6%. Further, as the persistence parameter ρ0 goes

up above 0.6, the former two statistics exhibit even higher rejection rates which exceed 25%
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when ρ0 is 0.9 and 35% when ρ0 is 0.99. The rejection rate of the LR test also increases,

but only to 11% when ρ0 is 0.9 and to 16%, when ρ0 is 0.99. Similar tendencies, although to

a much lesser degree, take place when the threshold value γ0 is shifted.

Finally, we examine the power of the LR test to make sure that its favorable size prop-

erties do not come at the expense of power properties. We compute the 5% critical value

from the simulated distribution of the LR statistic under the null with the basic parameter

combination. We set the slope shift ∆ρ at 0.2, 0.4 and 0.8, and obtain pretty decent power

values of 11.8%, 20.4% and 56.1%, respectively.

5 Concluding remarks

The standard asymptotic theory breaks down when a nuisance parameter is weakly identified

under the null hypothesis. The classical asymptotic tests display significant size distortions,

although simulations with a simple SETAR model show that the Likelihood Ratio test seems

to be affected by the phenomenon in the least degree. The tests designed for the case of com-

plete non-identification under the null work well only for a narrow range of parameter values.

Constructing an asymptotically pivotal test statistic robust to the degree of identification

remains a challenging task.
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Figure 1. Distributions of threshold estimates in unrestricted and restricted SETAR models. 
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Figure 2. Actual test sizes as functions of mean shift in SETAR model. 


