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Abstract

We extend the idea of the trade-off window approach by Pesaran and Timmermann

(2007, Journal of Econometrics 137, 134–161) of using observations preceding the last

structural break to estimate model parameters for the purpose of forecasting. Our

weighted least squares method utilizes information in all observations but with weights

varying from one to another interval between breaks. This leads to a smaller mean

squared prediction error which is illustrated by simulations. The proposed procedure

is computationally simple having a convenient associated optimization program. We

also describe and evaluate a cross-validation analog of the proposed method. (JEL

codes: C12, C22, C32, C53)
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1 Introduction

A number of recent papers discuss forecasting when the estimated econometric relationship is

subject to structural breaks (Pesaran and Timmermann, 2002, 2004; Clark and McCracken,

2005; Elliott, 2005), and, in particular, the question of how to exploit sample observations

during estimation. Pesaran and Timmermann (2007) propose a method of a trade-off window

(TOW) where, along with observations from the most recent stable period, the observations

preceding the last break are partly employed in parameter estimation. These additional

observations, albeit introducing bias, help reduce variance and hence may positively affect

the forecast quality criterion. In this paper, we further develop and evaluate the idea of

using pre-break observations in parameter estimation for further forecasting purposes.

We consider a linear model which is subject to m structural breaks at times τ 1, · · · , τm.

There are thus m+ 1 regimes in which the relationship is stable:

yt = x′tβj + εt, t = 1 + τ j−1, · · · , τ j, j = 1, · · · ,m+ 1,

where trivially τ 0 = 0, τm+1 = n, and

E [εt|It−1] = 0,

where It−1 = {xt, xt−1, xt−2,, · · ·x1, yt−1, yt−2, · · · , y1} . As noted in Pesaran and Timmer-

mann (2005, section 4.5), a general estimator of β for the purpose of further forecasting has

the form of weighted least squares:

β̂ =

m+1∑
j=1

τj∑
t=1+τj−1

ωj,txtx
′
t

−1
m+1∑
j=1

τj∑
t=1+τj−1

ωj,txtyt, (1)

where, including the TOW method of Pesaran and Timmermann (2007),

ωj,t = λn−t−1 (1− λ) / (1− λn) (discounted least squares)

ωj,t = 1 (expanding window)

ωj,t = 1 [t ≥ n− w + 1] (rolling window)

ωj,t = 1 [t ≥ τ̂m + 1] (post-break window)

ωj,t = 1 [t ≥ τ̂W] (trade-off window)
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where λ is a discounting rate, w is a rolling window width, τ̂m is an estimate of the last

break date, and τ̂W ≤ τ̂m + 1 is the first observation that falls into the optimal trade-off

window. Our estimator is also a special case of the general form (1) with a flexible system

of weights:

ωj,t = α̂j, j = 1, · · · ,m, ωm+1,t = 1, (2)

where each α̂j is a feasible version of a certain constant α∗j , these m constants constituting

a system of weights optimal in terms of the final prediction criterion, the mean squared

prediction error (MSPE). We call an estimator (1) with the weights of the type (2) a WLS

estimator, and the associated predictor – a WLS predictor.

Note that the TOW method places either zero or unit weights on observations preceding

the last break, and in particular discriminates observations belonging to the last-but-one

stable period. Evidently, neither such discrimination nor zero/unit weighting is optimal

from the MSPE viewpoint. Our system of optimal weights α∗j is a solution of a much more

flexible (i.e. less constrained) optimization program. An additional convenience of the WLS

method is the continuity of the optimization problem, in contrast to the TOW method where

the optimization problem is discrete. On the other hand, the TOW optimization problem

is one-dimensional, while the WLS problem is multidimensional, although computationally

simple. The cross-validation version of the WLS method always requires prior estimation of

break dates, while one of cross-validation versions of the TOW method does not.

One should also mention that there is a growing literature that alternatively employs

Bayesian techniques in constructing forecasts in an unstable environment. See, for exam-

ple, the studies by Clark and McCracken (2004), Koop and Potter (2007), and Pesaran,

Pettenuzzo, and Timmermann (2007).

The paper is organized as follows. Section 2 presents the setup and WLS predictor,

section 3 analyzes and compares the properties of the WLS and TOW predictors. Section

4 discusses the characterization of the optimal system of weights. Section 5 describes the

related cross-validation method. Section 6 presents Monte–Carlo evidence. Finally, Section

7 concludes. The Appendix contains proofs of the theorems.
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2 WLS predictor

In order to derive analytical results, we treat τ 1, · · · , τm as known. Because in practice

the break dates are usually unknown, we study the case of unknown break dates in the

simulation section. In that case the break dates are estimated together with regression

parameters via minimization of the sum of squared residuals, following the approach of Bai

and Perron (1998). Further, for the analytical results to be more transparent and clear-cut,

we follow Pesaran and Timmermann (2007) and make a strict exogeneity assumption. Let

X = (x1, · · · , xn+1) .

Assumption 1 (SE) The errors εt and regressors xt satisfy E [εt|X] = 0.

We derive most of our results conditional on X. Sometimes we also consider special cases

of conditional homoskedasticity and stationary regressor distribution.

Assumption 2 (CH) The error exhibits conditional homoskedasticity, although regime-

wise heteroskedasticity is allowed:

E
[
ε2
t |X
]

= σ2
j , t = 1 + τ j−1, · · · , τ j, j = 1, · · · ,m+ 1.

Given the weights (α1, · · · , αm), the WLS estimator β̂ (α1, · · · , αm) is determined from

the weighted least squares minimization problem:

β̂ (α1, · · · , αm) = arg min
b

m+1∑
j=1

αj

τj∑
t=1+τj−1

(yt − x′tb)
2

=

m+1∑
j=1

αj

τj∑
t=1+τj−1

xtx
′
t

−1
m+1∑
j=1

αj

τj∑
t=1+τj−1

xtyt,

where αm+1 = 1. Assume that there is no structural break at period n + 1. The aim is to

build a predictor ŷn+1 of yn+1 yielding the lowest conditional (given the set of explanatory

variables) mean squared prediction error for prediction of yn+1 by explanatory variables xn+1:

MSPE (α1, · · · , αm) = E
[
(yn+1 − ŷn+1 (α1, · · · , αm))2|X

]
,
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where the forecast ŷn+1 has the form

ŷn+1 (α1, · · · , αm) = x′n+1β̂ (α1, · · · , αm) .

Then the conditional MSPE is

MSPE (α1, · · · , αm) = σ2
m+1 + x′n+1 (BB′ + Σ)xn+1,

where B and Σ are the conditional bias and conditional variance of β̂ (α1, · · · , αm) . The

weights α1, · · · , αm need to be tuned so that MSPE (α1, · · · , αm) is minimal. This is a

theme of section 4; for now, we take the system (α1, · · · , αm) as given.

3 Properties of WLS and TOW predictors

We have the following result on the bias and variance of β̂ (α1, · · · , αm) .

Theorem 1 Suppose assumption SE is satisfied. Then the conditional bias and conditional

variance of β̂ (α1, · · · , αm) are

B = P−1

m∑
j=1

αj

τj∑
t=1+τj−1

xtx
′
t

(
βj − βm+1

)
,

Σ = P−1

m+1∑
j=1

α2
j

τj∑
t=1+τj−1

xtx
′
tσ

2
t

P−1,

where

P =
m+1∑
j=1

αj

τj∑
t=1+τj−1

xtx
′
t.

If assumption CH holds, then Σ simplifies further to

Σ = P−1

m+1∑
j=1

α2
jσ

2
j

τj∑
t=1+τj−1

xtx
′
t

P−1.

Using Theorem 1, we obtain the expression for the conditional MSPE:

MSPE (α1, · · · , αm) = σ2
m+1 + x′n+1 (BB′ + Σ)xn+1,
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where BB′ + Σ is

P−1


 m∑

j=1

αj

τj∑
t=1+τj−1

xtx
′
t

(
βj − βm+1

) m∑
j=1

αj
(
βj − βm+1

)′ τj∑
t=1+τj−1

xtx
′
t


+

m+1∑
j=1

α2
j

τj∑
t=1+τj−1

xtx
′
tσ

2
t

P−1.

Suppose that alternatively the trade-off window method of Pesaran and Timmermann

(2007) is applied, where the first observation falling into the trade-off window is τW ∈

[1 + τ `−1, τ `] for some ` ∈ {1, ...,m}. Let β̂W be a trade-off window estimate:

β̂W =

 τ∑̀
t=τW

xtx
′
t +

m+1∑
j=1+`

τj∑
t=1+τj−1

xtx
′
t

−1 τ∑̀
t=τW

xtyt +
m+1∑
j=1+`

τj∑
t=1+τj−1

xtyt

 .

We have the following result on the bias and variance of β̂W.

Theorem 2 Suppose assumption SE is satisfied. Then the conditional bias and conditional

variance of β̂W are

BW = P−1
W

 τ∑̀
t=τW

xtx
′
t

(
β` − βm+1

)
+

m∑
j=1+`

τj∑
t=1+τj−1

xtx
′
t

(
βj − βm+1

) ,

ΣW = P−1
W

 τ∑̀
t=τW

xtx
′
tσ

2
t +

m+1∑
j=1+`

τj∑
t=1+τj−1

xtx
′
tσ

2
t

P−1
W ,

where

PW =

τ∑̀
t=τW

xtx
′
t +

m+1∑
j=1+`

τj∑
t=1+τj−1

xtx
′
t.

If assumption CH holds, then Σ simplifies further to

ΣW = P−1
W

σ2
`

τ∑̀
t=τW

xtx
′
t +

m+1∑
j=1+`

σ2
j

τj∑
t=1+τj−1

xtx
′
t

P−1
W .

Using Theorem 2, we obtain the expression for the conditional MSPE:

MSPEW = σ2
m+1 + x′n+1 (BWB

′
W + ΣW)xn+1,
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where BWB
′
W + ΣW is

P−1
W


 τ∑̀
t=τW

xtx
′
t

(
β` − βm+1

)
+

m∑
j=1+`

τj∑
t=1+τj−1

xtx
′
t

(
βj − βm+1

)
×

 τ∑̀
t=τW

(
β` − βm+1

)′
xtx
′
t +

m∑
j=1+`

(
βj − βm+1

)′ τj∑
t=1+τj−1

xtx
′
t


+

τ∑̀
t=τW

xtx
′
tσ

2
t +

m+1∑
j=1+`

τj∑
t=1+τj−1

xtx
′
tσ

2
t

P−1
W .

It is useful to compare the expressions for the conditional MSPE provided by the WLS

and TOW methods in a special case. Suppose for cleanness that xt is scalar and CH

holds with σ2
j = σ2 for all j = `, · · · ,m. Set αj = 0 for all j = 1, · · · , ` − 1, α` =(∑τ`

t=1+τ`−1
x2
t

)−1∑τ`
t=τW

x2
t , and αj = 1 for all j = 1 + `, · · · ,m in order to equalize P and

PW. Then B and BW are equal too, while

Σ = σ2P−2

 τ∑̀
t=1+τ`−1

x2
t

−1(
τ∑̀

t=τW

x2
t

)2

+
m∑

j=1+`

τj∑
t=1+τj−1

x2
t


≤ σ2P−2

 τ∑̀
t=τW

x2
t +

m+1∑
j=1+`

τj∑
t=1+τj−1

x2
t

 = ΣW.

It follows that with the chosen (yet non-optimal) system of weights the conditional prediction

biases of both WLS and TOW methods coincide, while the conditional variance of the former

is at most as large as that of the latter. The difference between respective conditional mean

squared prediction errors will be further increased if the system of weights is tuned optimally;

of course, the weights used above may be far from optimal.
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4 Optimal weights

The optimal weights α∗1, · · · , α∗m are determined via minimization of MSPE (α1, · · · , αm) .

This leads to the following minimization program:

min
α1,··· ,αm

x′n+1

m+1∑
j=1

αj

τj∑
t=1+τj−1

xtx
′
t

−1
 m∑

j=1

αj

τj∑
t=1+τj−1

xtx
′
t

(
βj − βm+1

)
×

 m∑
j=1

αj
(
βj − βm+1

)′ τj∑
t=1+τj−1

xtx
′
t


+

m+1∑
j=1

α2
j

τj∑
t=1+τj−1

xtx
′
tσ

2
t


m+1∑

j=1

αj

τj∑
t=1+τj−1

xtx
′
t

−1

xn+1.

Of course, all unknowns have to be replaced by empirical analogs. For example, each βj is

replaced with β̂j, the OLS estimate computed from observations in regime j, j = 1, · · · ,m+1.

The problem above is a multivariate nonlinear minimization program that has to be solved

typically using numerical methods.

In order to obtain some analytical characterization of the optimal weights, suppose that

we use the asymptotic analogs of empirical moments

M = E [xtx
′
t] , Vj = E

[
xtx
′
tσ

2
t

]
, t = 1 + τ j−1, · · · , τ j, j = 1, · · · ,m+ 1,

under the assumption that M does not change when structural breaks take place (a natural

condition under the strict exogeneity of xt). Further, let

qj =
τ j − τ j−1

n
, t = 1 + τ j−1, · · · , τ j, j = 1, · · · ,m+ 1

denote the proportions of lengths of stable intervals to the total sample size. Then the

program becomes approximately (assuming that asymptotically all τ j → ∞ as n → ∞ so

that each qj stays constant)

min
α1,··· ,αm

x′n+1

{
n

m∑
j=1

αjqj
(
βj − βm+1

) m∑
j=1

αjqj
(
βj − βm+1

)′
+M−1

(
m+1∑
j=1

α2
jqjVj

)
M−1

}(
m+1∑
j=1

αjqj

)−2

xn+1. (3)
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In particular, in the case of one structural break (m = 1),

α∗1 ' arg min
α1

x′n+1

{
nα2

1q
2
1 (β1 − β2) (β1 − β2)′ +M−1 (α2

1q1V1 + q2V2)M−1

(α1q1 + q2)2

}
xn+1

=
x′n+1M

−1V2M
−1xn+1

q1nx′n+1 (β1 − β2) (β1 − β2)′ xn+1 + x′n+1M
−1V1M−1xn+1

. (4)

It is worth noting that in cases of multiple structural breaks (m > 1) the first order conditions

do not seem to lead to a nice closed form formula like (4).

Note that the optimal α∗1 need not be less than unity : if the pre-break error variance

is much smaller than the post-break error variance while the regression parameters do not

differ much across the intervals, it may be beneficial to weight pre-break data higher than

the post-break data. Given though that when the breaks are small it is hard to identify their

dates in practice, it is unlikely that the optimal α∗1 will end up exceeding unity.

Note also that in the single-break case the optimal α∗1 is necessarily positive. However, in

the multiple-break case some of optimal weights may be negative: if in one of the intervals

the error variance is much larger than it is in other intervals while the difference between

regression parameters in this interval and those in the interval after the last break is larger

than analogs for other intervals, the corresponding weight may well turn out negative.

5 Cross-validation

In developing their TOW method, Pesaran and Timmermann (2007) also suggest using in-

stead of analytical formulas a cross-validation approach where the performance of candidate

windows is evaluated on a validation subsample. Our WLS method may be also modified

along these lines. In cross-validation, the observed data set is partitioned into two sub-

samples. The model is fit using the first subsample and a grid of possible weights, and its

forecasting performance is evaluated on the second subsample. Then one selects the weights

that yield most accurate forecasts according to the criterion of interest, MSPE in our case.

For each point of the grid, the following procedure is implemented. An initial subset of

the first k observations (τm < k < n) is used to find the optimal forecast ŷk+1 for yk+1,
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and the forecast error yk+1 − ŷk+1 is calculated. Then observation k + 1 is included into the

subset used for model fitting, the optimal forecast ŷk+2 is calculated, etc. These steps are

repeated until the end of sample is reached. The measure of forecast quality, which in our

case is the average of squared forecast errors, is computed as

1

n− k

n∑
τ=k+1

(yτ − ŷτ )2.

Finally, one selects the weights that minimize this measure, and uses this system of weights

for forecasting purposes at t = n.

Because during this procedure the number of observations belonging to the final regime

varies it is important to adapt α1, . . . , αm accordingly. Let γ1, . . . , γm represent the relative

“importance” of an observation in regimes 1, . . . ,m, respectively, compared to its “impor-

tance” in regime m+ 1. There are n− τm observations in regime m+ 1, so the observations

in regime i should have the weight of γi(n − τm). As the set of observations from regime i

has the total weight of αi(τ i− τ i−1), we obtain the following relationship between αi and γi:

αi =
n− τm
τ i − τ i−1

γi.

During the cross-validation procedure, γ1, . . . , γm take values on a grid, and for each interim

forecast α1, . . . , αm are recomputed using the above formula.

Of course, the cross-validation method is more straightforward to implement than the

optimization (analytical) approach, but at the same time it is much more computationally

intensive in case there are multiple breaks; the number of points in the grid grows exponen-

tially with m. Suppose γi can take one of N values for each of regimes 1, . . . ,m, then the

cross-validation procedure will have to compare forecasting performance of Nm alternative

sets of weights.

6 Simulation evidence

In this section we present some Monte–Carlo evidence shedding light on the performance of

the WLS method in comparison with the trade-off window method and primitive alternatives.
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We consider first a single structural break case, then turn to a case of two breaks. The data

generating processes (DGPs) are borrowed from Pesaran and Timmermann (2007). Note

that the DGP design contradicts the assumption of strictly exogenous regressors, so the

simulation exercise is closer to reality than the foregoing analytical results.

We consider a bivariate VAR(1) model(
yt
xt

)
=

(
µy
µx

)
+ At

(
yt−1

xt−1

)
+

(
εyt
εxt

)
where

At =

 a11 a12

0 a22

 , t ≤ τ 1,

At =

 a11 + ∆a11 a12 + ∆a12

0 a22 + ∆a22

 , t > τ 1,

var (εyt) = σ2
y, var (εxt) = σ2

x, t ≤ τ 1,

var (εyt) = (σy + ∆σy)
2, var (εxt) = (σx + ∆σx)

2, t > τ 1.

The error terms εyt and εxt are conditionally uncorrelated and homoskedastic, but regimewise

heteroskedasticity is allowed in some DGPs. We set a11 = 0.9, a12 = 1, a22 = 0.9, σy = σx =

1, and µy = µx = 0 for both regimes. Note that xt Granger-causes yt but not vice versa.

The process starts from its pre-break stationary distribution. We set n = 200 and consider

two cases: τ 1 = 50 (so that q1 = 1
4
, q2 = 3

4
) and τ 1 = 150 (so that q1 = 3

4
, q2 = 1

4
). The break

dates, when not assumed known, are estimated using the Bai and Perron (1998) approach

where all candidate points for a break date (except the first and the last 20 observations) are

compared, and the break point that yields the lowest sum of squared residuals is selected.

For simplicity, we do not estimate the number of breaks taking their true number as given.

We consider the following set of after-the-break parameter changes:

11



DGP ∆a11 ∆a12 ∆a22 ∆σy ∆σx Comments

1 −0.2 0 0 0 0 Small break in AR dynamics

2 −0.4 0 0 0 0 Large break in AR dynamics

3 0 0.5 0 0 0 Small break in marginal coefficient

4 0 1 0 0 0 Large break in marginal coefficient

5 −0.2 1 0 0 0 Break in dynamics and marginal coefficient

6 0 0 0 3 0 Increase in error term variance

7 0 0 0 −0.5 0 Decrease in error term variance

8 0 0 0 0 3 Increase in regressor variance

9 0 0 0 0 −0.5 Decrease in regressor variance

10 0 0 −0.2 0 0 Small break in regressor AR dynamics

11 0 0 −0.7 0 0 Large break in regressor AR dynamics

From 5,000 simulations, we estimate average MSPEs for six estimation methods: OLS

applied to the whole data sample, OLS applied only to post-break data, the TOW and

WLS methods, and cross-validation (CV) variations of both. The main (non-CV) variations

are called optimization (Opt) ones, and the MSPE function in the Opt WLS method is

minimized numerically with tolerance 10−5. In the CV WLS method, γ runs on a grid of

100 elements: 0, 0.0125, 0.0250, · · · , 1, 2, · · · , 20. The Opt TOW and CV TOW procedures

are described in Pesaran and Timmermann (2007).

The figures in Tables 1a and 1b are ratios of MSPEs to the natural benchmark – the

MSPE when OLS is applied to all data. The variability across methods increases when the

break timing is unknown, which can be expected as the break date uncertainty increases

the resulting forecast error variance. The variability also goes up as the break gets more

recent, which also has a natural explanation: the earlier the break the less pre-break data

is available, so the smaller the difference is between various forecasts, as the methods differ

only by different treatment of pre-break data. Opt WLS yields more accurate forecasts

than Opt TOW in all experiments, although by a narrow margin. CV WLS produces less
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accurate forecasts than CV TOW only for DGPs 8 and 10 with known τ 1 = 50, and for

DGPs 2 and 4 with known τ 1 = 150. Opt WLS yields smaller MSPE than use of only

post-break data in all cases. In general, when breaks occur in regression parameters of the

first equation (excluding the break in the variance in DGPs 1–5), all methods yield almost

identical results. However, when the break occurs either in the variance of the first equation

or in the second equation affecting the distribution of the regressor, use of pre-break data

yields significantly better performance than use of only post-break data (DGPs 6–11). For

such experiments smaller improvement is maintained by Opt variations than by CV methods.

However, the CV methods do not improve forecasting performance compared to post-break

estimation method for DGPs 1–5 when the break occurs in the regression parameters of

the first equation. Taking into account that CV methods are much more computationally

intensive than corresponding Opt variations and become almost computationally infeasible

when the number of breaks is greater than two, preference can be given to Opt WLS as it

is fast to compute and it dominates both the Opt TOW method and use of only post-break

data.

Next we consider the same VAR model but which is subject to two structural breaks at

τ 1 = 50 and τ 2 = 150 with n = 150 (so that q1 = q2 = q3 = 1
3
). The variances of the

error terms are normalized to unity and do not change, while the matrix At evolves in the

following way:

At =

 a11 a12

0 a22

 , t ≤ τ 1,

At =

 a11 + ∆a1
11 a12 + ∆a1

12

0 a22 + ∆a1
22

 , τ 1 < t ≤ τ 2,

At =

 a11 + ∆a2
11 a12 + ∆a2

12

0 a22 + ∆a2
22

 , t > τ 2.

In all experiments, a12 = 1 and a22 = 0.9. The CV WLS method uses the grid for γ consisting

of 30 elements: 0, 0.05, · · · , 0.95, 1, 2, · · · , 10. The TOW method uses only the data from
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the two last intervals. We consider the following set of after-the-break parameter changes:

DGP a11 ∆a1
11 ∆a2

11 ∆a1
12 ∆a2

12 Comments

1 0.9 −0.2 0 0 0 Mean reversion in AR dynamics

2 0.9 −0.2 −0.4 0 0 Decreasing trend in AR dynamics

3 0.3 0.2 0 0 0 Mean reversion in AR dynamics

4 0.3 0.2 0.4 0 0 Increasing trend in AR dynamics

5 0.9 0 0 1 0 Mean reversion in marginal coefficient

6 0.9 0 0 1 2 Increasing trend in marginal coefficient

The results are contained in Table 2 in the format of Table 1. The variability in forecasting

performance increases further because some methods use data from only one regime (post-

break), some from two (TOW) and some from the whole sample (WLS and full sample

OLS). The results again demonstrate the dominance, although marginal, of WLS over TOW

and use of post-break observations. CV WLS yields more accurate forecasts than use of

post-break data and TOW in the majority of cases. As in the case of a single break we

conclude that due to computational simplicity and accuracy of forecasts use of Opt WLS is

most preferable.

7 Concluding remarks

We have further extended the idea of the trade-off window method by Pesaran and Tim-

mermann (2007) of using pre-break observations to estimate model parameters for further

forecasting. While Pesaran and Timmermann (2007) suggest exploiting partly those obser-

vations taking them and post-break observations with equal weights, we propose going the

whole way in this direction and utilize all observations but with different weights. Theoreti-

cally, this is a more optimal thing to do in the sense that it leads to a smaller mean squared

prediction error. Monte–Carlo simulations show that the proposed WLS method does beat

the TOW method, although by a narrow margin. We also proposed a cross-validation analog

of the WLS method which too is favorable.
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Apart from the fuller account of information in the data, additional convenience of the

WLS method is the continuity of the optimization problem for the optimal system of weights,

in contrast to the TOW method where the optimization problem is discrete. Last, but not

least, the WLS procedure is computationally simple and can be programmed easily.
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A Appendix: proofs

Proof. [of Theorem 1] Expanding the expression for β̂ (α1, · · · , αm) ,

β̂ (α1, · · · , αm) = βm+1 + P−1

m+1∑
j=1

αj

τj∑
t=1+τj−1

xtx
′
t

(
βj − βm+1

)
+P−1

m+1∑
j=1

αj

τj∑
t=1+τj−1

xtεt.

Because the third term has zero expectation conditional on X, the bias term is

B = E
[
β̂ (α1, · · · , αm) |X

]
− βm+1

= P−1

m∑
j=1

αj

τj∑
t=1+τj−1

xtx
′
t

(
βj − βm+1

)
.

The conditional variance is

Σ = E

[(
β̂ (α1, · · · , αm)− βm+1 −B

)2

|X
]

= P−1

m+1∑
j=1

α2
j

τj∑
t=1+τj−1

xtx
′
tσ

2
t

P−1.

Under the CH assumption, σ2
t = σ2

j , j = 1, · · · ,m+1, and the expression for Σ simplifies.

Proof. [of Theorem 2] Expanding the expression for β̂W,

β̂W = βm+1 + P−1
W

 τ∑̀
t=τW

xtx
′
t

(
β` − βm+1

)
+

m∑
j=1+`

τj∑
t=1+τj−1

xtx
′
t

(
βj − βm+1

)
+P−1

W

 τ∑̀
t=τW

xtεt +
m+1∑
j=1+`

τj∑
t=1+τj−1

xtεt

 .

Because the third term has mean zero conditional on x, the bias term is

BW = E
[
β̂W|X

]
− βm+1

= P−1
W

 τ∑̀
t=τW

xtx
′
t

(
β` − βm+1

)
+

m∑
j=1+`

τj∑
t=1+τj−1

xtx
′
t

(
βj − βm+1

) .
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The conditional variance is

ΣW = E

[(
β̂W − βm+1 −B

)2

|X
]

= P−1
W

 τ∑̀
t=τW

xtx
′
tσ

2
t +

m+1∑
j=1+`

τj∑
t=1+τj−1

xtx
′
tσ

2
t

P−1
W .

Under the CH assumption, σ2
t = σ2

j , j = 1, · · · ,m+1, and the expression for ΣW simplifies.
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Table 1a: Single break case, MSPE ratios for τ 1 = 50, n = 200

DGP Post-break Opt TOW Opt WLS CV TOW CV WLS

Known break date

1 0.69 0.70 0.69 0.69 0.69

2 0.52 0.55 0.52 0.53 0.52

3 0.92 0.92 0.92 0.92 0.92

4 0.70 0.71 0.70 0.71 0.71

5 0.68 0.69 0.68 0.69 0.69

6 1.01 1.00 1.00 1.00 1.00

7 1.00 1.00 0.99 1.00 1.00

8 1.00 1.00 1.00 1.00 1.01

9 1.01 1.01 1.00 1.01 1.01

10 1.01 1.01 1.00 1.00 1.01

11 1.01 1.01 1.00 1.00 1.00

Estimated break date

1 0.67 0.68 0.67 0.68 0.67

2 0.53 0.56 0.53 0.53 0.53

3 0.91 0.92 0.91 0.92 0.92

4 0.71 0.72 0.71 0.72 0.71

5 0.69 0.70 0.69 0.70 0.70

6 1.24 1.18 1.18 1.08 1.07

7 1.02 1.02 1.02 1.01 1.01

8 1.14 1.11 1.10 1.05 1.04

9 1.18 1.16 1.14 1.06 1.06

10 1.14 1.11 1.10 1.05 1.04

11 1.14 1.12 1.10 1.05 1.04

19



Table 1b: Single break case, MSPE ratios for τ 1 = 150, n = 200

DGP Post-break Opt TOW Opt WLS CV TOW CV WLS

Known break date

1 0.50 0.51 0.50 0.51 0.51

2 0.36 0.37 0.36 0.36 0.37

3 0.66 0.68 0.66 0.68 0.67

4 0.31 0.33 0.31 0.31 0.32

5 0.39 0.40 0.39 0.40 0.40

6 1.09 1.06 1.04 1.02 1.01

7 1.04 1.04 1.02 1.01 1.00

8 1.04 1.03 1.02 1.01 1.01

9 1.08 1.06 1.04 1.02 1.01

10 1.06 1.05 1.03 1.02 1.01

11 1.05 1.04 1.03 1.02 1.01

Estimated break date

1 0.50 0.51 0.50 0.51 0.51

2 0.36 0.37 0.36 0.36 0.36

3 0.67 0.68 0.67 0.68 0.67

4 0.31 0.34 0.31 0.32 0.32

5 0.40 0.41 0.40 0.41 0.41

6 1.29 1.21 1.20 1.08 1.07

7 1.06 1.05 1.04 1.01 1.01

8 1.13 1.09 1.09 1.05 1.04

9 1.17 1.15 1.13 1.06 1.05

10 1.13 1.11 1.10 1.04 1.04

11 1.12 1.10 1.09 1.04 1.04
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Table 2: Double break case, MSPE ratios for τ 1 = 50, τ 2 = 100, n = 150

DGP Post-break Opt TOW Opt WLS CV TOW CV WLS

Known break date

1 0.89 0.92 0.88 0.91 0.87

2 0.48 0.48 0.48 0.49 0.49

3 0.97 0.98 0.96 0.98 0.95

4 0.71 0.71 0.71 0.72 0.73

5 0.69 0.72 0.69 0.71 0.68

6 0.20 0.21 0.20 0.20 0.20

Estimated break date

1 0.90 0.92 0.89 0.91 0.87

2 0.51 0.52 0.51 0.51 0.52

3 1.02 1.01 1.00 1.00 0.97

4 0.76 0.75 0.75 0.74 0.75

5 0.68 0.70 0.67 0.69 0.66

6 0.20 0.21 0.20 0.20 0.20
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