Specification Testing in Models with Many Instruments*

Stanislav Anatolyev ${ }^{\dagger}$
New Economic School

Nikolay Gospodinov ${ }^{\ddagger}$
Concordia University and CIREQ

March 2009

Abstract

This paper studies the asymptotic validity of the Anderson-Rubin $(A R)$ test and the J test for overidentifying restrictions in linear models with many instruments. When the number of instruments increases at the same rate as the sample size, we establish that the conventional $A R$ and J tests are asymptotically incorrect. Some versions of these tests, that are developed for situations with moderately many instruments, are also shown to be asymptotically invalid in this framework. We propose modifications of the $A R$ and J tests that deliver asymptotically correct sizes. Importantly, the corrected tests are robust to the numerosity of the moment conditions in the sense that they are valid for both few and many instruments. The simulation results illustrate the excellent properties of the proposed tests.

Keywords: Instrumental variables, many instruments, Bekker's asymptotics, AndersonRubin test, test for overidentifying restrictions.

JEL codes: C12, C21.

[^0]
1 Introduction

In the pursuit of improved precision of the instrumental variable (IV) estimator, researchers often face situations in which the number of instruments represents a nontrivial fraction of the sample observations available for estimation. For example, a large number of instruments can be constructed by interacting different variables (Angrist and Krueger, 1991) or using lagged dependent variables in panel data models (Arellano and Bond, 1991). While the conventional asymptotic setup implies that the increased dimensionality of the instrument matrix should lead to efficiency gains, the finite-sample behavior of the IV estimator and various test statistics is markedly deteriorated (Andersen and Sorensen, 1996; Burnside and Eichenbaum, 1996; among others).

Despite the voluminous recent literature on estimation in the presence of many (and possibly weak) instruments (Bekker, 1994; Chao and Swanson, 2005; Hansen, Hausman and Newey, 2008; among others), the asymptotic behavior of the tests for parameter and overidentifying restrictions has not been fully investigated. Andrews and Stock (2007) and Donald, Imbens and Newey (2003) derive the asymptotic distributions of some parameter and specification tests in models with moderately many instruments, i.e. when the number of instruments grows asymptotically but slowly relative to the sample size. We argue that in order to obtain a good asymptotic approximation for some of these tests one has to acknowledge the numerosity of instruments via a many instruments assumption of Bekker (1994).

It turns out that when the number of moment conditions is proportional to the sample size, the conventional J test for overidentifying restrictions tends to underreject and the size of the test is practically zero when the ratio of the number of moment conditions to the sample size is close to one. Interestingly, despite its similar structure, the asymptotic size of the standard Anderson-Rubin $(A R)$ test exceeds the nominal level when there are many instruments. Thus, the $A R$ test tends to overreject and the size of the test is near 50% when the ratio is close to one. Similar conclusions apply to the asymptotically normal J and $A R$ tests developed in Donald, Imbens and Newey (2003) and Andrews and Stock (2007). Intuitively, the asymptotic size distortions arise from the fact that there is a finite number of observations per moment condition, in contrast to their infinite number in the standard and moderately many instruments frameworks.

We propose modifications of the conventional J and $A R$ tests that are based on critical values of a chi-squared distribution and are easy to implement. Importantly, the proposed "corrected" tests are robust to the numerosity of the moment conditions, in the sense that they do not require an a priori choice of asymptotic framework because they are valid under both fixed and many instrument asymptotics.

The rest of the paper is structured as follows. Section 2 introduces the model and the tests. The main theoretical results are established and discussed in Section 3. Section 4 presents Monte Carlo simulation results for the size properties of tests under consideration in finite samples. Section 5 concludes. All proofs are relegated to the Appendix.

2 Model, Assumptions and Tests

Consider the standard linear IV regression model

$$
y_{i}=x_{i}^{\prime} \beta+e_{i}, \quad E\left[x_{i} e_{i}\right] \neq 0
$$

where $\left\{y_{i}, x_{i}, z_{i}\right\}_{i=1}^{n}$ is a random sample and z_{i} denotes a vector of valid instruments.
The model can be written in matrix form as

$$
\begin{equation*}
y=X \beta+e, \tag{1}
\end{equation*}
$$

where $y=\left(y_{1}, \cdots, y_{n}\right)^{\prime}$ is $n \times 1, X=\left(x_{1}, \cdots, x_{n}\right)^{\prime}$ is $n \times k, Z=\left(z_{1}, \cdots, z_{n}\right)^{\prime}$ is $n \times \ell, e=$ $\left(e_{1}, \cdots, e_{n}\right)^{\prime}$ is $n \times 1$. In this paper, we consider the case when the dimension of β is small relative to n, but ℓ is large and comparable to n, although constrained to be smaller than n.

The model and the data are assumed to satisfy the following conditions.
Assumption 1 The errors e_{i} satisfy $E[e \mid Z]=0, E\left[e e^{\prime} \mid Z\right]=\sigma^{2} I_{n}$ and $E\left[\left|e_{i}\right|^{4}\right]<\infty$.
Assumption 2 As $n \rightarrow \infty, \ell / n=\lambda$, where $0<\lambda<1$.
Assumption 1 imposes homoskedasticity and a finite fourth moment of the errors. Assumption 2 adopts the many instruments asymptotic framework of Bekker (1994) when the number of instruments is a nontrivial fraction of the sample size (see also Newey, 2004). If the number of instruments is fixed (conventional framework) or grows more slowly than the sample size (moderately many instruments framework), the noise that arises from the large dimensionality of Z vanishes in the limit which validates the use of conventional asymptotics for inference (Koenker and Machado, 1999). The advantage of the parameterization in Assumption 2 is that it explicitly recognizes the presence of this source of uncertainty and eventually leads to a better approximation to the exact distribution of the statistics of interest.

For convenience, the vector of instruments z_{i} will be treated as nonrandom. Alternatively, the results that follow can be interpreted as being conditional on z_{i} as suggested in Newey (2004).

Assumption 3 Under the asymptotics of Assumption 2, $n^{-1} \sum_{i=1}^{n}\left|z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{i}-\lambda\right| \rightarrow 0$.
Assumption 3 requires that (almost) all diagonal elements of the projection matrix $P=$ $Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime}$ converge to λ (recall that under the standard or moderately many instruments asymptotics they converge to zero). When the instruments are generated in the random sampling framework or under stationarity (i.e., they are homogeneous across i), the expected value of $z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{i}$ is equal to λ. Indeed,

$$
E\left[z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{i}\right]=\frac{1}{n} E\left[\operatorname{tr}\left(\left(Z^{\prime} Z\right)^{-1} \sum_{i} z_{i} z_{i}^{\prime}\right)\right]=\frac{1}{n} E\left[\operatorname{tr}\left(I_{\ell}\right)\right]=\lambda,
$$

where the first equality follows by symmetry over observations and properties of trace. In addition, Assumption 3 requires that the variance of each $z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{i}$ is zero, which is to be
expected because the dimensionality of z_{i} linearly grows. The validity of Assumption 3 follows from the literature on large dimensional covariance matrices (Silverstein, 1995) in case the elements of Z are IID both across rows and columns, possibly after a rotating transformation, and have finite fourth moments (which, in particular, includes the case of normality of z_{i}). The IID requirement for the elements in z_{i} can be relaxed at the expense of existence of higher order moments (Ledoit and Wolf, 2004). Moreover, a limited amount of endogeneity is allowed; for example, lagged elements of x_{i} or y_{i} may be present among elements of z_{i} as long as they occupy only an asymptotically finite number of columns of Z. However, Assumption 3 will typically fail when the instruments are not homogeneous across i, as the diagonal elements of P need not be centered at the same value.

Let $\hat{\beta}$ be an estimator of β. Later we will impose restrictions on the asymptotic behavior of $\hat{\beta}$. Also, let

$$
\begin{equation*}
\hat{e}=y-X \hat{\beta} \tag{2}
\end{equation*}
$$

denote the vector of residuals and

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{\hat{e}^{\prime} \hat{e}}{n-k} \tag{3}
\end{equation*}
$$

be the residual variance. Under Assumption 1, the standard J test for overidentifying restrictions is given by

$$
\begin{equation*}
J=\frac{\hat{e}^{\prime} P \hat{e}}{\hat{\sigma}^{2}} \tag{4}
\end{equation*}
$$

and, under the null of correct moment restrictions $H_{0}: E\left[e_{i} z_{i}\right]=0$, is distributed as $\chi^{2}(\ell-k)$ in the conventional framework of fixed ℓ asymptotics. Alternatively, in the framework of moderately many instruments (more precisely, when $\ell^{2} / n \rightarrow 0$ as $\ell, n \rightarrow \infty$), Donald, Imbens, and Newey (2003) base their (right-sided) test on

$$
J_{D I N}=\frac{J-\ell}{\sqrt{2 \ell}} \xrightarrow{d} N(0,1) .
$$

To construct the J statistic, a consistent estimator $\hat{\beta}$ is needed. It turns out that the choice of $\hat{\beta}$ is not important for the asymptotic behavior of J as long as the following conditions hold. Let Υ and V denote the matrices of observations and disturbances of the reduced form $X=\Upsilon+V$ with $E[V]=0$.

Assumption 4 (a) The estimator $\hat{\beta}$ satisfies $\sqrt{n}(\hat{\beta}-\beta)=O_{p}(1)$, (b) $\Upsilon^{\prime} \Upsilon / n \rightarrow Q$, where Q is a positive definite matrix, (c) $E\left[\left|v_{i j}\right|^{4}\right]<\infty$.

In our numerical work, we use the limited information maximum likelihood (LIML) estimator

$$
\hat{\beta}_{L I M L}=\left(X^{\prime}\left(I_{n}-k M\right) X\right)^{-1} X^{\prime}\left(I_{n}-k M\right) y,
$$

where k is the smallest characteristic root of $\left(\bar{Y}^{\prime} \bar{Y}\right)\left(\bar{Y}^{\prime} M \bar{Y}\right)^{-1}, \bar{Y}=(y, X)$ and $M=I_{n}-P$. Note that part (a) of Assumption 4 permits the use of asymptotically inefficient and even non-normal estimators, as long as their rate of convergence is not slower than \sqrt{n}. Also, while part (b) of Assumption 4 rules out lack of identification $(\Upsilon=0)$, it allows for possibly weak instruments as the addition of new instruments does not provide additional information (Newey, 2004).

It is important to note that under the many instrument asymptotics, the popular two-stage least squares (2SLS) estimator is inconsistent and does not satisfy part (a) of Assumption 4 (Bekker, 1994). Another possibility is to use the bias-corrected 2SLS estimator (Newey, 2004) but we found by simulations that the test statistics based on the LIML estimator tend to perform better than those based on the bias-corrected 2SLS estimator.

A popular test for $H_{0}: \beta=\beta_{0}$ and the validity of the overidentifying restrictions, evaluated at $\beta=\beta_{0}$, employs the Anderson-Rubin (AR) statistic

$$
\begin{equation*}
A R=(T-\ell) \frac{e_{0}^{\prime} P e_{0}}{e_{0}^{\prime} M e_{0}}, \tag{5}
\end{equation*}
$$

where $e_{0}=y-X \beta_{0}$ is a vector of restricted errors. The Anderson-Rubin statistic possesses some appealing robustness properties (Dufour and Taamouti, 2007) and is $\chi^{2}(\ell)$ distributed under fixed ℓ asymptotics. Alternatively, in the framework of moderately many instruments (more precisely, when $\ell^{3} / n \rightarrow 0$ as $\ell, n \rightarrow \infty$), Andrews and Stock (2007) show that

$$
A R_{A S}=\sqrt{\ell}\left(\frac{A R}{\ell}-1\right) \xrightarrow{d} N(0,2) .
$$

3 Asymptotic Results

We first investigate the behavior of the conventional J and $A R$ tests when one neglects the presence of many instruments, and carries out testing in the standard way, i.e. rejects when $J>q_{\alpha}^{\chi^{2}(\ell-k)}$ and $A R>q_{\alpha}^{\chi^{2}(\ell)}$. The following theorem describes the size of the conventional J and $A R$ tests, along with the $J_{D I N}$ and $A R_{A S}$ tests, when the number of instruments grows at the same rate as the sample size.

Let $\Phi(x)$ be the standard normal cumulative distribution function, $\Phi^{-1}(x)$ be its quantile function, and $\alpha<0.5$ be the target test size.

Theorem 1

(a) Suppose assumptions 1-4 hold. Then, the asymptotic size of the conventional and Donald, Imbens, and Newey (2003) J tests equals

$$
\Phi\left(\frac{\Phi^{-1}(\alpha)}{\sqrt{1-\lambda}}\right) .
$$

(b) Suppose assumptions 1-3 hold. Then, the asymptotic size of the conventional and Andrews and Stock (2007) AR tests equals

$$
\Phi\left(\sqrt{1-\lambda} \Phi^{-1}(\alpha)\right)
$$

Theorem 1 establishes that, under Bekker's asymptotics, the asymptotic size of the conventional J test is smaller than α and the asymptotic size of the conventional $A R$ test exceeds α for all $\lambda>0$. Consequently, the J test will underreject and the $A R$ test will overreject in
large samples. The same applies to the $J_{D I N}$ and $A R_{A S}$ tests. It turns out that the moderately many instruments framework cannot fully acknowledge the presence of many instruments, while Bekker's asymptotics can.

To visualize the effect of λ on the asymptotic behavior of the tests, Figure 1 plots the asymptotic size of the $A R$ test at $1 \%, 5 \%$ and 10% nominal levels for different values of λ in the interval $(0,1)$. Figure 1 shows that the over-rejection rates of the $A R$ test are not very large for $\lambda \leq 0.5$ but increase substantially as λ approaches one. The asymptotic size of the $A R$ test presented in Figure 1 also coincides with the asymptotic p-value function of the J test which allows us to present the asymptotic behavior of both tests on the same graph. For example, Figure 1 suggests that in order to keep the size of the J test at 5%, one has to use the 7.06%, 12.24% and 30.15% critical values for $\lambda=0.2,0.5$ and 0.9 , respectively. These decreasing critical values as λ gets larger reflect the asymptotic under-rejection of the J test.

Note that, aside from α, only λ enters the asymptotic size formulas. Interestingly, some characteristics of the data generating process that may potentially affect asymptotic sizes of the conventional tests are asymptotically negligible. In particular, the estimation uncertainty contained in $\sqrt{n}(\hat{\beta}-\beta)$ does participate in various parts of the stochastic expansion of the J statistic, but eventually cancels out, so the estimation uncertainty does not affect the asymptotic size. Another interesting feature of the asymptotic analysis is that the fourth moments of errors do not enter the asymptotic sizes, even though the formulas for the J and $A R$ statistics do contain second powers of regression errors.

Given the results in Theorem 1, one approach to achieving asymptotically correct size in the presence of many instruments is to divide the $J_{D I N}$ statistic and multiply the $A R_{A S}$ statistic by $\sqrt{1-\lambda}$ (see Lemma 1 in the Appendix). However, we prefer, for a reason to be explained shortly, to correct the critical values of the conventional J and $A R$ tests in such a way that their asymptotic size matches the target size. The corrected J test rejects when

$$
\begin{equation*}
J>q_{\Phi\left(\sqrt{1-\lambda} \Phi^{-1}(\alpha)\right)}^{\chi^{2}(\ell-k)} \tag{6}
\end{equation*}
$$

Similarly, the corrected $A R$ test rejects when

$$
\begin{equation*}
A R>q_{\Phi\left(\Phi^{-1}(\alpha) / \sqrt{1-\lambda}\right)}^{\chi^{2}(\ell)} \tag{7}
\end{equation*}
$$

Below we state the asymptotic validity of the corrected J and $A R$ tests under Bekker's asymptotics.

Theorem 2

(a) Suppose assumptions 1-4 hold. Then, the asymptotic size of the corrected J test equals α.
(b) Suppose assumptions 1-3 hold. Then, the asymptotic size of the corrected $A R$ test equals α.

One appealing property of the corrected J and $A R$ tests is that they are robust to numerosity of instruments. This follows from noticing that when ℓ is fixed, $\lambda=0$, and the corrected J and
$A R$ tests reduce to their conventional forms. By contrast, the corrected versions of the $J_{D I N}$ and $A R_{A S}$ tests based on asymptotic normality are not robust to numerosity of instruments and are invalid when ℓ is fixed. Note that we do not explicitly include in Assumption 2 the case $\lambda=0$ which can arise either when ℓ is fixed or when ℓ increases to infinity but at a slower rate than n. These are two fundamentally different asymptotic frameworks, and merging them together into the case $\lambda=0$ would be misleading without specifying if ℓ is fixed or its growth rate.

Another important advantage of the corrected tests is their straightforward computation. The corrected tests are based on the J and $A R$ statistics that are routinely produced by the standard statistical software packages and the χ^{2} critical values. The only new input for the J test is $\Phi\left(\sqrt{1-\lambda} \Phi^{-1}(\alpha)\right)$ instead of α which can be computed easily (for example, cdfn(sqrt(1-lambda)*cdfni(alpha)) in GAUSS and norm(sqrt(1-lambda)*invnorm(alpha)) in STATA for prespecified values of lambda and alpha). Similar computation is required for $\Phi\left(\Phi^{-1}(\alpha) / \sqrt{1-\lambda}\right)$ to construct the corrected $A R$ test.

4 Simulation Study

To evaluate the finite-sample performance of the proposed tests, we conduct a small simulation study. The data for the Monte Carlo experiment are generated from the model

$$
\begin{align*}
y_{i} & =\beta_{0}+\beta_{1} x_{i}+e_{i} \tag{8}\\
x_{i} & =\gamma_{0}+\sum_{j=1}^{\ell-1} \gamma_{j} z_{i j}+v_{i}
\end{align*}
$$

where $\binom{e_{i}}{v_{i}}=\operatorname{chol}(\Sigma) \xi_{i},\binom{\xi_{i}}{z_{i}} \sim \operatorname{iid} N\left(0, I_{\ell+1}\right), \Sigma=\left(\begin{array}{cc}0.25 & 0.20 \\ 0.20 & 0.25\end{array}\right), \beta_{0}=0, \beta_{1}=1, \gamma_{0}=0$ and $\gamma_{j}=1 / \sqrt{\ell}$ for $j=1, \ldots, \ell-1$. The local-to-zero γ_{j} 's allow for a drifting strength of each individual instrument but keep the information contained in all instruments fixed (see Assumption 4). The J statistic is used to test the validity of the $\ell-2$ overidentifying restrictions and the $A R$ statistic is used to test the joint hypothesis of $\left(\beta_{0}, \beta_{1}\right)=(0,1)$ and validity of overidentifying restrictions.

Tables 1 and 2 present the empirical size at 5% and 10% nominal level of the conventional and corrected versions of the $A R$ and J tests based on 5,000 Monte Carlo replications. We also include the tests proposed by Andrews and Stock (2007) and Donald, Imbens and Newey (2003) which are obtained under moderately many instruments. The purpose is to compare the quality of the three approximations corresponding to three different asymptotic frameworks (fixed, moderately large and large ℓ).

In order to assess the robustness of the tests to different degrees of overidentification, we consider values of $\lambda=\ell / n$ equal to $0.04,0.2,0.5$ and 0.8 . While $\lambda=0.8$ may seem excessive, it bears some relevance to empirical applications since situations with similar ratios of number of moment conditions to sample size often arise in evaluating linear asset pricing models of
large portfolios and estimating structural macroeconomic models by matching impulse response functions. The values of λ are used in combination with sample sizes of 100,200 and 500 .

Table 1 reports the results for the J test. For $\lambda=0.04$ and 0.2 , the size distortions of the standard J test are relatively small but the empirical rejection rate of this test quickly approaches zero as λ increases. The $J_{D I N}$ test performs only slightly better than the conventional test for $\lambda \geq 0.2$ but it tends to overreject for $\lambda=0.04$ since the asymptotic normality appears to require much larger values of ℓ. Our corrected J test has coverage very close to the nominal level for all values of λ and sample sizes.

The results for the $A R$ tests are presented in Table 2. As part (b) of Theorem 1 suggests, the standard $A R$ and $A R_{A S}$ tests overreject and the rejection rates increase to $25-30 \%$ at 5% nominal level for $\lambda=0.8$. Our corrected $A R$ test performs much better although it slightly overrejects for large values of λ. As the sample size increases, the rejection rates approach the nominal level but this appears to be slower than in the case of testing for overidentifying restrictions.

5 Conclusions

This paper shows the asymptotic invalidity of the standard $A R$ and J tests of parameter and overidentifying restrictions in the presence of many instruments. If the number of moment conditions is a nontrivial fraction of the sample size, the J test tends to underreject whereas the $A R$ test tends to overreject even in large samples. The versions of the tests by Donald, Imbens and Newey (2003) and Andrews and Stock (2007), obtained under the assumption of moderately many instruments, exhibit an asymptotically equivalent behavior. By allowing the number of instruments to grow at the same rate as the sample size, we propose "corrected" J and $A R$ tests that are chi-square distributed and are asymptotically valid for any number of moment conditions. Due to their simplicity and robustness, we recommend the use of these modified statistics in applied work. A future research agenda includes an extension to non-IID environments, in particular the cases of heteroskedasticity, serial correlation, and non-homogeneity of instruments.

References

[1] Andersen, T.G. \& B.E. Sorensen (1996) GMM estimation of a stochastic volatility model: A Monte Carlo study. Journal of Business and Economic Statistics 14, 328-352.
[2] Andrews, D.W. \& J.H. Stock (2007) Testing with many weak instruments. Journal of Econometrics 138, 24-46.
[3] Angrist, J.D. \& A.B. Krueger (1991) Does compulsory school attendance affect schooling and earnings? Quarterly Journal of Economics 106, 979-1014.
[4] Arellano, M. \& S. Bond (1991) Some tests of specification for panel data: Monte Carlo evidence and an applications to employment equations. Review of Economic Studies 58, 277-297.
[5] Bekker, P.A. (1994) Alternative approximations to the distributions of instrumental variable estimators. Econometrica 62, 657-681.
[6] Burnside, C. \& M. Eichenbaum (1996) Small-sample properties of GMM-based Wald tests. Journal of Business and Economic Statistics 14, 294-308.
[7] Chao, J. \& N. Swanson (2005) Consistent estimation with a large number of weak instruments. Econometrica 73, 1673-1692.
[8] Donald, S.G., G.W. Imbens, \& W.K. Newey (2003) Empirical likelihood estimation and consistent tests with conditional moment restrictions. Journal of Econometrics 117, 55-93.
[9] Dufour, J.M. \& M. Taamouti (2007) Further results on projection-based inference in IV regressions with weak, collinear or missing instruments. Journal of Econometrics 139, 133153.
[10] Hansen, C., J. Hausman, \& W.K. Newey (2008) Estimation with many instrumental variables. Journal of Business and Economic Statistics 26, 398-422.
[11] Kelejian, H.H. \& I.R. Prucha (2001) On the asymptotic distribution of the Moran I test statistic with applications. Journal of Econometrics 104, 219-257.
[12] Koenker, R. \& J.A.F. Machado (1999) GMM inference when the number of moment conditions is large. Journal of Econometrics 93, 327-344.
[13] Ledoit, O. \& M. Wolf (2004) A well-conditioned estimator for large-dimensional covariance matrices. Journal of Multivariate Analysis 88, 365-411.
[14] Newey, W.K. (2004) Many instrument asymptotics. Manuscript, MIT.
[15] Peiser, A.M. (1943) Asymptotic formulas for significance levels of certain distributions. Annals of Mathematical Statistics 14, 56-62.
[16] Silverstein, J.W. (1995) Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices. Journal of Multivariate Analysis 55, 331-339.

A Appendix: Proofs

Lemma 1 Under the conditions of Theorem 1,

$$
\sqrt{\ell}\left(\frac{J}{\ell}-1\right) \xrightarrow{d} N(0,2(1-\lambda)), \quad J_{D I N} \xrightarrow{d} N(0,1-\lambda)
$$

and

$$
\sqrt{\ell}\left(\frac{A R}{\ell}-1\right) \xrightarrow{d} N(0,2 /(1-\lambda)), \quad A R_{A S} \xrightarrow{d} N(0,2 /(1-\lambda)) .
$$

Proof. Note for the use throughout the proof that $0 \leq z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{i} \leq 1$ for each i, that

$$
\frac{1}{n} \sum_{i=1}^{n} z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{i}=\frac{1}{n} \sum_{i=1}^{n} \operatorname{tr}\left(\left(Z^{\prime} Z\right)^{-1} z_{i} z_{i}^{\prime}\right)=\frac{1}{n} \operatorname{tr}\left(\left(Z^{\prime} Z\right)^{-1} \sum_{i=1}^{n} z_{i} z_{i}^{\prime}\right)=\frac{1}{n} \operatorname{tr}\left(I_{\ell}\right)=\lambda
$$

and that

$$
\frac{1}{n} \sum_{i=1}^{n}\left(z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{i}-\lambda\right)^{2} \leq \frac{1}{n} \sum_{i=1}^{n}\left|z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{i}-\lambda\right|
$$

because $0 \leq\left|z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{i}-\lambda\right| \leq 1$ and $u^{2} \leq|u|$ when $0 \leq u \leq 1$.
First, consider

$$
\frac{J_{0}}{\ell} \equiv \frac{e^{\prime} P e}{\ell \sigma^{2}}=\frac{e^{\prime} Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime} e}{\ell \sigma^{2}}
$$

Now,

$$
\begin{aligned}
E\left[\frac{J_{0}}{\ell}-1\right] & =\frac{1}{\ell \sigma^{2}} E\left[\operatorname{tr}\left(e^{\prime} Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime} e\right)\right]-1 \\
& =\frac{1}{\ell \sigma^{2}} \operatorname{tr}\left(\left(Z^{\prime} Z\right)^{-1} Z^{\prime} E\left[e e^{\prime}\right] Z\right)-1=\frac{1}{\ell} \operatorname{tr}\left(I_{\ell}\right)-1=0,
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{J_{0}}{\ell}-1 & =\frac{1}{\ell} \sum_{i=1}^{n} \sum_{j=1}^{n} z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{j} \frac{e_{i} e_{j}}{\sigma^{2}}-1 \\
& =\frac{1}{\ell} \sum_{i=1}^{n} z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{i}\left(\frac{e_{i}^{2}}{\sigma^{2}}-1\right)+\frac{1}{\ell} \sum_{i \neq j} z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{j} \frac{e_{i} e_{j}}{\sigma^{2}} \\
& =A_{1}+A_{2}
\end{aligned}
$$

By the iid and moment condition assumptions, A_{1} and A_{2} are uncorrelated. Let $\kappa=E\left[e_{i}^{4}\right]$. The variances of A_{1} and A_{2} are

$$
\begin{aligned}
\operatorname{var}\left(A_{1}\right) & =\frac{n}{\ell^{2}}\left(z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{i}\right)^{2}(\kappa-1)=O\left(\frac{1}{\ell}\right) \\
\operatorname{var}\left(A_{2}\right) & =\frac{1}{\ell^{2}} E\left[\sum_{i \neq j} \sum_{k \neq l} z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{j} z_{k}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{l} \frac{e_{i} e_{j}}{\sigma^{2}} \frac{e_{k} e_{l}}{\sigma^{2}}\right] \\
& =\frac{2}{\ell^{2}} \sum_{i \neq j}\left(z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{j}\right)^{2}=\frac{2}{\ell^{2}} \sum_{i=1}^{n} z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1}\left(\sum_{j=1, j \neq i}^{n} z_{j} z_{j}^{\prime}\right)\left(Z^{\prime} Z\right)^{-1} z_{i} \\
& =\frac{2}{\ell^{2}} \sum_{i=1}^{n}\left(z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{i}-\left(z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{i}\right)^{2}\right) \leq \frac{2}{\ell^{2}} n=O\left(\frac{1}{\ell}\right)
\end{aligned}
$$

Thus, the variance of $A_{1}+A_{2}$ is of order $O(1 / \ell)$ and hence

$$
\begin{equation*}
\frac{J_{0}}{\ell}-1=O_{p}\left(\frac{1}{\sqrt{\ell}}\right) \tag{9}
\end{equation*}
$$

Second,

$$
\begin{align*}
\frac{\hat{e}^{\prime} P \hat{e}}{\ell \sigma^{2}} & =\frac{(e-X(\hat{\beta}-\beta))^{\prime} Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime}(e-X(\hat{\beta}-\beta))}{\ell \sigma^{2}} \\
& =\frac{J_{0}}{\ell}-2(\hat{\beta}-\beta)^{\prime} \frac{X^{\prime} P e}{\ell \sigma^{2}}+o\left(\frac{1}{\sqrt{\ell}}\right) . \tag{10}
\end{align*}
$$

Analogously,

$$
\begin{aligned}
\frac{\hat{\sigma}^{2}}{\sigma^{2}}-1 & =\frac{n}{n-k} \frac{(e-X(\hat{\beta}-\beta))^{\prime}(e-X(\hat{\beta}-\beta))}{n \sigma^{2}}-1 \\
& =\left(\frac{e^{\prime} e}{n \sigma^{2}}-1\right)-2(\hat{\beta}-\beta)^{\prime} \lambda \frac{X^{\prime} e}{\ell \sigma^{2}}+o\left(\frac{1}{\sqrt{\ell}}\right)
\end{aligned}
$$

Third,

$$
\begin{align*}
\frac{J}{\ell}-1 & =\left(\frac{\hat{e}^{\prime} P \hat{e}}{\ell \sigma^{2}}-1\right) \frac{\sigma^{2}}{\hat{\sigma}^{2}}+\left(\frac{\sigma^{2}}{\hat{\sigma}^{2}}-1\right) \\
& =\left(\frac{J_{0}}{\ell}-1\right)-\left(\frac{e^{\prime} e}{n \sigma^{2}}-1\right)-\frac{2}{\lambda \sigma^{2}}(\hat{\beta}-\beta)^{\prime} \frac{X^{\prime}(P-\lambda I) e}{n}+o_{p}\left(\frac{1}{\sqrt{\ell}}\right) \tag{11}
\end{align*}
$$

by (9) and (10) and because $\hat{\sigma}^{2}=\sigma^{2}+O(1 / \sqrt{\ell})$. Consider the third term

$$
\begin{equation*}
\frac{X^{\prime}(P-\lambda I) e}{n}=\frac{\Upsilon^{\prime}(P-\lambda I) e}{n}+\frac{V^{\prime}(P-\lambda I) e}{n} \tag{12}
\end{equation*}
$$

The first term has mean zero and variance

$$
\frac{\Upsilon^{\prime}(P-\lambda I)(P-\lambda I) \Upsilon}{n^{2}}=(1-2 \lambda) \frac{\Upsilon^{\prime} P \Upsilon}{n^{2}}+\lambda^{2} \frac{\Upsilon^{\prime} \Upsilon}{n^{2}} \rightarrow 0
$$

because of Assumption 4 and the Cauchy-Schwarz inequality implying $\Upsilon^{\prime} Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime} \Upsilon \leq \Upsilon^{\prime} \Upsilon$. Therefore, the first term in (12) is $o_{p}(1)$. Along the lines of Newey (2004, proof of Lemma 1) one can see that the second term in (12) has expected value

$$
E\left[\frac{V^{\prime}(P-\lambda I) e}{n}\right]=E\left[\frac{V^{\prime} P e}{n}\right]-\lambda E\left[\frac{V^{\prime} e}{n}\right]=\frac{\ell}{n} E\left[v_{i} e_{i}\right]-\lambda E\left[v_{i} e_{i}\right]=0
$$

and variance that is $O(1 / n)$. Therefore, the whole term (12) is $o_{p}(1)$. Thus, up to an $o_{p}(1)$ remainder,

$$
\sqrt{\ell}\left(\frac{J}{\ell}-1\right) \stackrel{A}{=} \frac{1}{\sqrt{\ell}} \sum_{i=1}^{n}\left(z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{i}-\lambda\right)\left(\frac{e_{i}^{2}}{\sigma^{2}}-1\right)+\frac{1}{\sqrt{\ell}} \sum_{i \neq j} z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{j} \frac{e_{i} e_{j}}{\sigma^{2}}=B_{1}+B_{2}
$$

Exactly as before, we compute the variance of the zero-mean term B_{1} which yields

$$
\operatorname{var}\left(B_{1}\right)=\frac{1}{\ell} \sum_{i=1}^{n}\left(z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{i}-\lambda\right)^{2}(\kappa-1) \leq \frac{1}{\lambda} \frac{1}{n} \sum_{i=1}^{n}\left|z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{i}-\lambda\right|(\kappa-1) \rightarrow 0
$$

using Assumption 3. Therefore, $B_{1}=o_{p}(1)$. In order to derive the asymptotics for B_{2}, we check the conditions for the central limit theorem by Kelejian and Prucha (2001, Theorem 1) for linear quadratic forms where $b_{i, n} \equiv 0$. Assumption 1 of this CLT is satisfied for $\varepsilon_{i, n} \equiv e_{i} / \sigma$. Next, we verify Assumption 2 of this CLT for

$$
a_{i j, n} \equiv \frac{1}{\sqrt{\ell}} z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{j} .
$$

First, $a_{i j, n}$ is clearly symmetric. Second,

$$
\begin{aligned}
\sum_{i=1}^{n}\left|a_{i j, n}\right| & \leq \frac{1}{\sqrt{\ell}} \sum_{i=1}^{n}\left|z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{j}\right| \leq \sqrt{\frac{n}{\ell}}\left(\sum_{i=1}^{n}\left(z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{j}\right)^{2}\right)^{1 / 2} \\
& =\sqrt{\frac{1}{\lambda}}\left(z_{j}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{j}\right)^{1 / 2} \leq \sqrt{\frac{1}{\lambda}}
\end{aligned}
$$

Consequently, $\sup _{1 \leq j \leq n, n \geq 1} \sum_{i=1}^{n}\left|a_{i j, n}\right|<\infty$ in Assumption 2 of the CLT of Kelejian and Prucha (2001, Theorem 1) is satisfied. Finally, in their assumption $3(\mathrm{a}), \sup _{1 \leq i \leq n, n \geq 1} E\left[\left|\varepsilon_{i, n}\right|^{2+\eta}\right]<\infty$ holds by Assumption 1. Hence, the variance of B_{2} is

$$
\begin{aligned}
\operatorname{var}\left(B_{2}\right) & =\frac{2}{\ell} \sum_{i=1}^{n}\left(z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{i}-\left(z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{i}\right)^{2}\right) \\
& =\frac{2}{\lambda}\left((1-2 \lambda) \frac{1}{n} \sum_{i=1}^{n} z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{i}+\lambda^{2}-\frac{1}{n} \sum_{i=1}^{n}\left(z_{i}^{\prime}\left(Z^{\prime} Z\right)^{-1} z_{i}-\lambda\right)^{2}\right) \\
& \rightarrow 2(1-\lambda)
\end{aligned}
$$

using Assumption 3. So the limiting distribution of $\sqrt{\ell}(J / \ell-1)$ is

$$
\sqrt{\ell}\left(\frac{J}{\ell}-1\right) \xrightarrow{d} N(0,2(1-\lambda)) .
$$

For the $A R$ test, note that

$$
\frac{A R}{\ell}=(1-\lambda)\left(\frac{e^{\prime} e}{n \sigma^{2}}-\lambda \frac{J_{0}}{\ell}\right)^{-1} \frac{J_{0}}{\ell}
$$

so

$$
(1-\lambda)\left(\frac{A R}{\ell}-1\right)=\left(\frac{J_{0}}{\ell}-1\right)-\left(\frac{e^{\prime} e}{n \sigma^{2}}-1\right)+o_{p}\left(\frac{1}{\sqrt{\ell}}\right)
$$

and, proceeding as before with (11), we get

$$
(1-\lambda) \sqrt{\ell}\left(\frac{A R}{\ell}-1\right) \xrightarrow{d} N(0,2(1-\lambda)) .
$$

Proof of Theorem 1. From Peiser (1943) it follows that

$$
\begin{equation*}
q_{\alpha}^{\chi^{2}(\ell-k)}=\ell-k+\Phi^{-1}(1-\alpha) \sqrt{2(\ell-k)}+O(1) \tag{13}
\end{equation*}
$$

or

$$
\frac{q_{\alpha}^{\chi^{2}(\ell-k)}}{\ell}-1=\Phi^{-1}(1-\alpha) \sqrt{\frac{2}{\ell}}+O\left(\frac{1}{\ell}\right)
$$

Then, the size of the conventional J test is

$$
\begin{aligned}
\operatorname{Pr}\left\{J>q_{\alpha}^{\chi^{2}(\ell-k)}\right\} & =\operatorname{Pr}\left\{\sqrt{\frac{\ell}{2(1-\lambda)}}\left(\frac{J}{\ell}-1\right)>\sqrt{\frac{\ell}{2(1-\lambda)}}\left(\frac{q_{\alpha}^{\chi^{2}(\ell-k)}}{\ell}-1\right)\right\} \\
& =\operatorname{Pr}\left\{N(0,1)+o_{d}(1)>\frac{\Phi^{-1}(1-\alpha)}{\sqrt{1-\lambda}}+O\left(\frac{1}{\sqrt{\ell}}\right)\right\} \\
& =1-\Phi\left(\frac{\Phi^{-1}(1-\alpha)}{\sqrt{1-\lambda}}\right)+o(1) \rightarrow \Phi\left(\frac{\Phi^{-1}(\alpha)}{\sqrt{1-\lambda}}\right) .
\end{aligned}
$$

Using Lemma 1, the size of the Donald, Imbens, and Newey (2003) J test is

$$
\operatorname{Pr}\left\{J_{D I N}>q_{1-\alpha}^{N(0,1)}\right\}=\operatorname{Pr}\left\{N(0,1-\lambda)+o_{d}(1)>\Phi^{-1}(1-\alpha)\right\} \rightarrow \Phi\left(\frac{\Phi^{-1}(\alpha)}{\sqrt{1-\lambda}}\right)
$$

Similarly, the size of the conventional $A R$ test is

$$
\begin{aligned}
\operatorname{Pr}\left\{A R>q_{\alpha}^{\chi^{2}(\ell)}\right\} & =\operatorname{Pr}\left\{\sqrt{\frac{\ell(1-\lambda)}{2}}\left(\frac{A R}{\ell}-1\right)>\sqrt{\frac{\ell(1-\lambda)}{2}}\left(\frac{q_{\alpha}^{\chi^{2}(\ell-k)}}{\ell}-1\right)\right\} \\
& =\operatorname{Pr}\left\{N(0,1)+o_{d}(1)>\sqrt{1-\lambda} \Phi^{-1}(1-\alpha)+O\left(\frac{1}{\sqrt{\ell}}\right)\right\} \\
& =1-\Phi\left(\sqrt{1-\lambda} \Phi^{-1}(1-\alpha)\right)+o(1) \rightarrow \Phi\left(\sqrt{1-\lambda} \Phi^{-1}(\alpha)\right)
\end{aligned}
$$

Using Lemma 1, the size of the Andrews and Stock (2007) $A R$ test is
$\operatorname{Pr}\left\{A R_{A S}>q_{1-\alpha}^{N(0,2)}\right\}=\operatorname{Pr}\left\{N\left(0, \frac{2}{1-\lambda}\right)+o_{d}(1)>\sqrt{2} \Phi^{-1}(1-\alpha)\right\} \rightarrow \Phi\left(\sqrt{1-\lambda} \Phi^{-1}(\alpha)\right)$.
Proof of Theorem 2. Using expansion (13), the actual size of the corrected J test (6) is

$$
\begin{aligned}
& \operatorname{Pr}\left\{J>q_{\Phi\left(\sqrt{1-\lambda} \Phi^{-1}(\alpha)\right)}^{\chi^{2}(\ell-k}\right\} \\
= & \operatorname{Pr}\left\{\sqrt{\frac{\ell}{2(1-\lambda)}}\left(\frac{J}{\ell}-1\right)>\frac{\Phi^{-1}\left(1-\Phi\left(\sqrt{1-\lambda} \Phi^{-1}(\alpha)\right)\right)}{\sqrt{1-\lambda}}+O\left(\frac{1}{\sqrt{\ell}}\right)\right\} \\
= & \operatorname{Pr}\left\{N(0,1)+o_{d}(1)>-\Phi^{-1}(\alpha)\right\}=1-\Phi\left(-\Phi^{-1}(\alpha)\right)+o(1) \rightarrow \alpha .
\end{aligned}
$$

Similarly, the actual size of the corrected $A R$ test (7) is

$$
\begin{aligned}
& \operatorname{Pr}\left\{A R>q_{\Phi\left(\Phi^{-1}(\alpha) / \sqrt{1-\lambda}\right)}^{\chi^{2}(\ell-k)}\right\} \\
= & \operatorname{Pr}\left\{\sqrt{\frac{\ell(1-\lambda)}{2}}\left(\frac{A R}{\ell}-1\right)>\sqrt{1-\lambda} \Phi^{-1}\left(1-\Phi\left(\Phi^{-1}(\alpha) / \sqrt{1-\lambda}\right)\right)+O\left(\frac{1}{\sqrt{\ell}}\right)\right\} \\
= & \operatorname{Pr}\left\{N(0,1)+o_{d}(1)>-\Phi^{-1}(\alpha)\right\} \rightarrow \alpha .
\end{aligned}
$$

Figure 1: Asymptotic size (p-value) of the conventional $A R(J)$ test as a function of $\lambda \in(0,1)$.

Table 1. Empirical rejection rates at 5% and 10% nominal level of the J tests.

	5%				10%			
	$\lambda=.04$	$\lambda=.2$	$\lambda=.5$	$\lambda=.8$	$\lambda=.04$	$\lambda=.2$	$\lambda=.5$	$\lambda=.8$
$n=100$								
J	5.06%	2.66%	0.52%	0.00%	10.38%	7.40%	3.08%	0.02%
$J_{D I N}$	7.12%	4.08%	0.92%	0.00%	10.66%	8.08%	3.52%	0.02%
$J_{\text {corr }}$	5.50%	4.54%	4.76%	4.52%	10.88%	9.96%	10.30%	10.54%
$n=200$								
J	4.92%	3.00%	0.84%	0.00%	10.14%	7.40%	3.02%	0.02%
$J_{\text {DIN }}$	7.00%	3.84%	1.02%	0.00%	10.84%	7.92%	3.22%	0.02%
$J_{\text {corr }}$	5.24%	4.94%	4.44%	4.96%	10.56%	9.98%	10.00%	10.54%
$n=500$								
J	5.44%	3.28%	0.62%	0.00%	10.50%	8.02%	2.82%	0.01%
$J_{\text {DIN }}$	6.90%	4.04%	0.82%	0.00%	11.14%	8.42%	2.92%	0.01%
$J_{\text {corr }}$	5.94%	5.20%	4.20%	4.62%	10.98%	10.44%	9.54%	10.44%

Notes: $J, J_{D I N}$ and $J_{\text {corr }}$ denote the conventional J test, the J statistic of Donald, Imbens and Newey (2003) and the test proposed in this paper, respectively.

Table 2. Empirical rejection rates at 5% and 10% nominal level of the $A R$ tests.

	5%				10%			
	$\lambda=.04$	$\lambda=.2$	$\lambda=.5$	$\lambda=.8$	$\lambda=.04$	$\lambda=.2$	$\lambda=.5$	$\lambda=.8$
$n=100$								
$A R$	6.28%	7.40%	14.52%	29.04%	11.58%	12.96%	20.40%	33.97%
$A R_{A S}$	8.58%	8.80%	15.68%	29.97%	12.22%	13.94%	20.86%	34.36%
$A R_{\text {corr }}$	5.94%	5.22%	6.96%	9.36%	11.08%	10.10%	12.28%	14.86%
$n=200$								
$A R$	5.26%	7.90%	13.34%	27.03%	10.80%	13.56%	19.46%	31.95%
$A R_{A S}$	7.32%	9.12%	14.46%	27.79%	11.52%	14.06%	19.76%	32.29%
$A R_{\text {corr }}$	4.96%	5.78%	5.98%	8.40%	10.36%	10.78%	11.34%	13.52%
$n=500$								
$A R$	6.12%	8.00%	13.34%	25.15%	11.46%	13.94%	19.26%	29.67%
$A R_{A S}$	7.36%	8.94%	13.92%	25.67%	12.16%	14.44%	19.68%	29.90%
$A R_{\text {corr }}$	5.78%	5.86%	4.98%	6.80%	10.76%	11.10%	10.52%	12.34%

Notes: $A R, A R_{A S}$ and $A R_{\text {corr }}$ denote the conventional Anderson-Rubin test, the $A R$ statistic of Andrews and Stock (2007) and the test proposed in this paper, respectively.

[^0]: *We would like to thank the co-editor Richard Smith, two referees and Bruce Hansen for very useful comments and suggestions. The second author gratefully acknowledges financial support from FQRSC and SSHRC.
 ${ }^{\dagger}$ Address: New Economic School, Nakhimovsky Prospekt, 47, room 1721, Moscow, 117418, Russia. Web: sanatoly@nes.ru; http://www.nes.ru/~sanatoly/
 ${ }^{\ddagger}$ Address: Department of Economics, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec, H3G 1M8, Canada. Web: nikolay.gospodinov@concordia.ca; http://alcor.concordia.ca/~gospodin/

