Durbin–Watson Statistic and Random Individual Effects

Stanislav Anatolyev^{*}

March 11, 2002

Problem

Consider the standard one-way error component model with random effects (Baltagi, 2001):

$$y_{it} = x'_{it}\beta + \mu_i + v_{it}, \quad i = 1, \cdots, n, \quad t = 1, \cdots, T,$$
 (1)

where β is $k \times 1$, μ_i are random individual effects, $\mu_i \sim IID(0, \sigma_{\mu}^2)$, v_{it} are idiosyncratic shocks, $v_{it} \sim IID(0, \sigma_v^2)$, and μ_i and v_{it} are independent of x_{it} for all *i* and *t* and mutually. The equations are arranged so that the index *t* is faster than the index *i*. Consider running OLS on the original regression (1); running OLS on the Within regression

$$y_{it} - \bar{y}_{i\cdot} = (x_{it} - \bar{x}_{i\cdot})'\beta + v_{it} - \bar{v}_{i\cdot}, \quad i = 1, \cdots, n, \quad t = 1, \cdots, T,$$
(2)

where $\bar{z}_{i} = T^{-1} \sum_{t=1}^{T} z_{it}$ for z = y, x, v; running OLS on the Between regression

$$\bar{y}_{i\cdot} = \bar{x}'_{i\cdot}\beta + \mu_i + \bar{v}_{i\cdot}, \quad i = 1, \cdots, n, \quad t = 1, \cdots, T,$$

$$(3)$$

with T replications of the equation for each individual i; and running OLS on the GLStransformed regression

$$y_{it} - \hat{\theta}\bar{y}_{i\cdot} = (x'_{it} - \hat{\theta}\bar{x}_{i\cdot})'\beta + (1 - \hat{\theta})\mu_i + v_{it} - \hat{\theta}\bar{v}_{i\cdot}, \quad i = 1, \cdots, n, \quad t = 1, \cdots, T, \quad (4)$$

where $\hat{\theta}$ is a consistent (as $n \to \infty$ and T stays fixed) estimate of $\theta = 1 - \sigma_v / \sqrt{\sigma_v^2 + T \sigma_\mu^2}$. When each OLS estimate is obtained using a typical regression package, the Durbin–Watson statistic is provided among the regression output. Derive the probability limits of the four Durbin–Watson statistics, as $n \to \infty$ and T stays fixed. Using the obtained result, propose an asymptotic test for individual effects based on the Durbin–Watson statistic.

Reference

Baltagi, B.H. (2001) Econometric Analysis of Panel Data. New York: John Wiley & Sons.

^{*}New Economic School, Nakhimovsky prospect, 47, room 1721, Moscow, 117418, Russia. E-mail: sanatoly@nes.ru

Suggested Solution

In all regressions, the residuals consistently estimate corresponding regression errors. Therefore, to find a probability limit of the Durbin–Watson statistic, it suffices to compute the variance and first-order autocovariance of the errors across the stacked equations:

$$\lim_{n \to \infty} DW = 2\left(1 - \frac{\varrho_1}{\varrho_0}\right),$$

where

$$\varrho_0 = \lim_{n \to \infty} \frac{1}{nT} \sum_{t=1}^T \sum_{i=1}^n u_{it}^2, \quad \varrho_1 = \lim_{n \to \infty} \frac{1}{nT} \sum_{t=2}^T \sum_{i=1}^n u_{it} u_{i,t-1},$$

and u_{it} 's denote regression errors. Note that the errors are uncorrelated where the index *i* switches between individuals, hence summation from t = 2 in ρ_1 .

Consider the original regression (1) where $u_{it} = \mu_i + v_{it}$. Then $\varrho_0 = \sigma_v^2 + \sigma_\mu^2$ and

$$\varrho_1 = \frac{1}{T} \sum_{t=2}^{T} \min_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} (\mu_i + v_{it}) (\mu_i + v_{i,t-1}) = \frac{T-1}{T} \sigma_{\mu}^2.$$

Thus

$$\lim_{n \to \infty} DW_{OLS} = 2\left(1 - \frac{T-1}{T}\frac{\sigma_{\mu}^2}{\sigma_v^2 + \sigma_{\mu}^2}\right) = 2\frac{T\sigma_v^2 + \sigma_{\mu}^2}{T\left(\sigma_v^2 + \sigma_{\mu}^2\right)}.$$

Consider the Within regression (2) where $u_{it} = v_{it} - \bar{v}_{i.}$. Then

$$\varrho_0 = \frac{1}{T} \sum_{t=1}^T \min_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \left(\frac{T-1}{T} v_{it} - \frac{1}{T} \sum_{\tau \neq t} v_{i\tau} \right)^2 = \frac{T-1}{T} \sigma_v^2$$

and

$$\begin{aligned} \varrho_1 &= \frac{1}{T} \sum_{t=2}^T \min_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \left(\frac{T-1}{T} v_{it} - \frac{1}{T} v_{i,t-1} - \frac{1}{T} \sum_{\substack{\tau \neq t \\ \tau \neq t-1}} v_{i\tau} \right) \left(\frac{T-1}{T} v_{i,t-1} - \frac{1}{T} v_{it} - \frac{1}{T} \sum_{\substack{\tau \neq t \\ \tau \neq t-1}} v_{i\tau} \right) \\ &= -\frac{T-1}{T^2} \sigma_v^2. \end{aligned}$$

Thus

$$\lim_{n \to \infty} DW_{Within} = 2\frac{T+1}{T}.$$

Consider the Between regression (3) where $u_{it} = \mu_i + \bar{v}_i$. Then

$$\varrho_0 = \frac{1}{T} \sum_{t=1}^T \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n (\mu_i + \bar{v}_{i\cdot})^2 = \sigma_{\mu}^2 + \frac{1}{T} \sigma_v^2$$

and

$$\varrho_1 = \frac{1}{T} \sum_{t=2}^{T} \min_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} (\mu_i + \bar{v}_{i.})^2 = \frac{T-1}{T} \left(\sigma_{\mu}^2 + \frac{1}{T} \sigma_{v}^2 \right).$$

Thus

$$\lim_{n \to \infty} DW_{Between} = \frac{2}{T}$$

The GLS-transformation orthogonalizes the errors, therefore

$$\lim_{n \to \infty} DW_{GLS} = 2.$$

Since all computed probability limits except that for DW_{OLS} do not depend on the variance components, the only way to construct an asymptotic test of $H_0: \sigma_{\mu}^2 = 0$ vs. $H_A: \sigma_{\mu}^2 > 0$ is by using DW_{OLS} . Under H_0 , $\sqrt{nT} (DW_{OLS} - 2) \xrightarrow{d} N(0, 4)$ as $n \to \infty$ (estimation of β does not affect the limiting distribution). Under H_A , $\lim_{n\to\infty} DW_{OLS} < 2$. Hence a one-sided asymptotic test for $\sigma_{\mu}^2 = 0$ for a given level α is:

Reject if
$$DW_{OLS} < 2\left(1 + \frac{z_{\alpha}}{\sqrt{nT}}\right)$$
,

where z_{α} is the α -quantile of the standard normal distribution.