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Abstract

Applied researchers often use tests based on contingency tables, especially in preliminary
data analysis and diagnostic testing. We show that many such tests may be alternatively
implemented by testing for coe¢ cient restrictions in linear regression systems.

JEL classi�cation codes: C12, C22, C32, C53

Key words: Contingency table, linear regression, chi-squared test, Wald test, ranks

*Corresponding author. Address: Stanislav Anatolyev, New Economic School, Nakhimovsky Pr., 47,
Moscow, 117418 Russia. E-mail: sanatoly@nes.ru.



1 Introduction

Often applied economists and �nanciers use tests associated with contingency tables. Such
tests are designed for verifying independence or homogeneity properties of original data
or regression residuals, and are heavily used in preliminary data analysis and diagnostic
testing. For example, the phrase �contingency table�leads to 185 and 61 hits using advance
search (performed in July 2008) in JSTOR economics (31 journals) and �nance (7 journals)
collections, respectively. Some of associated tests are even more frequently mentioned.
The tests related to contingency tables are performed by utilizing particular formulas,

often quite complex ones. In this paper we give a number of results showing that typically
such tests may be alternatively implemented via a system of linear regressions. This concerns
tests for independence, tests for accordance with distribution, tests for symmetry, and tests
based on ranks. Such reformulation is useful for a number of reasons. First, it uni�es the
regression analysis with the theory of contingency tables. Second, the bridge between the two
theories sheds more light on intuitive contents of contingency table tests and test statistics.
Third, running regressions may be more convenient and familiar for practitioners.
A complete working paper version of the paper containing some references to applications,

more related discussions, and proofs of all results can be found on the website
http : ==www:nes:ru=~sanatoly=Papers=CT:pdf:

2 Two-way contingency tables

We begin by introducing some basic notation. The sample size is denoted by n. Bars denote
taking sample averages, i.e., for example, aij = n�1

Pn
t=1 aij. By kaik

`
i=1 we mean a column

` � 1 vector with ith element ai: By kai;jk`1i=1
`2

j=1
we mean an `1 � `2 matrix whose ith; jth

element equals ai;j:
We consider a two-way (`x + 1) � (`y + 1) contingency table. The state space 
x of one

variable, x; is partitioned into the cover fKig`x+1i=1 ; similarly, the state space 
y of the other
variable, y; is partitioned into the cover f�jg`y+1j=1 : Let us denote

Ii;� = I (x 2 Ki) ; I�;j = I (y 2 �j) ; Ii;j = I (x 2 Ki) I (y 2 �j)

where I (�) denotes the indicator function. Let

�i;� = Pr fx 2 Kig ; ��;j = Pr fy 2 �jg ; �i;j = Pr fx 2 Ki; y 2 �jg ;

and de�ne
�x = k�i;�k`xi=1 ; �y = k��;jk`yj=1 � = k�i;jk`xi=1

`y

j=1
:

We assume that �i;j > 0 for all i and j:
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The contingency table looks as follows:

y
�1 �2 � � � �`y �`y+1 
y

K1 p1;1 p1;2 � � � p1;`y p1;`y+1 p1;�
K2 p2;1 p2;2 � � � p2;`y p2;`y+1 p2;�

x
...

...
...

. . .
...

...
...

K`x p`x;1 p`x;2 � � � p`x;`y p`x;`y+1 p`x;�
K`x+1 p`x+1;1 p`x+1;2 � � � p`x+1;`y p`x+1;`y+1 p`x+1;�

x p�;1 p�;2 � � � p�;`y p�;`y+1 1

The �gures in the tables are empirical probabilities of falling into corresponding cells

pi;j = Ii;j
and marginal empirical probabilities

pi;� = Ii;�; p�;j = I�;j:

In many applications, each Ki is an interval [�i�1; �i) and each �j is an interval [�j�1; �j) ;
where �1 = �0 < �1 < � � � < �`x < �`x+1 = +1 and �1 = �0 < �1 < � � � < �`y < �`y+1 =
+1: When `x = `y and Ki = �i for all i; the contingency table is referred to as one
with identical categorizations. However, rows and columns of a contingency table need not
correspond to partitionings of a real axis, and categorizations need not be identical.

3 Tests and their equivalences

3.1 Tests for independence

The classical �2-test statistic for independence between the variables x and y (more precisely,
for no association between x and y) is equal to

X2 = n
`x+1X
i=1

`y+1X
j=1

(pi;j � pi;�p�;j)2

pi;�p�;j
; (1)

and is asymptotically distributed as �2 (`x`y) :

Theorem 1 The �2 test (1) is asymptotically equivalent to an OLS-based Wald test for the
nullity of all slope coe¢ cients in a linear multiple regression of I�;j on Ii;� with a constant in
each equation, i.e. for the null

H0 : �ji = 0; i = 1; � � � ; `x; j = 1; � � � ; `y
in the regression system

I�;j = �j +
`xX
i=1

�jiIi;� + �j; j = 1; � � � ; `y: (2)

Alternatively, Ii;� may be regressed on I�;j rather than I�;j are regressed on Ii;�:

Note that when the contingency table is 2�2; the test for independence can be run using
only one bivariate regression.
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3.2 Tests for accordance with distribution

The previous �2 test may be also interpreted as a test for homogeneity of `x+1 subsamples
yj(x 2 Ki); i.e. that the conditional distribution of y does not depend on x: Suppose now
that the marginals f��;jg`y+1j=1 are known a priori. Then the �2 test, whose statistic can be
modi�ed to take account of this knowledge, may be interpreted as a test for accordance of
`x + 1 independent subsamples with a known multinomial distribution. The modi�ed test
statistic is equal to

X2 = n
`x+1X
i=1

`y+1X
j=1

(pi;j � pi;���;j)2

pi;���;j
; (3)

and is asymptotically distributed as �2 ((`x + 1) `y) :

Theorem 2 The �2 test (3) is asymptotically equivalent to an OLS-based Wald test for the
nullity of all coe¢ cients in a linear multiple regression of I�;j � ��;j on Ii;� with a constant in
each equation, i.e. for the null

H0 : �j = �ji = 0; i = 1; � � � ; `x; j = 1; � � � ; `y

in the regression system

I�;j � ��;j = �j +
`xX
i=1

�jiIi;� + �j; j = 1; � � � ; `y: (4)

Remark 1 The regression from theorem 2 is the same as that from theorem 1. However,
the set of restrictions is expanded by additional `y restrictions of equality of the intercepts in
(2) to the known a priori y-marginals. This explains the additional `y degrees of freedom in
the asymptotic �2 distribution.

When `x = 0; the contingency table essentially becomes one-way, and there is only one
subsample yj(x 2 
x). Then the test is called the Pearson (1900) test for goodness of �t,
and it simply veri�es if the sample is drawn from a given multinomial distribution. The test
statistic becomes Pearson�s

X2 = n

`y+1X
j=1

(p�;j � ��;j)2

��;j
; (5)

and is asymptotically distributed as �2 (`y) :

Corollary 1 The Pearson test (5) is asymptotically equivalent to an OLS-based Wald test
for the nullity of all coe¢ cients in a linear multiple regression of I�;j � ��;j on a constant in
each equation, i.e. for the null

H0 : �j = 0; j = 1; � � � ; `y

in the regression system

I�;j � ��;j = �j + �j; j = 1; � � � ; `y: (6)
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Applications of the Pearson test in economics can be divided into two categories. In
the �rst category, frequencies of simulated values from an estimated model falling into pre-
speci�ed bins are compared to a multinomial distribution implied by an assumed continuous
distribution, the latter possibly having shape parameters estimated. Most often, however,
the reference distribution is uniform so that ��;j = 1= (`y + 1) ; and the leading applica-
tion is evaluation of conditional density forecasts. In the second category of applications,
one compares frequencies of model-generated predictions falling into pre-speci�ed bins to a
multinomial distribution implied by an empirical density.

3.3 Tests for symmetry

Next we analyze two tests for symmetry in contingency tables with identical categorizations.
Stuart (1955) suggested a test for homogeneity of the marginal distributions of x and y:
Formally, the null is

H0 : �i;� = ��;i; i = 1; � � � ; `;
which automatically implies also �`+1;� = ��;`+1: The test is based on the ` � 1 vector of
di¤erences pi;� � p�;i; i = 1; � � � ; `: Let dn = kpi;� � p�;ik`i=1 : The test statistic is

Qn = nd
0
nV

�1dn;

where V = kVi;jk`i=1
`

j=1
; and Vi;i = pi;� + p�;i � 2pi;i � (pi;� � p�;i)2 ; Vi;j = �pi;j � pj;i �

(pi;� � p�;i) (pj;� � p�;j) ; i 6= j: Under H0; Qn is asymptotically distributed as �2 (`) :

Theorem 3 The Stuart Qn test is asymptotically equivalent to an OLS-based Wald test for
the nullity of all intercepts in a linear multiple regression of Ii;� � I�;i on a constant, i.e. for
the null

H0 : �i = 0; i = 1; � � � ; `
in the regression system

Ii;� � I�;i = �i + �i; i = 1; � � � ; `: (7)

Bowker (1948) suggested a test for complete symmetry of the contingency table. Such
symmetry implies a stronger equivalence between the two classi�cations than equality of
marginal distributions. In fact, it is the two conditional distributions that are compared.
Formally, the null is

H0 : �i;j = �j;i; i = 2; � � � ; `+ 1; j = 1; � � � ; i� 1:

The test is based on ` (`+ 1) =2 di¤erences pi;j � pj;i; i = 2; � � � ; `+ 1; j = 1; � � � ; i� 1: The
test statistic is

Un = n

`+1X
i=2

i�1X
j=1

(pi;j � pj;i)2

pi;j + pj;i
:

Under H0; Un is asymptotically distributed as �2 (` (`+ 1) =2) :
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Theorem 4 The Bowker Un test is asymptotically equivalent to an OLS-based Wald test for
the nullity of all intercepts in a linear multiple regression of Ii;j � Ij;i on a constant, i.e. for
the null

H0 : �ij = 0; i = 2; � � � ; `+ 1; j = 1; � � � ; i� 1
in the regression system

Ii;j � Ij;i = �ij + �ij; i = 2; � � � ; `+ 1; j = 1; � � � ; i� 1: (8)

3.4 Tests based on ranks

Often researchers carry out testing for independence or homogeneity using rank transformed
data rather than the original data, the idea being to compare more objective �ordinal�data
characteristics instead of �cardinal� ones. In the rest of the paper we review two class of
tests based on ranks �the Kruskal�Wallis test and the Spearman rank test.
Suppose that k random samples of size n1; :::; nk are tested for identity of distributions

they come from. Let the vector of ranks (r1;1; :::; r1;n1 ; :::; rk;1; :::; rk;nk)
0 correspond to the

pooled sample (of length n =
Pk

j=1 nj). Let j index samples, while i index observations
within a sample. The sums of ranks for the separate samples is denoted by Rj =

Pnj
i=1 rj;i.

The Kruskal�Wallis test statistic is

KW =
12

(n� 1)n

kX
j=1

1

nj

�
Rj �

n+ 1

2
nj

�2
:

Let asymptotically n ! 1 and minj nj ! 1 so that �j � limminj nj!1 nj=n 6= 0 for
j = 1; :::; k: Under these circumstances, KW is asymptotically distributed as �2 (k � 1) :

Theorem 5 The Kruskal�Wallis KW test is asymptotically equivalent to an OLS-based
Wald test for the nullity of all intercepts in a linear multiple regression of rj;i � n+1

2
; j =

1; � � � ; k � 1; on a constant, i.e. for the null

H0 : �j = 0; j = 1; � � � ; k � 1

in the regression system

rj;i �
n+ 1

2
= �j + �ij; j = 1; � � � ; k � 1; (9)

with observations running from i = 1 to i = nj for equation j:

Remark 2 A similar, but di¤erent, situation is considered in statistical literature. A �xed
number s of products are ranked by a �xed number k of experts. Denote by Ki;j the ranking
that the expert j gave the product i (Ki;j varies from 1 to s), and by Ni;j the number of times
the product i received ranking j:
The Friedman test statistic

F =
12

ks (s+ 1)

sX
j=1

 
kX
j=1

Ki;j �
s+ 1

2
k

!2
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is used to test for homogeneity of products. It is asymptotically distributed as �2 (s� 1) as
the number of experts increases. It is possible to show that F is asymptotically equivalent to
an OLS-based Wald test for

H0 : �i = 0; i = 1; � � � ; s� 1

in the regression system

Ki;j �
s+ 1

2
= �i + �ij; i = 1; � � � ; s� 1; (10)

with observations running from j = 1 to j = k:
The Anderson test statistic

A =
s

k

sX
i=1

sX
j=1

�
Ni;j �

k

s

�2
;

asymptotically distributed as �2
�
(s� 1)2

�
as the number of experts increases, is used to test

for homogeneity of products. It is possible to show that A is asymptotically equivalent to an
OLS-based Wald test for

H0 : �i;j = 0; i; j = 1; � � � ; s� 1
in the regression system

Ni;j �
k

s
= �i;j + �ij; i; j = 1; � � � ; s� 1; (11)

with one observation per equation.

Suppose the vector of ranks (R1; :::; Rn)0 corresponds to a random sample of length n:
The Spearman rank statistic � is de�ned as

� =
12

(n� 1)n

nX
i=1

�
i� n+ 1

2

��
Ri �

n+ 1

2

�
:

Theorem 6 The Spearman rank statistic � is equal to n+1 times the OLS slope coe¢ cient
in a linear regression of Ri on a constant and observation number i

Ri = �+ �i+ �; (12)

with observations running from i = 1 to i = n:

As a consequence, an OLS-based t test for the null H0 : � = 0 may be used to test for
independence of elements in a given sample, which is often realized in practice by informally
comparing � to zero.
The pairwise Spearman rank correlation coe¢ cient � between two vectors of ranks (R1; :::; Rn)0

and (S1; :::; Sn)0 corresponding to two random samples of length n is de�ned as

� =

Pn
i;j=1 (Sj � Si) (Rj �Ri)qPn

i;j=1 (Sj � Si)
2Pn

i;j=1 (Rj �Ri)
2
:
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Theorem 7 The Spearman rank correlation coe¢ cient � is equal the OLS slope coe¢ cient
in a linear regression of Rj �Ri on Sj � Si

Rj �Ri = � (Sj � Si) + �; (13)

with n2 observations for all possible pairs (i; j) where each index runs from 1 to n: Alterna-
tively, one may switch Sj � Si and Rj � Ri in the regression (13). A constant term may be
innocuously introduced into the regression (13).

As a consequence, an OLS-based t test for the null H0 : � = 0 may be used to test for
independence of two given random samples.

Remark 3 In the context of Remark 2, the Umbrella test statistic

U =
12p

k(s� 1)s(s+ 1)

 
sX
i=1

i

kX
j=1

Ki;j �
1

2
ks(s+ 1)2

!
;

asymptotically distributed as N(0; 1) as the number of experts increases, is used to test for
homogeneity of products. It is possible to show that U is asymptotically equivalent to an
OLS-based t test for

H0 : � = 0

in the regression
Ki;j = �+ �i+ �ij; (14)

with observations running from i; j = 1 to i = s; j = k:
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