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ABSTRACT

Several ¯rms use historical returns to rate or rank the performance of mutual funds, for the

bene¯t of individual investors desiring to invest in one or more of them. Because the past will

not exactly repeat itself, such ratings re°ect di®erent notions of \risk" faced by investors. This

paper describes and analyzes the performance measures employed by some advisory ¯rms. Ap-

proximations are derived to facilitate understanding and comparison of these measures. Simple

modi¯cations are proposed to transform these measures into a fund performance measure that is

directly related to the fund's probability of outperforming a user-selected benchmark's cumulative

return. Perhaps the most important problem plaguing all these measures is the di±culty of accu-

rately estimating expected returns from historical averages, even when a high number of years is

used. A proposal to use ¯ltering to alleviate this di±culty is explained and discussed.
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1 Introduction

Investors are stuck at a crossroads. They could follow the direction preferred by many ¯nancial

economists by investing in a diversi¯ed value-weighted portfolio (either through an index fund or

exchange-traded fund), or they could follow others in selecting an actively-managed fund from

among the thousands that are readily available. The largest index fund (Vanguard 500) had an

average annual total return of ¡1:65% over the ¯ve years ending in October 2002, while the largest

actively-managed equity fund (Fidelity Magellan) had an average annual total return ¡1:84% over

the same period. Let us pray that investors have the wisdom to choose wisely!2

In an attempt to help investors choose wisely, some advisory ¯rms (e.g. Morningstar and Lipper)

publish relative performance ratings of funds. Perhaps you have seen those full page ads in the New

York Times or Wall Street Journal, where a fund management ¯rm trumpets one or more of its

funds that have obtained the highest (i.e. ¯ve star) ratings from Morningstar. If you haven't paid

attention to those ratings, plenty of individual investors have: a recent analysis by Del Guercio and

Tkac [6] concluded that \Overall, our results indicate that Morningstar ratings have unique power

to a®ect asset °ow."

The raw data used for these and other ratings are historical fund returns. But rating ¯rms

crunch these numbers di®erently when producing their respective ratings. Moreover, the number

crunching is complex, and its rationale obscure to most anyone other than some ¯nancial economists

specializing in performance evaluation. Further complicating matters is the belief of many ¯nancial

economists that the notion and weighting of \risk" be applied to the invested wealth and possibly

even human capital of the investor, rather than to just the alternatives under consideration. More

speci¯cally, returns would need to be calculated on the investor's total personal wealth including
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that from the fund analyzed. The fund's bene¯ts and costs would be evaluated in terms of its

e®ects on total investor wealth. Hence in general, one would need to know{more realistically, make

unrealistic assumptions { about the pre-existing composition of investor portfolios. In the absence

of these assumptions, ratings ¯rms adopt other criteria which attempt compare the rated funds to

each other and to observable benchmark portfolios, e.g. the S&P 500 or its more easily investable

counterparts (mutual index funds or exchange-traded index funds). Without more investor-specī c

knowledge, the best that can be hoped for is that fund ratings will partially contribute to solving

investors' problems.

This paper has a similarly modest goal. It is intended to help ¯nancial professionals better

understand some of the performance rating systems devised to rank a fund's performance relative

to other funds, including observable benchmark portfolios. Section 2 provides a canonical comparison

used throughout the paper: based on historical returns on alone, should a fund be ranked above

or below a benchmark index? We analyze the (holding period-dependent) probabilities that the

cumulative return from investing in one will exceed that of the other. Section 3 provides an

overview of some alternative performance ratings systems in use, develops approximations of them

that facilitate our understanding of them, and develops simple modī cations required to turn them

into measures consistent with the outperformance probability desiderata developed in section 2.

Section 4 discusses a serious problem facing all performance ratings systems based on historical

fund returns: historical average returns are notoriously unstable estimators of the long-run average

returns. A simple example is used to illustrate the potential of statistical ¯ltering to cope with this

problem. Section 5 concludes.
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2 A Typical Comparision

Figure 1 contrasts the hypothetical results of investing $1.00 in 1980 in a broad-based index to

investing it in a particular managed fund or fund strategy (hereafter dubbed \the fund"), through

2001.3 We see that the two were basically in a dead heat until 1995, after which the fund generally

excelled. On this basis, perhaps the fund should be ranked higher than the index. But Figure 2,

which graphs their raw monthly returns, clearly depicts the higher volatility of the fund's monthly

returns. The high volatility resulted in particularly bad month during 1998 that virtually wiped

out its advantage to that point. Due to this high volatility, that might happen again, possibly

dragging the fund's cumulative return back below the index.

Just how much does this higher volatility put the fund investor at-risk of underperforming the

index? To investigate this, let us employ a popular statistical tool known as bootstrapping. While

we know that the exact sequence of past monthly returns will not repeat itself, we think of the

return numbers themselves as indicative of what could happen in the future. That is, we randomly

sample months (with replacement) from the (258) months for which we have historical returns, and

string the fund's returns during those months together, representing a hypothetical future for the

fund's returns. The same months are used to construct a hypothetical future for the index returns,

and the two hypothetical futures contrasted to see if the fund still outperforms the index over the

number of months sampled.4 Constructing 10,000 hypothetical 120 month future periods in this

way, one ¯nds that the fund failed to beat the index in only 35% of those hypothetical futures, i.e.

there is a 65% chance (i.e. almost 2:1 odds) that the fund will beat the benchmark after a 10 year

holding period.

But it is also important to examine what happens over shorter investment horizons, which
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are perhaps more relevant for investors who are a bit jumpy and/or nearing retirement. Using

the same method to simulate 10,000 hypothetical 5 year future holding periods, it turns out that

the fund still underperforms the index 38% of the time. So there is still a 62% chance (almost

2:1 odds) that the fund will outperform the index over a 5 year holding period. But note that

the 38% underperformance probability over 5 year future scenarios is slightly higher than the

35% underperformance probability over 10 year scenarios. This pattern continues to hold when

analyzing even shorter holding periods of 3 years and 1 year. In the latter case, an investor who

puts funds on a really short 1 year leash will face an an even higher, 43% chance that the fund will

underperform the index over the next year. Of course, this still leaves a 57% chance (about 4:3

odds) of beating the index over that year. In summary, the fund's underperformance probabilities

decrease (i.e. improve) as the holding period grows longer { a type of time diversi¯cation { but

non-negligable underperformance probabilities persist over surprisingly long holding periods. This

is illustrated by the very slow decrease of the bar heights in Figure 3.

Now let us conduct similar analyses of both the fund and index' probabilities of underper-

forming a cumulative investment in one-month T-Bills, a benchmark that has generally lower and

certainly less volatile returns than both the fund and the index. Figure 4 shows that the index has

underperformance probabilities that decay more rapidly than the fund's do as the holding period

lengthens. Even after a 10 year holding period, there is still a better than 20% chance that the

fund will underperform a cumulative investment in one-month T-Bills, due to the slow decay of

its underperformance probabilities. After seeing Figure 4, someone who is primarily concerned

with beating a one-month T-Bill benchmark would probably rank the index over the fund, because

its lower probabilities of underperforming (the T-Bill benchmark) imply higher outperformance

probabilities.
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Some lessons learned from our analysis of Figures 3 and 4 are summarized in the following

proposition:

Proposition 1: A fund that achieved a higher historical cumulative return than a benchmark

may have signi¯cant probabilities of underperforming that benchmark in the future, even though its

underperformance probabilities may steadily decay toward zero as the holding period lengthens. The

problem is exacerbated in funds that have high volatility relative to their average historical return.

Those primarily interested in beating the benchmark wil l prefer funds whose underperformance

probabilities decay most rapidly toward zero as the holding period increases.

2.1 Absolute or Relative Performance?

While the bootstrap analysis contrasts the possible future relative performance of the fund and

index, it can (with somewhat more reservations) be used to examine the possible future performance

of the fund itself. This is a more problematic exercise, because of the possibly atypical high growth

of both fund and index during the 1980-2001 period exhibited in Figure 1. A separate bootstrap

analysis of the fund will not re°ect this. But if the fairly tight historical statistical connection

(e.g. relatively high correlation coe±cient of 87%) between the fund and index returns illustrated

in Figure 2 continues to hold, the relative future cumulative return analysis conducted above is less

problematic. 5

With that caveat, the underperformance probabilities for the possible 10 year future cumulative

fund returns is depicted in Figure 5. The ¯gure shows that there is still a better than even chance

that 1 dollar invested in the fund will grow to 5 dollars after just 10 years, re°ecting the bootstrap's

projection of the fund's generally high average returns over 1980-2001. Readers may ¯nd these
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projections to be implausible, yet they are not just due to the bootstrap methodology. They are

implicit in any performance analysis of a fund in isolation, rather than its performance relative to

a fairly closely related benchmark, when that analysis is based solely on historical returns.

3 Risk-Adjusted Performance Measures

Some performance measures used by advisory ¯rms are now described. When needed, an ap-

proximation of each performance measure is constructed to show how it adjusts for the standard

textbook notion of \volatility risk". In accord with Proposition 1, each performance measure is

simply modi¯ed to provide a performance measure that is directly related to the underperformance

probability's rate of decay to zero, i.e. that is adjusted for the underperformance risk de¯ned in

section 2.

3.1 The Sharpe and Information Ratios

Perhaps the best known performance measure is the Sharpe Ratio [17]. It is used by some advisory

¯rms, e.g. in the quantitative components of both Standard and Poors \SelectFunds" and Charles

Schwab's \Select List" rating systems.6 It is also widely used outside of fund advisory ¯rms, e.g.

in the Hulbert Financial Digest's performance ratings of newsletters' investment strategies. Its

de¯nition depends on unobservable quantities: it is the ratio of the mathematical expectation of a

fund's returns in excess of a \riskfree" rate, divided by the standard deviation of this excess return.

But these and other determinants of the future distribution of relative performance are never

known with certainty. If they could be known with certainty, they could be used to perform a

di®erent bootstrap analysis that would produce the probabilities of possible future performance

levels with higher accuracy than that produced from raw historical returns in section 2. Instead,
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advisory ¯rms typically use the past return histories to estimate the required unobservable numbers.

The Sharpe Ratio (dubbed \SR") performance measure is most commonly estimated by calculating

the historical average monthly fund return in excess of a one-month T-Bill's return (this is the

same as the di®erence between the average fund and T-Bill returns), and dividing by the standard

deviation of these historical excess returns.7 The fund's average monthly return over the 1980-2001

period was 1:99% per month, well above the index' 1:21% per month. The standard deviation of the

managed fund's returns over the same period was 10:83% per month, well in excess of the index'

4:52% per month. Subtracting the one-month T-Bill returns from both fund and index returns

produces lower excess returns, used in the comparison below:

SRfund =
1
T
PT
t=1 R

fund
t ¡ 1

T
PT
t=1Rbillt

StdDevfund¡bill
(1)

=
1:99%¡ 0:54%

10:83%
= 13:4%

SRindex =
1
T
PT
t=1 R

index
t ¡ 1

T
PT
t=1 R

bill
t

StdDevindex¡bill
(2)

=
1:21%¡ 0:54%

4:52%
= 14:9%

where T denotes the number of historical monthly returns in the 1980-2001 period used in section

2.8

So according to the estimated Sharpe Ratio comparison (1) - (2), the fund is ranked lower than

the index, despite Figure 3, which indicates that the more volatile fund has a better than even

chance of outperforming the broad stock index (i.e. a less than half chance of underperforming

it) over all horizons examined, with the risk of underperforming it declining as the holding period

lengthened. Both Figure 3 and (1)- (2) depend solely on the historical data between 1980-2001,

so the disconnection between the outperformance probability ranking (i.e fund beats index) and
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the Sharpe Ratio ranking (index beats fund) must be attributable to something else. The Sharpe

Ratio is adjusting for some sort of risk, but evidently not the risk of underperforming the index

that is analyzed in section 2.

One of the reasons for the con°icting rankings is that the \benchmark" used in the Sharpe

Ratio is a one-month T-Bill, rather than the broad stock index. Substituting the stock index

return Rindex for Rbill in (1) results in a di®erent measure, commonly referred to as an Information

Ratio [8] (dubbed \IR" below) with an index benchmark. The Sharpe Ratio is the key performance

index in the textbook mean-variance portfolio theory (in the presence of a riskless asset, as we will

discuss later in section 4), while the Information Ratio is the key performance index in the tracking

error variance (TEV) theory of Roll [16]. In this case, use of the Information Ratio yields:

IR =
1
T
PT
t=1 R

fund
t ¡ 1

T
PT
t=1R

index
t

StdDevfund¡index
=

1:99%¡ 1:21%
7:24%

= 10:8% > 0 (3)

The positive Information Ratio (3) implies that the fund should be ranked above the index, con-

sistent with section 2's outperformance probability analysis. The agreement of the two is not

guaranteed, but it isn't completely accidental. A simple modi¯cation of the Information Ratio,

which replaces the net returns denoted R in (3) with continuously compounded returns log 1 + R,

provides an estimated Log-modi¯ed Information Ratio (dubbed \LIR"). When positive, the Ap-

pendix shows that the LIR generally implies that the fund's underperformance probabilities decay

to zero over time, at a rate that is directly related to the size of the LIR. Hence the size of the

positive LIR is usually directly related to the speed at which the bar heights drop in Figure 3. To

produce the LIR, we replace each monthly net return R in (3) with its continuously compounded
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counterpart log 1 +R before computing it, yielding

LIR =
1:35%¡ 1:10%

7:83%
= 3:2% > 0: (4)

which is smaller than (3) but still positive, again favoring the fund over the index. Comparing the

LIR (4) to the ordinary IR (3), we see that the relatively small size of (4) is heavily in°uenced

by the fund's historical average log gross return (1.35%) being much smaller than its ordinary

historical average return (1.99%). This is due to the fund's relatively high volatility, which causes

the average log gross return to be much smaller than the average return itself. The small size of

the LIR (4) implies that the fund's underperformance probabilities will decay slowly as the holding

period lengthens, as seen in the slow decay of bar heights in Figure 3.9 This property, developed

in the Appendix, is summarized below:

Proposition 2: Computing the Information Ratio (3) using the logarithms of fund and index

gross returns, i.e. using continuously compounded returns, is a historical estimate (dubbed LIR) of

a performance measure that when positive, is generally directly related to the probability that the

fund's cumulative return wil l exceed that of the index. The higher the positive value of LIR, the

faster the fund's underperformance probabilities decay toward zero.

How can Proposition 2 be used to interpret the conventional Sharpe Ratio (1), which shows

that the fund's historically estimated Sharpe Ratio is lower than the Sharpe Ratio of the index?

Substitution of log gross (i.e. continuously compounded) returns log 1 +R for the net returns R in

(1) and (2) produces the following Log-modī ed Sharpe Ratio (LSR) comparison:

LSRfund = 7:1% < 12:4% = LSRindex: (5)

The fund and the index both have positive historically estimated LSRs. If the positivity of those
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estimates is indicative of the the unobserved counterparts that they estimate, Proposition 2 implies

that both the fund's and the index' cumulative returns will beat the cumulative T-Bill return

over long holding periods. The higher positive LSR of the index indicates that its probabilities of

underperforming the T-Bill decay to zero at a faster rate than the fund's do as the holding period

lengthens. This is seen in Figure 4, which shows the faster decline of the index' probabilities of

underperforming T-Bills as the holding period lengthens from 1 to 10 years.

So those who are mainly interested in outperforming a cumulative investment in one-month T-

Bills should rank the index above the fund. But this does not imply that the index will outperform

the fund, as verī ed in Figure 3, because the relevant performance measure for that comparison is

the LIR (3), rather than the LSR (5).

Because Proposition 2 does not support the case for using the Sharpe Ratio, it is important to

re-examine the conventional mean-variance portfolio choice results that underlie use of a T-Bill (i.e.

riskless asset) benchmark in the Sharpe Ratio. In that theory, investors are just assumed to want

higher mean wealth and lower wealth variance (\risk") evaluated at the end of specī c period length.

As such, the Sharpe Ratio \is not a complete summary of the risks of a multiperiod investment

strategy and should never be used as the sole criterion for making an investment decision" [10].

Sharpe [18, p.31] argues that the Sharpe Ratio was developed \for situations in which an investor

can use borrowing or lending to achieve his or her desired level of risk". Speci¯cally, they must be

able to invest and borrow at the riskless T-Bill rate. This assumption is critical to enshrining the

maximum Sharpe Ratio portfolio as the best mean-variance e±cient portfolio of risky assets, and

hence to enshrining the use of riskless T-Bills as the \benchmark" in the Sharpe Ratio's numerator.

Although bond traders can often borrow at close to T-Bill rates (via repurchase agreements), other

less-heavily collateralized investors have an awfully hard time doing so.
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But if T-Bills aren't a benchmark that provides useful comparisons for investors, what bench-

mark(s) are more useful? All performance evaluation ¯rms partition funds into (sometimes nu-

merous) categories based on fund style and asset class etc. (e.g. large cap growth funds, mid cap

value funds, short term government bond funds, etc.), and then report fund rankings within each

category rather than between all categories. Under the reasonable presumption that these ¯rms

know what their customers want (or at least know their own customers' needs better than ¯nance

academics know those customers), it seems sensible to assume that investors want to use these

rankings to ¯nd \the best" fund(s) in each of the categories they want to invest in. It accordingly

makes sense to compare the funds in a category with a benchmark tailored to that category, and

indeed such published benchmarks are produced by The Frank Russell Co., Lipper, BARRA and

other ¯rms. Investors hope that each of their mutual fund picks will outperform the benchmark in

its category, in the hope that their portfolio will outperform a more diversi¯ed portfolio comprised

of the various categories' benchmarks.10

Finally, in considering any performance measure, it is important to consider how investors

would systematically use it. When using the Sharpe Ratio, this desideratum is described below, in

Sharpe's own words:

When choosing one from among a group of funds of a particular type for inclusion in

a larger set of holdings, the one with largest predicted excess return Sharpe Ratio may

reasonably be chosen, if it can be assumed that all the funds in the set have similar

correlations with the other holdings. If this condition is not met, some account should

be taken of the di®erential levels of such correlations.[17, p.56]

This condition arises to ensure that when an investor's pre-existing portfolio is augmented by
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the highest Sharpe Ratio fund in some category, it will be possible to use riskless investing and/or

borrowing to attain a higher mean portfolio return without raising the return variance. Conditions

like this one would also arise in other portfolio choice theories derived from the alternative perfor-

mance measures analyzed here. Also, systemic considerations might lead one to think that investors

would want comparisons to be made to a comprehensive \market" benchmark combining all major

asset classes, which in the mean-variance theory, would be the global Sharpe Ratio maximizing

portfolio. But a search of the Bloomberg database failed to uncover even a single published bench-

mark index for a blended portfolio representative of the stocks, bonds, bills, and bank CDs, and

home equity held by representative individuals. This failure provides some evidence that neither

fund managers nor investors use benchmarks in a one-step, systemic way. In fact, the Bloomberg

search failed to uncover a published blended index of any sort { not even one containing just do-

mestic stocks and bonds.11 A partial solution would be to use a broad equity (bond) benchmark

to rank funds in all equity (bond) categories, permitting inter-equity (bond) category comparisons

to a single, more diversi¯ed benchmark. See Belden and Waring [3] for a debate on the relative

merits of narrow versus broad benchmarks.

3.2 Morningstar's Risk Adjusted Return

During 2002, Morningstar, Inc. changed its well-known star ratings procedure in several ways [14].

Funds are now assigned to one of 48 equity and bond fund categories di®erentiated by size, style,

sector, geographic locale, bond term, etc. Within each category, they use a performance measure

to rank order the funds in that category against each other. Let us now focus attention on the

performance measure they use to rank funds within any particular one of their 48 categories. This

Morningstar Risk Adjusted Return (MRAR) performance measure is [14, p.13]
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MRAR(°) =

2
4 1
T

TX

t=1

Ã
1 + Rfundt

1 +Rbt

!¡°3
5
¡12

°

¡ 1 (6)

where 1+Rfundt denotes its (gross) monthly total return in month t out of the past T months, 1+Rbt

is an analogous benchmark return. Like the Sharpe Ratio (1), Morningstar uses the one-month

T-Bill return as the benchmark return Rb, but it will later prove useful to consider the consequences

of using other benchmarks. Similarly, ° is a number that Morningstar sets at a constant equal to 2

for all funds, because \Morningstar's U.S. fund analysts have concluded that ° = 2 results in fund

rankings that are consistent with the risk tolerances of typical investors."[14, p.13].

For the purpose of understanding the nature of (4), let us start by ranking our example fund

and index over the same historical period of T = 258 months used earlier. Substituting the monthly

fund and index returns into (4) yields their MRAR(2) ratings:

MRAR(2)fund = ¡9:1% < 4:3% = MRAR(2)index (7)

which like the Sharpe Ratio comparison (1) - (2), ranks the fund below the index. The ranking

would have been reversed had Morningstar used a lower ° coe±cient, in fact any ° lower than

0.42. So its choice of ° is critical to the ranking. One could also substitute the index (or another

benchmark) return Rb in (6) for Morningstar's T-Bill return , as done when changing the Sharpe

Ratio (1) into the Information Ratio (3). But in this example, replacing a T-Bill benchmark with

an index benchmark yields the same ranking, because

2
4 1
T

TX

t=1

Ã
1 +Rfundt
1 +Rindext

!¡°3
5
¡12
°

¡ 1 = ¡5:5% (8)

is still a negative number, indicating that the fund would still be ranked below the index. So
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the di®erent conclusions reached by the outperformance probability analysis of section 2 and the

Morningstar MRAR(° = 2) performance measure are not just due to the latter's use of the T-Bill

as a benchmark.

In order to systematically relate the MRAR(°) measure to the outperformance probability

analysis, it helps to transform the former into a simpler performance measure that produces the

same rank ordering of funds. The Appendix shows that (6) provides the same rank ordering as the

following historical estimate of an expected power utility index:

U(°) =
1
T

TX

t=1
¡
Ã

1 + Rfundt
1 +Rbt

!¡°
(9)

The following Proposition 3, derived in the Appendix, provides a useful approximation of the

MRAR(° = 2) performance measure.

Proposition 3: For any constant level of ° > 0 and benchmark with return Rb, Morningstar's

Risk-Adjusted Return measure MRAR(°) in (6) rates one fund higher than another when and only

when the expected power utility U(°) in (9) does. A useful approximation of the ranking that is

produced by Morningstar's use of the constant ° = 2 can be obtained by ranking funds in accord

with the di®erence between the average excess continuously compounded return and its variance (i.e.

squared standard deviation).

In our example, Proposition 3's alternative performance measure for the fund is 0:8%¡(11:5%)2 =

¡0:5%, which indeed is lower than the corresponding 0:6%¡ (4:6%)2 = +0:4% value for the index,

and hence in agreement with the MRAR(2) ranking (7). More generally, using the approximation to

re-rank the approximately 1300 large growth and large value funds tracked by Morningstar results

in an almost identical fund ranking; the rank correlation coe±cient is 99:999%.
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But how is the Morningstar measure related to the risk of underperformance analyzed in section

2? The following Proposition 4, developed in the Appendix, describes a simple modi¯cation of

(9) that produces a performance measure consistent with the outperformance probability analysis

conducted in section 2.

Proposition 4: Associate each fund with its own di®erent level of °, called °max, that maxi-

mizes the size of its U(°) in (9). If a fund's °max is positive, then the higher the value of U (°max),

the faster the fund's underperformance probabilities decay toward zero. This is because the un-

derperformance probabilities eventual ly decay at a rate of ¡ log[¡U (°max)], which is higher when

U (°max) is.

In our example, the broad-based index was used for the benchmark return Rb. Substituting it

into the function (9), and using the Excel \Solver" routine to maximize it over °, showed that the

fund is associated with a maximizing °max = 0:39. According to Proposition 4, the fund's underper-

formance probability will decay to zero as the holding period increases. But ¡U (°max) = 0:9995, so

¡ log[:9995] = 0:049% is quite small. So according to Proposition 4, the fund's underperformance

probabilities will decay to zero at a very slow rate as the holding period lengthens. As a result,

its probabilities of underperforming the index will persist for a very long time, as witnessed by the

very slow decrease of the bar heights in Figure 3.

3.3 Lipper's Preservation Measure

Lipper, Inc. uses di®erent performance measures to designate the top 20% of funds in each cat-

egory as the \LipperLeaders" associated with the di®erent performance measures. For example,

a preferred fund for \the most risk-averse fund investor" group is based on Lipper's assumption
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that \Investors perceive risk in terms of the frequency of losing money and also the extent (depth)

of losses."[22, p.1].12 Lipper partitions funds into three categories (equity, mixed-equity, and ¯xed

income), and ranks the funds in each category in accord with the following Lipper Preservation

performance measure:

LP =
TX

t=1
min[0;Rfundt ] (10)

which is just the sum of the fund's negative historical returns. This can be divided by T , to produce

an equivalent ranking measure:

ALP =
1
T

TX

t=1
min[0; Rfundt ] (11)

which is (minus one times) the fund's historical average loss. The highest possible value of (11) is

still 0, which would be attained by one-month T-Bills that always have nonnegative yields. You

just can't beat T-Bills for preservation of invested funds, albeit unadjusted for in°ation! Applying

(11) to the fund and index used in our example yields:

ALP fund = ¡3:1% < ¡1:2% = ALP index (12)

so the Lipper Preservation measure would rank the index above the fund, as did the Sharpe Ratio

comparison (1)- (2).

To better understand the Lipper Preservation measure, ¯rst note that

TX

t=1
min[0;Rfund] =

X

t:Rfundt =0

0 +
X

t:Rfundt <0

Rfundt : (13)

Denoting the number of negative historical returns (i.e. the ones used to form the second term in

(13)) by T¡, multiply and divide the two terms in (13) by it to obtain the following expression

18



equivalent to (11):

ALP =
T¡

T
£
P
t:Rfundt <0R

fund
t

T¡
: (14)

Hence the Lipper Preservation measure decreases as either the fraction of months where losses

occur increases, or the average value of those months' losses (i.e. minus one times the negative

return) increases.

In the example, both the fund and the index earned a negative return (i.e. a loss) in close

to 37% of the months between 1980-2001, although they weren't always earned during the same

months. Hence the ¯rst term in (14) is nearly identical for the fund and index. But the second

term, which the average of those negative returns, was much worse for the fund than the index

(-8.3% vs. -3.3%), resulting in (12) when the two terms in (14) are multiplied together.

The following proposition, developed in the Appendix, provides a useful approximation of the

ranking produced by the Lipper Preservation measure.

Proposition 5: A useful approximation of the ranking that would be produced by the Lipper

Preservation measure can be obtained by ranking funds in accord with the di®erence between their

average returns and their return standard deviations.

Figure 6 provides some graphical evidence of this equivalence, based on the derivation in the

Appendix. Note that in our example, Proposition 5's alternative performance measure for the fund

is 2:0% ¡ 10:8% = ¡8:8%, which indeed is lower than the corresponding 1:2% ¡ 4:5% = ¡3:3%

value for the index, and hence in agreement with the Lipper Preservation measure's ranking (see

the equivalent ALP ranking (12)).13 The following quote indicates that this approximation works

quite well in practice:
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We have run some tests using our fund performance data and indeed found a close

correlation between the Lipper preservation measure with the measure you suggested.14

4 Implementation Issues

4.1 The Use of Historical Returns: Average Returns Are the Culprit

The stability of fund rankings to the historical period used can be illustrated by examining the

sensitivity of the Sharpe Ratio, which is part of the basis for rankings produced by Standard and

Poors and Schwab. Figure 7 shows what would have happened had we ranked the fund versus the

index via their most recent 10 year past historical Sharpe Ratios, starting in 1991 and continuing

to re-rank them in every successive month through 2001. The ranking reversed, i.e. the fund

would have been ranked higher than the index, only toward the end of the period. Figure 8 shows

the rankings that would have resulted had only the most recent 3 year historical Sharpe Ratios

been compared. We see that an earlier reversal in ranking also occurred, lasting throughout 1994.

Comparing the vertical axes of the two ¯gures shows that the range of historical Sharpe Ratios is

far greater when only 3 years of historical returns are used than when 10 years are used. Because

it is a ratio of historical average (excess of T-Bill) returns to historical return standard deviation,

it is interesting to investigate which of the two contributes most to the °uctuation of the ratio.

For this purpose, a good indicator of °uctuation is the average absolute percentage change from

month to month. For example, if a number goes up by 10% in one month (say, from 2 to 2.2) and

down by 12% over the next month, its average absolute percentage change over the two months

is 11%. It turns out that the rolling 3 year average historical returns, i.e. the numerators of the

fund's rolling 3 year Sharpe Ratios in Figure 8, had an average absolute percentage change of
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65%! But the corresponding rolling standard deviations used in the denominators had an average

absolute percentage change of only 2.4%. Note that if both had always gone up or down by the

same percentage in every month, the Sharpe Ratios would not have °uctuated at all. One might

think that the problem would be largely eliminated by using 10 years of historical data rather

than just 3 years, but the fund's rolling 10 year historical average returns still °uctuate quite a bit

relative to the rolling 10 year historical standard deviations; the former had an average absolute

percentage change of 9% versus only 0.71% for the latter. In our example, ranking reversals weren't

common, but this vast di®erence indicates that they could be more common in other examples.

Moreover, it is well-known that the di±culty of estimating long-run (i.e. expected) returns from

historical averages is not eliminated by measuring returns more frequently, e.g. daily or weekly.[12,

pp.214-217], although this will generally improve volatility estimates.

Propositions 3 and 5 show that both the Morningstar and Lipper Preservation measures should

also be heavily in°uenced by these problematic historical average returns. The traditional statistical

foundation for assessing the accuracy of historical average returns as estimators of the unobserved

expected return is the assumption that the longer the historical period used, the more accurate the

estimate is, and the more stable rolling averages will be. The instability of historical averages may

persist even when an unusually long historical period is used to form them. From this perspective,

use of longer historical record of returns is always better.15 But there has been a huge secular

increase in the number of funds, implying that many won't have long return histories. We will

examine a potential way to cope with this problem in section 4.2.1.

Unlike the Sharpe, Morningstar, and Lipper Preservation measures, the IR and LIR applied

in this paper used a broad-based equity benchmark that is highly correlated with the fund it

was compared to. Those ratios depended on the average di®erence of two closely related returns.
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Simple algebra in the Appendix indicates that the di®erence between a fund's and a benchmark's

return will have a lower variance than the fund's return will, whenever the fund and benchmark

returns are reasonably positively correlated and the benchmark is no more volatile than the fund.16

The intuition for this ¯nding comes when one considers a hypothetical fund whose returns are

just a constant ® plus its benchmark's returns. The fund's and benchmark's returns are perfectly

correlated, and they both have the same volatility. The di®erence of the two returns is just ®,

which would be discovered using any historical period. One might think that this consideration

would make the historically estimated IR or LIR more stable than the historically estimated Sharpe

Ratio. But Figure 9 shows that this conclusion is unwarranted, because the IR and LIR depend on

the stability of the ratio of the historical average di®erence to the historical standard deviation of

the di®erence, and this ratio is no more stable than the Sharpe Ratio.

Still, all is not lost. Suppose a ratings ¯rm had used the most recent 10 year historical LIR to

predict whether or not the fund's subsequent 3 year cumulative return will exceed the subsequent

cumulative return of the index. A positive historical LIR is a prediction that the fund's future

cumulative return will exceed that of the index, while a negative historical LIR predicts the opposite.

These predictions were correct in 80% of the time periods over which our data permits comparison.

Using the sign of the most recent 3 year historical LIR, the predictions were correct in only 65% of

those time periods.

The practical consequences of all this are summarized in Proposition 6 below:

Proposition 6: Either explicitly or implicitly, performance measures depend on historical

rolling average returns that require a high number of years to stably estimate. As a result, rel-

ative fund ratings will °uctuate more when shorter historical periods are used for rankings. Despite
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the relatively higher stability of the historical average di®erences of fund from benchmark returns

that determine the numerators of the historically estimated IR and LIR, neither the historically

estimated IR nor LIR need be more stable than other performance measures.

4.2 Ranking Both Older and Newer Funds Together

The Standard and Poors' SelectFunds ratings as well as the system used by Charles Schwab are

based on the past 3 years of historical returns, regardless of whether or not a fund has a longer

historical return record. Morningstar has a more complex procedure. The performance of funds

that have between 3 and 5 year records are ranked over the latest 3 year period, and assigned a

rating between ¯ve and one stars based on their relative rankings. They give their coveted ¯ve star

rating to the top 10% of them, and their feared one star rating to the lowest 10% of them. 22.5%

of funds receive four stars, and another 22.5% of funds receive two stars. The middle 35% of funds

(i.e. the rest ) receive a middling three stars. But when measuring the performance of funds that

have between 5 and 10 year records, 60% weight is given to its star rating based on the latest 5 year

period's ranking, while 40% weight is given to its star rating based on the latest 3 year period's

ranking. Funds that have more than 10 year records have 50% weight assigned to its 10 year star

rating, 30% weight assigned to its 5 year star rating, and 20% weight to its 3 year star rating. The

resulting weighted averages produce fractional number of stars that are rounded up or down as

appropriate. The Lipper measures use an un-weighted average of the 10 year, 5 year, and 3 year

rankings, designating the top 20% of funds in a category as \Lipper Leaders" in that category.

The previous section documented the problems created by use of historical averages over 3

year periods. While Morningstar's and Lipper's procedures utilize histories up to 10 years when
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available, ¯ndings in Morey [13] indicate that Morningstar's weighted averaging procedure is at

least partly responsible for the higher ratings associated with the relatively older funds (he didn't

analyze Lipper's un-weighted procedure). To understand the phenomenon, consider what will

generally happen as time passes as new returns roll in. As documented in the previous section,

the new returns will generally have more impact on 3 year rolling average returns than on 10 year

rolling average returns; the former are far less stable than the latter. Proposition 3 shows that

those rolling averages will play a very important role in the performance measure that Morningstar

uses to rank its funds, so a fund's 3 year star rating will likely be less stable than its 10 year star

rating (if it is old enough to have one) as new returns roll in. Hence a 3 or 4 year old fund that

attains a high overall rating, which is just its 3 year rating, is less likely to see it stay high for long

than a fund older than 10 years would, because an older fund's overall rating is only 20% in°uenced

by its equally unstable 3 year rating.

4.2.1 The Filtering Alternative

A promising alternative to using either short histories or weighted averages of longer histories was

proposed by Stambaugh [19]. He shows that there might be a way around this apparent limit, by

substituting estimates of returns that the relatively recently started funds would likely have had

before they came into being! Before you reject this ¯ltering approach out of hand, let us use our

example to see how it could work.

In our example, let us make believe that the fund didn't exist for the full 1980-2001 period that

the index did. Assume the fund only existed since 1997, so that at the end of 2001, we would only

have 5 years of monthly fund returns to work with. While in the land of make believe, let us also

assume that after reading sections 2 and 3, an advisory ¯rm decided to adopt the LIR in Proposition
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2 as its performance measure. Its numerator is the average of log(1+Rfund)¡ log(1+Rindex), which

is just the di®erence of the two averages. Over the 5 years, the monthly average of log(1 + Rfund)

was 1:09%, while the average of log(1 + Rindex) was only 0:77% per month, so the di®erence was

0:31% per month. But after reading section 4.1, the advisory ¯rm decides that there is too much

uncertainty in 5 year averages to use this information in its ranking measure. In desperation, one

of their analysts plots the 60 monthly observations of log(1 + Rfund) and log(1 + Rindex) on the

same graph, and notices that while the fund series is much more volatile, the two series appear

to be highly correlated (see Figure 10). The analyst reports that the correlation coe±cient of

the two monthly return series is 86%. The analyst thinks that it is reasonable to assume that

this high correlation will continue into the future past 2001. Then she had a °ash of insight; the

kind that marked her for future promotion. She reasoned that had the fund existed prior to 1997,

its (log gross) returns would still have been highly correlated with the index ( log gross) returns,

albeit probably more volatile. She posits a linear relationship between the two series in Figure 10,

and uses a spreadsheet linear regression tool to ¯nd that the following regression line (t-stats in

parenthesis):

log(1 +Rfundt ) =
(¡:464)
¡0:00375 +

(12:73)
1:90 ¤ log(1 + Rindext ) R2 = 74% (15)

She notes that the constant ¡0:004 has a very low t-stat, and could probably be ignored, but the

slope 1.90 cannot. Glancing back at Figure 10, she sees how multiplying the index series by 1.9 will

produce a series whose upturns and downtowns are much more severe, just like the fund's are. Even

though the regression ¯t is far from perfect (R2 = 74%), she decides to plug prior months' index

log gross returns into (15) in order to \backcast" probable fund returns for those prior months.

The results are shown in Figure 11. Grafting those 60 projected log gross fund returns onto the

observed most recent 60 returns produces a 10 year monthly series, whose average will be compared
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with the observed average of the 10 year index log gross monthly returns. In doing so, she hoped

that the bene¯t of higher stability (using a 10 year average instead of the observed 5 year average)

would outweigh the pitfalls associated with projecting fund returns prior to its formal existence.

After all, she reasoned, in the absence of specī c evidence to the contrary, why wouldn't the fund

have been managed in the same philosophy, style, etc. that it was during the subsequent ¯ve years?

She reported her results to the ¯rm, who already knew that the fund's log gross return averaged

1:09% per month between 1997-2001. What the ¯rm didn't yet have was a reasonable projection of

what the fund's average might have been over the 1992-1996 period, which was needed to calculate

the second term in the following weighted average formula for the fund's projected 10 year average:

1
120

120X

t=1
log(1 +Rfundt ) =

60
120

60X

t=1
log(1 +Rfundt ) +

60
120

120X

t=61
log(1 +Rfundt ) (16)

In (16), the weights are equal (i.e. each is just one-half) because both the observation period

and the projection period are the same length (5 years).17 The analyst reported that her regression

technique yielded a projected average of 1.83% per month for the fund between 1992-1996. Plugging

this into (16) yielded a projected 10 year fund average of 60=120 ¤1:09% + 60=120¤1:83% = 1:46%

per month. Subtracting the 10 year index average of 0:96%, she told the ¯rm that her estimate for

the 10 average di®erence in log gross fund and index returns was 0:50% per month.

We can help the analyst and her ¯rm decide what to do with this information, because we

have the bene¯t of hindsight: we know how the fund actually performed between 1992-1996. Her

projected 1992-1996 fund average of 1.83% was lower than its actual average of 2.65% over those

years. As a result, her 10 year projection of 1.46% was also lower than the fund's actual 10 year

average of 1.87%. The index actual 10 year average was 1.09%, so the actual 10 year average

di®erence in log gross fund and index returns was 1:87%¡1:09% = 0:78%, which is higher than the
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projected di®erence of 0.50% per month. While not perfect, the projected di®erence is closer to the

actual 10 year di®erence than the observed 1997-2001 5 year di®erence of 1:09%¡ 0:77% = 0:32%

that would otherwise have been used by the ¯rm.

Stambaugh [19] also shows how to use the longer index series to project the 10 year fund return

variance and its covariance with the index, which could be used to project the 10 year standard

deviation of the di®erence in log gross fund and index returns.18 Dividing this into the 0:50% per

month would provide the desired 10 year projected LIR.

Projections work best when the statistical model used to link the series is well-speci¯ed, i.e.

R2 is quite high, and stable over time. It is well-known that large-cap funds' returns often have

R2s in excess of 90% when regressed on a large-cap index like the S&P 500, because their holdings

substantially overlap. So it appears that projections like this would be ideal for ranking large-cap

funds of varying ages relative to a respected large-cap benchmark with a very long history, like the

S&P 500. The technique should be similarly valuable when ranking funds in any category relative

to a benchmark tailored for that category.

4.3 Do the Di®erences Make a Di®erence?

Propositions 3 and 5 showed that seemingly di®erent performance measures (de-facto) reward high

averages and penalize high standard deviations, utilizing di®erent weightings of the two statistics.

We also reported empirical evidence that the approximations in Propositions 3 and 5 worked quite

well in practice. Similar mean-variance approximations of other seemingly di®erent expected utility

measures are also derivable. Those approximations will probably also work well in practice as long as

the absolute third moment of returns is ¯nite and vanishes more rapidly than the ¯rst two moments

do as returns are measured more frequently. Speci¯cally, under this and some other regularity
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conditions, Ohlson [15] proved that expected utility rankings will converge to expected quadratic

utility (i.e. mean-variance based) rankings as the interval between return measurements decreases

to zero. Figure 12 uses the example fund 's log gross returns to illustrate the phenomenon. It shows

that the 3rd central moment is quite small when annual data is used, especially when compared

to the ¯rst two moments (i.e. the mean and variance) and shrinks to a near-zero number when

monthly data is used. Hence the mean-variance approximation should be even better when daily

or weekly fund returns are used, rather than the commonly used monthly returns. The di®erences

and similarities of the performance measures' mean-variance approximations are summarized in the

table below.

Summary of De-Facto Weightings of Averages and Standard Deviations

Performance Measure Benchmark Return Average Standard Deviation

Sharpe Ratio T-Bill Net Divided Into

Morningstar T-Bill Log Gross Squared and Subtracted From

Lipper Preservation Zero Net Subtracted From

LIR User-Selected Log Gross Divided Into

Will the above di®erences in performance measure construction cause big di®erences in fund

ratings? Some evidence that they may not was provided in Sharpe's [18] study of the di®erent, more

complex performance measure used by Morningstar prior to 2002. This measure was essentially

the sum of a fund's historical cumulative return in excess of the T-Bill cumulative return, and the

negative value of the second term in (14). While it appears on the surface to be very di®erent from

the conventional Sharpe Ratio, Sharpe [17, Figure 9] used historical fund returns from 1994-1996 to

compare the two rankings, concluding that the correlation coe±cient between the funds' percentile
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rankings under the two measures was 98.6%!However, Sharpe [18, pp.30-31] conjectures that this

high correlation might break down when the historical return period is a bear market. Because

Morningstar replaced the measure Sharpe studied with the MRAR(2) studied here, there isn't much

cause to do that analysis. Instead, I used the three years of monthly returns on 1307 large cap funds

from 1999-2001, which includes the bear market of 2001, to contrast the di®erent fund rankings

produced by Morningstar's MRAR(2) and Lipper's Preservation measure. Despite the seemingly

large structural di®erences in the two ranking measures, the rank correlation coe±cient for the

two seemingly disparate rankings is 87:4%. Figure 13 illustrates the phenomena, which shows the

Morningstar ranking associated with the Lipper ranking. If the two rankings were identical, Figure

13 would depict a straight line along the diagonal. Instead, it shows that the rankings tend to agree

on which funds are the worst (i.e. on the right hand side of Figure 13), but agree somewhat less-so

on which are the best (i.e on the left hand side of Figure 13). They agree the least when ranking

the middling funds.

In light of these empirical ¯ndings and the above theoretical arguments establishing their plau-

sibility, I conclude with a provocative conjecture:

Conjecture: In practice, seemingly di®erent performance measures will produce surprisingly

similar fund rankings in a given fund category, as long as they incorporate similar benchmarks.

5 Conclusions

Mutual fund ratings are produced by several ¯rms. All ¯rms partition funds into (sometimes

numerous) categories that can be based on fund style (e.g. growth vs. value), size (e.g. small-cap
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vs. large-cap), asset class, and the sector within a class. They then rate funds against the others in

each category. But fund managers and/or their investor clients who are seeking to beat a specī c

benchmark should realize that even if they will beat the benchmark over the long-run, signi¯cant

probabilities of underperforming it often persist for a surprisingly long time. Substitution of the

log gross returns earned by this benchmark and a fund to be rated into the well-known Information

Ratio produces a Log-modi¯ed Information Ratio (LIR) which will rank funds in order of their

probability of outperforming the desired benchmark over typical investment horizons.

The popular Sharpe Ratio, which is part of the basis for ratings produced by Standard and

Poors and by Charles Schwab, is not appropriate for this purpose, because it uses ordinary net

rather than log gross returns, and because it uses a T-Bill benchmark instead of a benchmark that

users want to beat. The Morningstar, Inc. performance measure, used to produce its well-known

\star ratings", also uses a T-Bill benchmark. But after substituting both the benchmark to be

beaten, and a fund-dependent, optimized value of its curvature parameter ° in place of its ¯xed

level ° = 2, it will usually produce a ranking directly related to the outperformance probability,

like the aforementioned LIR does. The Lipper Preservation measure uses a zero-return benchmark.

Mean-variance approximations show that the ¯rms' published performance measures do have

something in common: they all reward high average fund returns and penalize high return standard

deviations. The alternative performance measures di®er with respect to how these two statistics are

weighted, by whether ordinary net or log gross (i.e. continuously compounded) returns are used in

their computation, and by the benchmarks they incorporate. Empirical evidence indicates that in

practice, seemingly di®erent published performance measures could still produce highly correlated

fund rankings when estimated over the same historical period.

The main di±culty impeding the reliability of performance measures is the instability of his-
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torical average returns. The problem is not eliminated by measuring returns more frequently, e.g.

daily or weekly, rather than monthly. This problem, the problem of ranking old funds with a long

track record against young funds with short track record, and the problem of adopting benchmarks

appropriate to the category being ranked can be partly alleviated by using ¯ltering techniques. A

particularly simple ¯ltering technique is to regress funds' returns on the returns of a highly cor-

related benchmark with a longer history, using the regression coe±cients to backcast the returns

younger funds might have earned had they been in business earlier.
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Appendix

The purpose of this appendix is to more formally develop the paper's propositions. To develop

Proposition 1, let us start by comparing the cumulative return Wfund
T from a fund with period

return Rfundt at period t, to a benchmark's W b
T with period return Rbt (e.g. the broad-based index

return used in the example). The following equivalent inequalities:

W fund
T ´

TY

t=1

³
1 +Rfundt

´
<

TY

t=1

³
1 +Rbt

´
´W b

T iff

log
Wfund
T
T

=

PT
t=1 log

³
1 +Rfundt

´

T
<

PT
t=1 log

³
1 + Rbt

´

T
= log

W b
T
T

(1)

show that the underperformance probability

P rob
h
Wfund
T < W b

T

i
= P rob

2
4
PT
t=1 log

³
1 +Rfundt

´

T
<

PT
t=1 log

³
1 +Rbt

´

T

3
5 : (2)

Note that a log gross return log(1 + Rt) is a continously compounded period return, denoted rt,

because ert = 1 +Rt. Hence (2) shows that the fund's underperformance probability over a horizon

of T periods is the probability that the time average of its continuously compounded period return is

less than the benchmark's time averaged continuously compounded return. Laws of large numbers

appropriate to the return processes imply that

lim
T!1

TX

t=1
rfundt = E [rfund]

lim
T!1

TX

t=1
rbt = E [rb] (3)

where in the case of non-IID ergodic processes, the expectation operator is interpreted as the ergodic

mean. Hence an implication of (2) - (3) is

lim
T!1

P rob
h
Wfund
T < W b

T

i
= 0 iff E [rfund] > E [rb]: (4)
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So the fund's underperformance probability will decay to zero as the holding period lengthens

precisely when its expected log gross (i.e. continuously compounded) return exceeds the bench-

mark's. This ¯nding can be used to explain the decay to zero of the bootstrap simulated underper-

formance probabilities in Figures 3 and 4. The bootstrap used here randomly resamples the past

history of continuously compounded returns, i.e. it samples from the empirical distribution.19 Be-

cause Figure 1 shows that the fund's historical cumulative return exceeded the benchmark's (either

the broad-based index or the T-Bill), so did its historical time averaged continously compounded

return (see (1)), which is the expected value of this empirical distribution. Hence the right hand

side of (4) characterizes the empirical distribution, so its left hand side must also characterize it, i.e.

the bootstrapped underperformance probabilities in Figures 3 and 4 must asymptotically approach

zero as the holding period approaches in¯nity. But the underperformance probabilities could decay

to zero at a very slow rate of decay, as seen in Figure 3.

But what determines the decay rate of the underperformance probabiliities? Proposition 2

attempts to answer this harder question. To develop it, the underperformance probabilities must

actually decay to zero, so w.l.o.g. use (4) to require that E[rfund] > E[rb]. For the moment,

let us also assume that the distribution of the process generating the period returns rfundt ¡ rbt

is IID normal with expected value E[rfund ¡ rb] and variance V ar[rfund ¡ rb].20 From (2), the

underperformance probability for horizon length T is the probability that the corresponding future

time averaged value of rfundt ¡ rbt is less than zero. Because of the normality assumption, the

distribution of this time average is also normally distributed, with expected value E [rfund¡ rb] and

variance V ar[rfund ¡ rb]=T . As such, transformation to the standard normal variate Z shows that

the underperformance probability is:
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Prob[Wfund
T < W b

T ] = P rob

2
4Z <

0 ¡ E[rfund¡ rb]q
V ar[rfund ¡ rb]=T

3
5 = P rob

h
Z > LIR

p
T
i

(5)

where LIR denotes the Log-modi¯ed Information Ratio E[rfund¡rb]p
Var[rfund¡rb] described in Proposition 2.

From (5), we see that at least in the IID normally distributed case, the LIR performance measure

rank orders funds inversely to their probabilities of underperforming the same benchmark, for any

¯xed value of the holding period T . By (4), the underperformance probability asymptotically decays

to zero if and only if the LIR is positive. A consequence of the standard normal distribution's right

hand tail is that the higher the LIR, the faster the underperformance probability decays to zero as

T !1, i.e. the faster the bar heights decline in Figure 3.

But Proposition 2 did not require the normality assumption. Can the above calculations be at

least partly generalized to non-normal processes? A Central Limit Theorem [9] appropriate to the

process generating the log gross return di®erence implies that the time average of this di®erential

return is approximately normally distributed for suitably large T , i.e. the distribution of the time

average is asymptotically normally distributed. Hence the general validity claimed for Proposition 2

depends on how good the CLT normal approximation is for the sole purpose of rank-ordering funds'

relative underperformance probabilities over holding periods of interest to investors. Some evidence

that the CLT does provide a good approximation in practice is provided in the paper. Adopting

the one-month T-Bill return as the benchmark, we saw in the paper that the historical LIR (due to

the T-Bill benchmark used in the isomorphic Sharpe Ratio, this was dubbed the LSR) of the index

exceeded the fund's. Figure 4 is produced by resampling from the empirical distribution, yet it

indicates that the index probabilities of underperforming T-Bills does indeed decay toward zero at a

faster rate than fund's probabilities do, at least over the 1 -10 year range of holding periods plotted
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in Figure 4. This is true despite the non-normal levels of skewness (-1.8) and kurtosis (10.8) that

characterize the empirical distribution that was resampled to produce Figure 4, indicating that the

CLT approximation is good enough to make the LIR useful, even when the holding period is as low

as 1 -10 years. In fact, results in Stutzer [20], [21] show that the underperformance probabilities

will eventually (i.e. asymptotically) decay at a rate of 1
2(LIR)2 per period, although the decay may

initially be more rapid.

Moreover, there are CLTs that don't require that the di®erential return process be independent,

nor that it be identically distributed. In fact, there are CLTs for the kind of weak dependence

assumptions that are required for the applicability of the time series analysis tools widely used in

¯nancial econometrics (e.g. GMM estimation). But in these non-IID cases, proper estimation of

the long-run mean and standard deviation required for the LIR may require some adjustments of

the simple sample mean and standard deviation used herein. For example, if the rfund¡ rb process

is a weakly dependent stationary process, the long-run standard deviation will be the square root

of the ordinary variance plus the in¯nite two-sided sum of autocovariances, which can be e±ciently

estimated by a Bartlett kernel, Newey-West estimator.

Now let us develop Proposition 3. To do so, let us ¯rst transform Morningstar's Risk-Adjusted

Return measure MRAR(°) into the simpler, more familiar expected power utility index that pre-

serves its rank ordering of funds. To do so, consider the rank order of two funds, denoted Rfund

and Rindex. The following chain of equivalent inequalities holds:

MRARfund(°) < MRARindex(°) iff
2
4 1
T

TX

t=1

Ã
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1 +Rbt

!¡°3
5
¡ 12
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¡ 1 <

2
4 1
T
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Ã
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!¡°3
5
¡12
°

¡ 1 iff

35



¡12
°

log

2
4 1
T

TX

t=1

Ã
1 + Rfundt

1 +Rbt

!¡°3
5 < ¡12

°
log

2
4 1
T

TX

t=1

Ã
1 +Rindext

1 +Rbt

!¡°3
5 iff

log

2
4 1
T

TX

t=1

Ã
1 + Rfundt

1 +Rbt

!¡°3
5 > log

2
4 1
T

TX

t=1

Ã
1 +Rindext

1 +Rbt

!¡°3
5 iff

1
T

TX

t=1
¡
Ã

1 +Rfundt
1 +Rbt

!¡°
<

1
T

TX

t=1
¡
Ã

1 +Rindext
1 +Rbt

!¡°
(6)

Financial theorists will recognize (6) as the historical estimate of the expected power utility

of the fund return relative to a benchmark return. This is the ¯rst claim in Proposition 3. This

power utility has a degree of constant relative risk aversion equal to 1 + °. Note that this is not

the degree of risk aversion to °uctations in investor wealth; it is the degree of risk aversion to

°uctations in the ratio of wealth earned by investment in the fund to wealth earned by investment

in the benchmark. As such, one cannot appeal to the usual experimental or market evidence when

specifying ° for a representative investor; Morningstar must martial other evidence to support its

assumption that 1 + (° = 2) = 3 is a representative degree of investor risk aversion for the purpose

of ranking funds.21 Now suppose we substitute continously compounded returns r ´ log 1 +R, for

the gross returns 1 +R in (6), producing the equivalent performance comparison:

1
T

TX

t=1
¡
0
@e

rfundt

erbt

1
A
¡°

<
1
T

TX

t=1
¡
Ã
er
index
t

erbt

!¡°
iff

1
T

TX

t=1
¡e¡°(rfundt ¡rbt ) <

1
T

TX

t=1
¡e¡°(rindext ¡rbt ) (7)

Financial theorists will recognize (7) as the historical estimate of the expected exponential

utility (of the fund's excess return) with constant absolute risk aversion equal to ° > 0, used

in models of fund manager behavior, e.g. in Becker, Ferson, et.al.[2]. The approximate ranking

statistic described at the end of Proposition 3 is established by using a normal approximation to the
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distribution of rfund¡ rb, i.e. by using a lognormal approximation to the distribution of the return

relative 1 +Rfund=1 +Rb. This approximation truncates all third and higher order cumulants. It

is well known that the expected exponential utility of the normally distributed rfund ¡ rb is just:

E
h
¡e¡°(rfund¡rb)

i
= E [rfund ¡ rb]¡ °

2
V ar[rfund ¡ rb]: (8)

Substituting Morningstar's value of ° = 2 into (8) yields the approximate ranking measureE [rfund¡

rb]¡
q
V ar[rfund¡ rb]

2
, as claimed at the end of Proposition 3.

The conventional use of (7) as a ranking index uses a constant value of ° > 0 to rank funds,

like Morningstar does. To establish Proposition 4, Stutzer [20] used Cramer's Large Deviation

Theorem [4, Chap.1] for the sample average of (assumed) IID log return processes to show that the

generalized expected exponential utility index

max
°
E
h
¡e¡°(rfund¡rb)

i
(9)

whose historical estimate is:

max
°

1
T

TX

t=1
¡e¡°(rfundt ¡rbt ) (10)

has a positive maximizing value of ° if and only if E[rfund] > E [rb]. Equation (4) shows that this

happens if and only if the fund's underperformance probabilities approach zero as T increases. This

establishes the decay to zero of underperformance probabilites if and only if °max > 0, as claimed

in Proposition 4. The large deviations theorem also establishes that the underperformance prob-

abilities decay to zero at an asymptotic rate equal to ¡ logE [e¡°(r
fund¡rb)], which is historically

estimated by ¡ log[¡(10)]. The latter reduces to ¡ log [U(°max)] de¯ned in Proposition 4, upon

substitution of the de¯ning log[1 + R] for each continuously compounded return r in (10). Hence

the larger the fund's performance measure (10), the smaller (larger) the underperformance (outper-
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formance) probability is. Hence (10) produces a rank ordering of funds that generally agrees with

that produced by the LIR developed in Appendix 1, di®erences being attributable to cases where

IID Central Limit and IID Large Deviations approximations for the tails of the distributions of

sample averages are far enough apart to cause di®erences in their rank orderings. Generalizations

to weakly dependent, non-IID processes were developed in Stutzer [21] and in Foster and Stutzer

[7].

Proposition 5 is developed by ¯rst noting that the performance ALP de¯ned in the paper is

an historical estimate of the expectation E[min[0; Rfund]]. The paper's Equation (14) produces

an historical estimate of P rob[Rfund < 0] £ E [RfundjRfund < 0]. Elementary probability theory

implies that this product can also be written:

E[Rfund] ¡ Prob[Rfund ¸ 0]E [RFundjRfund ¸ 0] (11)

To calculate the dependence of this expression on the ¯rst two moments of Rfund, let us approx-

imate the distribution of Rfund with a normal distribution that has the same mean and variance.

This distribution has the same ¯rst two moments (and hence the same ¯rst two cumulants), but

truncates the e®ects of all third and higher order cumulants. Using the standardizing transforma-

tion, calculate:

Prob[Rfund ¸ 0] = P rob

2
4Z ¸ ¡ E [Rfund]q

V ar[Rfund]

3
5 = N

0
@ E [Rfund]q

V ar[Rfund]

1
A (12)

where N denotes the standard normal cumulative distribution function. The conditional expecta-

tion in (11) is an integral that is computed in standard logit models (e.g, see Amemiya [1, p.367]),
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yielding:

E[RFundjRfund ¸ 0] = E [Rfund] +
q
V ar[Rfund]

N 0
µ

E[Rfund ]p
V ar[Rfund ]

¶

N
µ

E[Rfund ]p
V ar[Rfund ]

¶ (13)

where N 0 denotes the standard normal probability density function. Substituting (12) and (13)

into (11) and simplifying yields the desired closed form formula for the population value of the

historical estimate ALP:

E[min[0;Rfund]] = E [Rfund]

0
@1¡N

0
@ E [Rfund]q

V ar[Rfund]

1
A
1
A ¡

q
V ar[Rfund]N 0

0
@ E [Rfund]q

V ar[Rfund]

1
A

(14)

Numerical evaluation of (14) indicates that it is well approximated by a linear function of

E [Rfund]¡
q
V ar[Rfund] e.g. see Figure 6, as claimed in Proposition 5.

The text before Proposition 6 claims that the di®erence between a fund's and a benchmark's

return will have a lower variance than the fund's return will, when the fund and benchmark returns

are reasonably positively correlated and the benchmark is no more volatile than the fund. To see

this, examine the following equivalent chain of comparisons between the standard error of a fund's

historical average and the di®erential average's standard error:

vuutV ar[ 1
T

TX

t=1
(Rfundt ¡Rbt )] <

vuutV ar[ 1
T

TX

t=1
Rfundt ] iff

V ar[
1
T

TX

t=1
(Rfundt ¡Rbt )] < V ar[

1
T

TX

t=1
Rfundt ] iff

1
T

(V ar[Rfund] + V ar[Rb]¡ 2Cov[Rfund;Rb]) <
1
T
V ar[Rfund] iff

V ar[Rfund] + V ar[Rb] ¡ 2Cov[Rfund; Rb]q
V ar[Rfund]

q
V ar[Rb]

<
V ar[Rfund]q

V ar[Rfund]
q
V ar[Rb]

if f
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Cov[Rfund;Rb]q
V ar[Rfund]

q
V ar[Rb]

>
1
2

q
V ar[Rb]

q
V ar[Rfund]

(15)

The left hand side of (15) is the correlation coe±cient of the fund and benchmark returns. The

example in the paper used the index as the benchmark, which is the 87% correlated with the

fund. This is well above the right hand side of (15), which is only 21%. Note that the left hand

side correlation will typically be high when the benchmark portfolio is representative of the fund's

category (e.g. asset class (stocks or bonds), style (growth or value), or size (large cap or small cap)).

The right hand side will typically be low when the fund is more volatile than the benchmark. Both of

these considerations are typically met when a broad-based equity (bond) index is used to benchmark

the performance of equity (bond) funds, in an Information Ratio or an LIR performance measure

(for the latter, just substitute continuously compounded returns log[1 + R] for the net returns R

in (15).
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Notes

1This paper was prepared for the IFID Centre (Prof. Moshe Milevsky, Director) conference at

the Fields Institute, Toronto, CA. I acknowledge the assistance of Paul Kaplan at Morningstar,

Inc. and Linbo Fan at Lipper, Inc. in establishing the empirical relevance of the approximations

developed herein, and helpful comments that Prof. Milevsky made on a prior draft.

2The punch line is a paraphrase from one of Woody Allen's essays.

3The historical return data was kindly provided by Mark Hulbert. The index series used here

is neither a mutual nor exchange-traded index fund, whose returns would di®er somewhat from it,

while the other series is associated with active management. The two series used here are su±cient

to illustrate the issues arising in rating the performance of one investment relative to an alternative.

4There are also more complex ways to implement bootstrapping. Parametric estimates of return

processes for both the fund and the index can be utilized if good parametric models can be found,

or non-parametric \block" bootstrap procedures can be utilized if returns are signi¯cantly serially

dependent; in our application, it is the di®erence of two funds' returns that would need to be

serially dependent. The simpler procedure is su±cient for the pedagogical purpose of this paper.

5As shown in the Appendix, this is due to the lower standard error associated with the di®erence

of averages drawn from closely correlated random variables.

6According to Schwab's website, \To make the Mutual Fund Select List, a fund had to have a

high risk-adjusted return coupled with a high total return and low expenses." The risk-adjusted

return arises from the Sharpe Ratio. The quantitative part of Standard and Poors evaluation is

similarly motivated. Specī cally , Standard and Poors averages a fund's absolute performance decile
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ranking over each of the past 3 years, does the same with its Sharpe Ratio, and then averages the

resulting two numbers to determine a fund's combined ranking. SelectFunds are further evaluated

by Standard and Poors sta®, who consider \the management process and resources put in place to

run a fund" (personal communication from Eleanore De Bar, Director, Standard and Poors Fund

Services,Europe).

7Sharpe [17, p.50] calls this the \ex-post" ratio.

8Because the funds in a specī c category have existed (or have reported returns) for di®erent

lengths of time, and because some analysts might feel the recent past is more indicative of the

future to come, the choice of the number of past historical months T to use when ranking them is

problematic. Issues involving the choice of T will be discussed in section 4.

9Of course, the bootstrap resamples from the historical distribution, so this assessment is actu-

ally based on the historical estimate of LIR, not its actual value. Because the cumulative return

is the product of period gross returns (rather than their sum), the expected net return used in

textbook one-period ¯nance theory must be replaced by the expected log gross return. Accord-

ingly, the Appendix shows that the fund's underperformance probabilities will decay to zero as the

holding period lengthens whenever the fund's expected log gross return exceeds that of the index.

When this condition holds, the Appendix also shows that for suitably long holding periods, the

underperformance probability will be lower when the actual LIR is higher.

10This practice is by no means limited to individual investors. Some large pensions and endow-

ments retain advisory ¯rms, like Richards and Tierney, to produce unpublished, custom benchmark

indices used to evaluate the performance of speci¯c fund managers charged with maintaining a ¯xed
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size, style, or sector orientation.

11However, Moshe Milevsky informed me that the National Post newspaper in Canada publishes

the FPX, a balanced index including both stocks and bonds.

12At www.lipperleaders.com, Lipper also ranks funds according to their total return (i.e. no

risk-adjustment), and according to a more complex and harder to interpret measure of \consistent

returns" [5]. Funds with returns that have a Hurst Exponent higher than :5 are more \persistent"

than a random walk, generally having positive autocorrelations at di®erent lags (and motivating

the term \consistent returns"), slowly decaying autocorrelations as the lag length increases (\long

memory" or \long-term dependence") , and in¯nite long run variance. Funds with with a Hurst

exponent less than :5 are \antipersistent", with negative autocorrelations. Lipper sorts funds into

high (H > :55), medium (:45 < H < :55) and low (H < :45) ranges based on their AR(1) residuals'

estimated Hurst Exponents. A loss-aversion type of utility is then used to rank funds within each

of these ranges. Funds with relatively high Hurst Exponents and loss-aversion utility are favorably

ranked within a category. Lo and MacKinlay [11, Chap.6] discuss the formidable di±culties involved

in properly estimating and interpreting the Hurst Exponent and the rescaled range statistics that

it is based on.

13The fund and index had almost identical, modestly negative levels of historical monthly skew-

ness (-.75 vs. -.77), so their third moments could not have contributed as much to their relative

ranking as their ¯rst two moments did.

14Personal correspondence from Linbo Fan, Research Analyst, Lipper, Inc.

15Of course, the possibility of secular change in the return generating process calls this reasoning
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into question.

16This argument is made by Roll [16, p.20].

17Unequal pro-weighting should be used when the observation and projection periods aren't the

same length.

18Stambaugh's paper also shows how to generalize the idea to incorporate multiple correlated

series starting at di®erent times, and develops several alternative applications.

19However, the simple bootstrap implemented in the paper was not constructed to exploit any

possible serial dependencies in the return processes.

20For example, the return di®erence for a period length ¢t could be generated by a continuous

time lognormal process, with instantaneous mean ¹ and volatility ¾. If so, E [rfund ¡ rb] = (¹¡

¾2=2)¢t while V ar[rfund¡ rb] = ¾2¢t.

21Morningstar's equivalent MRAR(° = 2) performance measure is intended to measure the an-

nualized certainty equivalent return implied by this utility.
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Figure 1:  Volatile Fund Beats Market Index
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Figure 2:  Volatile Mutual Fund vs. Market Index
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Figure 3: Probability of Underperforming the Market Index
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Figure 4 : Probability of Underperforming T- Bills
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Figure 5: Fund's 10 yr. Holding Period Return Possibilities 
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Figure 6: ALP with Bell-Shaped Returns
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Figure 7: Comparison of Rolling 10 Year Sharpe Ratios
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Figure 8: Comparison of 3 Year Rolling Sharpe Ratios
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Figure 9: LIR Is Not More Stable Than the Sharpe Ratio
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Figure 10: Fund and Index Log Gross Returns

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Months: 1997 - 2001

L
o

g
 G

ro
ss

 R
et

u
rn

Log Gross Fund Return
Log Gross Index Return

Fund Log Return
˜  1.9 x Index Log 

Return

1997-2001

Guesstimate 
Would-Be Monthly 
Fund Returns for 
Prior Years 1996-
1992 By Plugging 
in Monthly Index 
Returns During 
1996-1992.  



Figure 11: Regression Backcasted Fund Returns
Using 1997 - 2001 Index Returns 
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Figure 13:  36 Month Rankings of 1300 Large Cap Funds 
Morningstar Rank of Fund's Lipper Preservation Rank on Diagonal
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