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Abstract

In this paper, we present a survey on the various approaches that can be used to test
whether the mean-variance frontier of a set of assets spans or intersects the frontier of a
larger set of assets. We analyze the restrictions on the return distribution that are needed to
have mean-variance spanning or intersection. The paper explores the duality between
mean-variance frontiers and volatility bounds, analyzes regression-based test procedures for
spanning and intersection, and shows how these regression-based tests are related to tests
for mean-variance efficiency, performance measurement, optimal portfolio choice and
specification error bounds. q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years, the finance literature has witnessed an increasing use of tests
for mean-variance spanning and intersection, as introduced by Huberman and

Ž .Kandel 1987 . In this paper, we will provide a survey of the literature on testing
for mean-variance spanning and intersection, as well as of its relationships with
volatility bounds, tests for mean-variance efficiency, performance evaluation and
the specification error bounds that have recently been proposed by Hansen and

Ž .Jagannathan 1997 . There exists a vast literature on most of these subjects and the
intention here is not to give a complete overview, but merely to illustrate that the
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concept of mean-variance spanning and intersection provides a framework in
which many other results can be understood.

The literature on mean-variance spanning and intersection analyzes the effect
that the introduction of additional assets has on the mean-variance frontier. If the
mean-variance frontier of the benchmark assets and the frontier of the benchmark
plus the new assets have exactly one point in common, this is known as
intersection. This means that there is one mean-variance utility function for which
there is no benefit from adding the new assets. If the mean-variance frontier of the
benchmark assets plus the new assets coincides with the frontier of the benchmark
assets only, there is spanning. In this case, no mean-variance investor can benefit

Ž .from adding the new assets to his optimal portfolio of the benchmark assets only.
Ž . Ž .For instance, DeSantis 1995 and Cumby and Glen 1990 consider the question

whether US-investors can benefit from international diversification. Taking the
viewpoint of a US-investor who initially only invests in the US, these authors
study the question whether they can enhance the mean-variance characteristics of

Ž .their portfolio by also investing in other developed markets. Similarly, taking the
Ž .perspective of a US-investor who invests in the US and possibly in other

Ž .developed markets such as Japan and Europe, DeSantis 1994 , Bekaert and Urias
Ž . Ž . Ž .1996 , Errunza et al. 1999 , and DeRoon et al. 2001 e.g., investigate whether
the investors can improve upon their mean-variance portfolio by investing in

Ž .emerging markets. As a final example, Glen and Jorion 1993 investigate whether
mean-variance investors with a well-diversified international portfolio of stocks
and bonds should add currency futures to their portfolio, i.e., whether or not they
should hedge the currency risk that arises from their positions in stocks and bonds.

Ž . Ž . Ž .As shown by DeSantis 1994 , Ferson and Schadt 1993 , Ferson 1995 and
Ž .Bekaert and Urias 1996 , the hypothesis of mean-variance spanning and intersec-

tion can be reformulated in terms of the volatility bounds introduced by Hansen
Ž .and Jagannathan 1991 . In that case, the interest is in the question whether a set

of additional assets contains information about the volatility of the pricing kernel
or the stochastic discount factor that is not already present in the initial set of
assets considered by the econometrician. For instance, in the case of emerging
markets, the question is whether considering returns from the US-market together
with returns from emerging markets produces tighter volatility bounds on the
stochastic discount factor than returns from the US-market only.

The duality between mean-variance frontiers and volatility bounds for the
stochastic discount factors will be the subject of Section 2. The analysis provided
in that section will allow us to study mean-variance spanning and intersection,
both in terms of mean-variance frontiers and in terms of volatility bounds. The
concept of mean-variance spanning and intersection will be formally introduced in
Section 3. In that section, it will also be shown how simple regression techniques
can be used to test for mean-variance spanning and intersection. In Section 4, we
will consider how conditioning information can be incorporated in the test
procedures. In Section 5, we will show how deviations from mean-variance
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intersection and spanning can be interpreted in terms of performance measures like
Jensen’s alpha and the Sharpe ratio, and how the regression tests for intersection
can be used to derive the new optimal portfolio weights. In Section 6, we provide
a brief discussion of the specification error bound introduced by Hansen and

Ž .Jagannathan 1997 and how this is related to mean-variance intersection. As with
the performance measures in Section 5, specification error bounds are especially of
interest when there is no intersection. This paper will end with a summary.

2. Volatility bounds and the duality with mean-variance frontiers

The purpose of this section is to give an introduction to volatility bounds and
mean-variance frontiers and to show the duality between these two frontiers.
Because mean-variance spanning and intersection can be defined from volatility
bounds as well as from mean-variance frontiers, this section provides a basis for
the analysis of mean-variance spanning and intersection in the remainder of the
paper.

2.1. Volatility bounds

Suppose an investor chooses his portfolio from a set of K assets, with current
prices given by the K-dimensional vector P and whose payoffs in the next periodt

Ž .are given by the vector P including dividends and the like . Returns R aretq1 i, tq1

payoffs with prices equal to one. Assuming there are no market frictions such as
short-sales constraints and transaction costs and assuming that the law of one price
holds, there exists a stochastic discount factor or pricing kernel, M , such that1

tq1

<E M R I s i , 1Ž .tq1 tq1 t K

where i is a K-dimensional vector containing ones, and I is the information setK t
w xthat is known to the investor at time t. In the sequel, we will use E P ast

w xshorthand notation for E PN I .t
Ž .Apart from the law of one price, an alternative way to motivate Eq. 1 is to

look at the discrete time consumption and portfolio problem that an investor
solves:

`

jmax E r U C ,Ž .Ýt tqj
� 4w ,Ct t js0

s.t. W swX R W yC ,Ž .tq1 t tq1 t t

wX
i s1,; t 2Ž .t K

where C is consumption at time t, W is the wealth owned by the investor at timet t

t, r is the subjective discount factor of the investor, and w is the K-dimensionalt

1 Replacing the law of one price with the stronger condition that there are no arbitrage opportunities
we would also have that M )0.tq1



( )F.A. DeRoon, T.E. NijmanrJournal of Empirical Finance 8 2001 111–155114

vector of portfolio weights that the investor has to choose. The function
Ž . ` j Ž .UU C ,C , . . . sÝ r U C is a strictly increasing and concave time-sep-t tq1 js0 tqj

Ž .arable utility function. The first-order conditions of problem 2 imply that

U X CŽ .tq1
opt optM sr N ,Xtq1 C ,wt tU CŽ .t

XŽ .is a valid stochastic discount factor with U P being the first derivative of U.
Thus, one way to think about the stochastic discount factor or pricing kernel is as

Ž .the intertemporal marginal rate of substitution IMRS . This interpretation of the
pricing kernel is more restrictive than the law of one price though, since it also
implies that M )0.tq1

In many of the problems we consider in this paper, it is convenient to look at a
more simple portfolio problem. Usually we will restrict ourselves to one-period
portfolio problems, where the agent maximizes his indirect utility of wealth

Ž .function see, e.g., Ingersoll, 1987, p. 66 :

maxE u W ,Ž .t tq1
� 4w

s.t. W sW wXR ,tq1 t tq1

wX
i s1.K

XŽ . XŽ .In this case, a valid stochastic discount factor is W =u W rh, with u Pt tq1

being the first derivative of the indirect utility function evaluated in the optimal
portfolio choice, and h the Lagrange multiplier for the restriction that wX

i s1.K

The expectation of the stochastic discount factor will be denoted by v , i.e.,t
w xv 'E M . The name stochastic discount factor refers to the fact that Mt t tq1 tq1

discounts payoffs differently in different states of the world. To illustrate this,
Ž .using the definition of covariance, Eq. 1 can be rewritten as

w x w x w xi sE M R sÕ E R qCov R , M . 3Ž .K t tq1 tq1 t t tq1 t tq1 tq1

Ž .The first term in Eq. 3 uses v to discount the expected future payoffs, while thet
Žsecond term is a risk adjustment recall that i is the price-vector of the returnsK

.R . Accordingly, risk premia are determined by the covariance of asset payoffstq1

with M . If one of the assets is a risk-free asset with return R f , then it followstq1 t
Ž . ffrom the conditional expectation in Eq. 1 that R s1rv . In the sequel, we willt t

usually not impose the presence of such a risk-free asset. If a risk-free asset is
available however, then we can always substitute 1rR f for v .t t

Ž .Eq. 1 is the starting point for most asset pricing models. In fact, differences in
asset-pricing models can be interpreted as differences in the function that each

Ž .model assigns to M see, e.g., Cochrane, 1996 . Since each valid stochastictq1
Ž .discount factor has to satisfy Eq. 1 , observed asset returns can be used to derive

information about these discount factors. For instance, following Hansen and
Ž .Jagannathan 1991 , it is possible to derive a lower bound on the variance of
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M , that each valid stochastic discount factor has to satisfy, which is known astq1

the volatility bound. To see this, we start from the unconditional version of Eq.
Ž . Ž .1 , and leave out the time subscripts for the expectations and co variance
operators, as well as for v. In this paper, the expectation of the stochastic discount
factor will usually be a free parameter. We will denote all discount factors that

Ž . Ž .satisfy Eq. 1 and that have unconditional expectation v with M Õ , and derivetq1
Ž .a lower bound for the variance of each M Õ .tq1

Let the expectation and covariance matrix of the returns R be given by mtq1 R

and S , respectively, and assume that all returns are independently and identi-R R
Ž .cally distributed i.i.d. , so that the expectations and covariances do not vary over

time. This assumption will be relaxed in Section 4 of this paper. Given the set of
Ž .asset returns R , let m v be a candidate stochastic discount factor that hastq1 R tq1

expectation v and that is linear in the asset returns:
X

m Õ sÕqw Õ R ym , 4Ž . Ž . Ž . Ž .tq1R tq1 R

Ž .where we write w v to indicate that these coefficients are a function of the
Ž . Ž . Ž .expectation of M Õ . Substituting Eq. 4 into Eq. 1 , we obtain:tq1

w Õ sSy1 i yÕm . 5Ž . Ž . Ž .R R K R

Ž . Ž . Ž . wŽ Ž .Since both M Õ and m v satisfy Eq. 1 we have that E M Õ ytq1 R tq1 tq1
Ž . . x Ž . Ž .m v R s0, so the difference between any M Õ that satisfies Eq. 1R tq1 tq1 tq1

Ž . Ž .and m v is orthogonal to R and therefore to m v itself. This impliesR tq1 tq1 R tq1
Ž .for the variance of M v that:tq1

Var M Õ sVar m Õ qVar M Õ ym ÕŽ . Ž . Ž . Ž .Ž .tq1 tq1 tq1 tq1R R

GVar m Õ , 6Ž . Ž .tq1R

Ž .which shows that m v has the lowest variance of all valid stochastic discountR tq1
Ž . Ž .factors M Õ . This minimum variance can be obtained by combining Eqs. 4tq1

Ž .and 5 :
X y1Var m Õ s i yÕm S i yÕm . 7Ž . Ž . Ž . Ž .tq1R K R R R K R

Thus, any pricing model that aims to price the assets R correctly, has to yield atq1
Ž .pricing kernel that, for a given Õ, has a variance at least as large as Eq. 7 .

Equivalently, if we know that agents choose their optimal portfolio from the assets
Ž .that are in R , then Eq. 7 gives the minimum amount of variation of theirtq1

IMRS that is needed to be consistent with the distribution of asset returns. Luttmer
Ž .1996 extends this kind of analysis taking into account market frictions such as
short-sales constraints and transaction costs. For the frictionless-market setting,

Ž .Snow 1991 provides a similar analysis to derive bounds on other moments of the
Ž .discount factor as well, and Bansal and Lehmann 1997 provide a bound on the

mean of the logarithm of the pricing kernel, using growth optimal portfolios.
Ž .Balduzzi and Kallal 1997 show how additional knowledge about risk premia
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may lead to sharper bounds on the volatility of the stochastic discount factor and
Ž .Balduzzi and Robotti 2000 use the minimum variance discount factor to estimate

risk premia associated with economic risk variable. Finally, Bekaert and Liu
Ž . Ž .1999 and Ferson and Siegel 1997 study the use of conditioning information to
derive optimally scaled volatility bounds.

2.2. Duality between Õolatility bounds and mean-Õariance frontiers

In the previous section, we derived the minimum amount of variation in
stochastic discount factors that is needed to be consistent with the distribution of
asset returns. In this section, we will show that there is a close correspondence
between these volatility bounds and mean-variance frontiers and that stochastic
discount factors that correspond to mean-variance optimizing behavior are the
stochastic discount factors with the lowest volatility. Mean-variance optimizing
behavior is a special case of the portfolio problem considered before, where the

w Ž .x w Ž .xproblem the agent faces is max E u W , and where E u P is of the form�w4 tq1
Ž X X .f wm ,wS w , with f increasing in its first argument and decreasing in itsR R R

second argument.
ŽFor further reference, it is useful to define the efficient set variables see, e.g.,

.Ingersoll, 1987

A' i
X
Sy1i , B'm

X
Sy1i , and C'm

X
Sy1 m .K R R K R R R K R R R R

A mean-variance efficient portfolio w) is the solution to the problem

max LswX
m yg wX

S wyh wX
i y1 ,Ž .R R R K

� 4w

where g is the coefficient of risk aversion. From the first-order conditions of this
problem, it follows that a portfolio w) is mean-variance efficient if there exist
scalars g and h such that2

w)sgy1Sy1 m yhi . 8Ž . Ž .R R R K

Because of the restriction wX
i s1, it also follows that gsByAh, implying thatK

each mean-variance efficient portfolio is uniquely determined when either g or h
is known, unless hsBrA. It is straightforward to show that for a given
mean-variance efficient portfolio w) , the Lagrange multiplier h equals the
expected return on the zero-beta portfolio of w) , i.e., the intercept of the line

) Ž .tangent to the mean-variance frontier at w in mean-standard deviation space .
Ž .Since BrA, is the expected return on the global minimum variance GMV

portfolio, this is the intercept of the asymptotes of the mean-variance frontier, but

2 More precisely, these are the minimum variance portfolios, i.e., the portfolios that have minimum
variance for a given expected return. The mean-variance efficient portfolios, i.e., the portfolios that also
have maximum expected return for a given variance, require in addition that gG0.
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Žthere are no lines tangent to the frontier originating at this point see, e.g.,
.Ingersoll, 1987, p. 86 .

To show the duality between mean-variance frontiers and volatility bounds,
Ž .take w Õ for a given Õ, and choose a mean-variance efficient portfolio such that

Ž . Ž .hs1rÕ. It follows from Eqs. 5 and 8 that

1
y1S m y i y1R R R Kž / S i yÕm w ÕŽ . Ž .Õ R R K R

)w Õ s s s , 9Ž . Ž .X1 AyÕB i w ÕŽ .KBy A
Õ

Ž .which shows that the vector w Õ is proportional to a mean-variance efficient
portfolio with zero-beta return equal to 1rÕ. Thus, each point on the volatility

Ž w Ž . x.bound of stochastic discount factors, i.e., each Õ, Var m Õ , corresponds to atq1
Ž ) ) .unique point on the mean-variance frontier, m ,s , and each coefficient vectorp p

Ž . ) Ž .w Õ corresponds to a unique w Õ . The only exception to this result is the case
X Ž .where i w Õ s0, which is the case if ÕsArB, or equivalently, hsBrA. AsK

already noted, this is the case where the zero-beta return equals the expected return
Žon the global minimum variance portfolio see also Hansen and Jagannathan,

.1991 . The duality between the mean-variance frontier of R and the volatilitytq1
Ž . Ž .bound derived from R can also be seen directly from Eqs. 5 and 8 .tq1

Ž .Comparing the coefficients w Õ for the minimum variance stochastic discount
Ž . ) Ž .factor in Eq. 5 and the portfolio weights w in Eq. 8 for hs1rÕ, it can be

Ž . )seen that the coefficients w Õ are proportional to the portfolio weights w , where
) Ž . Ž .the coefficient of proportionality is equal to yhrg , i.e., w s yhrg w Õ . In

Appendix A, we show graphically which points on the volatility bound correspond
to points on the mean-variance frontier.

Summarizing, finding stochastic discount factors that have the lowest variance
of all stochastic discount factors that price a set of asset returns R correctly istq1

tantamount to finding mean-variance efficient portfolios for these same assets
R . In the remainder of this paper, we will study the effects of adding new assetstq1

to the set of assets available to investors. Although most of the results will be
stated in terms of mean-variance frontiers and mean-variance efficient portfolios, it
should be kept in mind that there is always a dual interpretation in terms of
volatility bounds.

3. Mean-variance spanning and intersection

In the previous section, we considered the volatility bounds and mean-variance
frontiers that can be derived from a given set of K assets with return vector R .tq1

Suppose now that an investor takes an additional set of N assets with return vector
r into account in his portfolio problem. The question we are interested in istq1
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under what conditions mean-variance efficient portfolios derived from the set of
returns R are also mean-variance efficient for the larger set of KqN assetstq1
Ž .R , r . This problem was addressed in the seminal paper of Huberman andtq1 tq1

Ž .Kandel 1987 . If there is only one value of g or h for which mean-variance
investors cannot improve their mean-variance efficient portfolio by including rtq1

Ž .in their investment set, the mean-variance frontiers of R and R , r havetq1 tq1 tq1

exactly one point in common, which is referred to as intersection. In this case, we
will say that the mean-variance frontier of R intersects the mean-variancetq1

Ž . Ž .frontier of R , r , or simply that R intersects R , r . If there is notq1 tq1 tq1 tq1 tq1

mean-variance investor that can improve his mean-variance efficient portfolio by
including r in his investment set, the mean-variance frontiers of R andtq1 tq1
Ž .R , r coincide, which is referred to as spanning. In this case, we will saytq1 tq1

Ž . Ž .that the mean-variance frontier of R spans the mean-variance frontier oftq1
Ž .R , r .tq1 tq1

As suggested by the previous section, and as shown by Ferson and Schadt
Ž . Ž . Ž . Ž .1993 , DeSantis 1994 , Ferson 1995 and Bekaert and Urias 1996 , the concept
of mean-variance spanning and intersection has a dual interpretation in terms of
volatility bounds. In terms of volatility bounds, mean-variance spanning means
that the volatility bound derived from the returns R is the same as the boundtq1

Ž .derived from R , r . Therefore, the minimum variance stochastic discounttq1 tq1
Ž .factors for R , m Õ , are also the minimum variance stochastic discounttq1 R tq1

Ž .factors for R , r , and the asset returns r do not provide informationtq1 tq1 tq1

about the necessary volatility of stochastic discount factors that is not already
present in R . As will be shown formally below, mean-variance intersection istq1

Ž .equivalent to saying that the volatility bounds derived from R and R , rtq1 tq1 tq1

have exactly one point in common. Thus, in case of intersection, there is exactly
one value of Õ for which the minimum variance stochastic discount factor does
not change, whereas for all other values of Õ it does.

In finite samples, it will in general be the case that adding assets causes a shift
in the estimated mean-variance frontier and the estimated volatility bound. This
shift may very well be the result of estimation error however, and the main
question is whether the observed shift is too large to be attributed to chance.
Therefore, to answer the question whether or not the observed shift in the
mean-variance frontier is significant in statistical terms, in this section we will also
show how regression analysis can be used to test for spanning and intersection.

3.1. Spanning and intersection in terms of mean-Õariance frontiers

To state the problem formally, the hypothesis of mean-variance intersection
means that there is a portfolio w) , which is mean-variance efficient for the
smaller set R and which is also mean-variance efficient for the larger settq1
Ž . Ž .R , r . In the sequel, variables that refer to the smaller set R r willtq1 tq1 tq1 tq1

Ž . Ž .be referred to with a subscript R r , or with their dimension K N , whereas
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Ž .variables that refer to the larger set R , r , will not have any subscript ortq1 tq1

will have their dimension as subscript, KqN. Thus, w is a K-dimensional vectorR
Ž .with portfolio weights for the assets in R , and w is a KqN -dimensionaltq1
Ž .vector with portfolio weights for all the available assets R , r . Thetq1 tq1

hypothesis of mean-variance intersection comes down to the statement that there
exists a mean-variance efficient portfolio w) of the form

w)

R
)w s , 10Ž .ž /0N

i.e., there exist scalars g and h, such that

w)

R
myhi sgS . 11Ž .KqN ž /0N

If such a portfolio w) exists, there is one point on the mean-variance frontier of
Ž .R that also lies on the mean-variance frontier of R , r . Using obvioustq1 tq1 tq1

notation, consists of two subvectors m and m , and S consists of submatricesR r
Ž .S , S , S , and S . The first K rows of Eq. 11 imply thatR R R r rR r r

m yhi sgS w)mw)sgy1Sy1 m yhi . 12Ž . Ž .R K R R R R R R R K

Ž . )Eq. 12 simply says that w is indeed mean-variance efficient for the smaller setR

R .tq1

The next step is to derive the restrictions on the distribution of R and rtq1 tq1

that are equivalent to mean-variance intersection. In order to do so, substitute Eq.
Ž . Ž .12 in the last N rows of Eq. 11 to obtain:

m yhi sS Sy1 m yhi ,m m ybm q bi y i hs0,Ž . Ž . Ž .r N rR R R R K r R K N

13Ž .

with b'S Sy1. Thus, if there is a portfolio that is mean-variance efficient forrR R R
Žthe smaller set R that is also mean-variance efficient for the larger set R ,tq1 tq1

. Ž .r , there must exist an h such that the restriction in Eq. 13 holds. It followstq1

immediately from the derivation above that this h is the zero-beta return that
) Ž ) .corresponds to the portfolio w and w .R

If there is mean-variance spanning then all mean-variance efficient portfolios
) Ž . Ž .w must be of the form 10 , i.e., Eq. 11 must be true for all values of h and

Ž .the corresponding g s. Going through the same steps, if Eq. 11 must hold for any
Ž .h, Eq. 13 must hold for any h, and this can only be the case if

m ybm s0 and bi y i s0, 14Ž .r R K N

which are the restrictions imposed by the hypothesis of spanning. If these
restrictions on the distribution of R and r hold, every point on thetq1 tq1

Žmean-variance frontier of R is also on the mean-variance frontier of R ,tq1 tq1
.r and the two frontiers coincide.tq1
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3.2. Spanning and intersection in terms of Õolatility bounds

In the previous section, we defined mean-variance spanning and intersection
from the properties of mean-variance efficient portfolios and we derived the
equivalent restrictions on the distribution of asset returns, which have previously

Ž .been derived by Huberman and Kandel 1987 . In this section, we analyze
mean-variance intersection and spanning from the properties of minimum variance

Ž .stochastic discount factors that price the assets in R and in R , rtq1 tq1 tq1

correctly and we show that this imposes the same restrictions on the distribution of
the asset returns. In terms of volatility bounds, the hypothesis of intersection is
that there is a value of Õ such that the minimum variance stochastic discount

Ž .factor for R , i.e., m Õ , is also the minimum variance stochastic discounttq1 R tq1
Ž . Ž .factor for the larger set R , r . The discount factor m Õ as defined bytq1 tq1 R tq1

Ž . Ž .Eqs. 4 and 5 is the minimum variance stochastic discount factor for this larger
Ž .set if it also prices r correctly. If m Õ prices both R and rtq1 R tq1 tq1 tq1

Ž . Ž .correctly, the difference between m Õ and any other M Õ that pricesR tq1 tq1
Ž .R and r correctly is orthogonal to R and r , implying that m Õtq1 tq1 tq1 tq1 R tq1

Ž .must have the lowest variance among all stochastic discount factors M Õ , bytq1
Ž .the same reasoning that leads to Eq. 6 .

Thus, the hypothesis of intersection for volatility bounds can be stated as:

' Õ s.t. E r m Õ s i . 15Ž . Ž .tq1tq1 R N

To show that this hypothesis imposes the same restrictions on the distribution of
Ž . Ž . Ž . Ž .R and r as in Eq. 13 , substitute Eqs. 4 and 5 into Eq. 15 :tq1 tq1

X y1E r Õq R ym S i yÕm si ,Ž . Ž .Ž .tq1 tq1 R R R K R N

m m yS Sy1 m Õq S Sy1i y i s0,Ž . Ž .r rR R R R rR R R K N

m m ybm Õq bi y i s0. 16Ž . Ž . Ž .r R K N

Ž .Dividing both sides of Eq. 16 by Õ shows that the hypothesis of intersection in
terms of volatility bounds indeed implies the same restrictions as the hypothesis of
intersection in terms of mean-variance frontiers, if we choose hs1rÕ. This could
be expected beforehand, since from the duality between mean-variance frontiers

Ž . Ž .and volatility bounds in Eq. 9 we already knew that the vector w Õ that definesR
Ž .m Õ , is proportional to a mean-variance efficient portfolio with zero-betaR tq1

) Ž )
X X .return hs1rÕ. The hypothesis that w is of the form w 0 is thereforeR N

Ž . Ž Ž .X X .Xequivalent to the hypothesis that w Õ is of the form w Õ 0 .R N

By the same logic, the hypothesis of spanning in terms of volatility bounds,
Ž .requires that m Õ prices the returns r for all values of Õ:R tq1 tq1

E r m Õ s i ,; Õ , 17Ž . Ž .tq1tq1 R N

Ž .since in that case the entire volatility bound derived from R , r coincidestq1 tq1
Ž .with the volatility bound derived from R only. This requirement implies thattq1



( )F.A. DeRoon, T.E. NijmanrJournal of Empirical Finance 8 2001 111–155 121

Ž .Eq. 16 holds for all values of Õ, and this can only be the case if the restrictions
Ž .in Eq. 14 hold.

3.3. Intersection and mean-Õariance efficiency of a giÕen portfolio

A question that is of obvious interest both from a portfolio choice perspective
and from an asset-pricing perspective, is the question whether or not a given
portfolio w p is mean-variance efficient. From a portfolio-choice perspective, an
investor will be interested in whether or not his portfolio has the desired properties
of a mean-variance efficient portfolio. From an asset-pricing perspective, the
frequently analyzed question is, e.g., whether or not the market portfolio is
mean-variance efficient as the CAPM predicts. Alternative asset-pricing models
may identify other portfolios as being mean-variance efficient. For instance, in the
Consumption-CAPM the portfolio that mimics aggregate per-capita consumption
is mean-variance efficient and the Intertemporal-CAPM implies that the market
portfolio and the portfolios hedging changes in the investment-opportunity set are
mean-variance efficient.

Denote the return on some portfolio w p by Rp and its expectation by mp. Thetq1

question whether or not w p is mean-variance efficient with respect to the Nq1
Ž p .assets R , r , is obviously a special case of the question whether or nottq1 tq1

there is mean-variance intersection with Ks1 and R sRp , since intersec-tq1 tq1

tion in this case simply means that the portfolio w p is on the mean-variance
Ž p . pfrontier of R , r . Therefore, if w is mean-variance efficient for the settq1 tq1

Ž p . pR , r , the following restrictions on the distribution of R and rtq1 tq1 tq1 tq1

should hold:

m shi qb p mpyh , 18Ž . Ž .r N

p w p x w p x pwhere b is the N-dimensional vector Cov r , R rVar R , and m stq1 tq1 tq1
w p x pE R . When testing for mean-variance efficiency, R is usually the return ontq1 tq1

a portfolio of r .tq1

What we want to establish in this section however, is that the hypothesis that
Ž . Ž .the mean-variance frontier of R KG1 intersects the frontier of R , rtq1 tq1 tq1

at a given value of hs1rÕ, is tantamount to the hypothesis that the portfolio w)

R
Žthat is mean-variance efficient for R and that has as its zero-beta rate is alsotq1

Ž . )mean-variance efficient with respect to R , r . Denote the return on w astq1 tq1 R

R) and its expectation as m). Recall that the portfolio w) is given by the firsttq1 R
Ž .K rows of Eq. 11

w)sgy1Sy1 m yhi ,Ž .R R R R K

from which

m)yh
X X

) ) )w m yhi sg w S w mgs .Ž .R R K R R R R
)Var Rtq1
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Ž . w ) xSubstituting these relations into Eq. 11 and defining bsCov r , R rtq1 tq1
w ) xVar R , results intq1

0s m yb )m q b )y i h . 19Ž .Ž . Ž .r N

Ž . p )These are the same restrictions as Eq. 18 for w sw . Thus, the hypothesis of
intersection indeed implies the same restrictions on the distribution of R andtq1

r as the hypothesis that w) is mean-variance efficient with respect to r .tq1 R tq1

3.4. Testing for spanning and intersection

So far, we derived the restrictions implied by the hypotheses of mean-variance
intersection and spanning for the distribution of R and r . Huberman andtq1 tq1

Ž .Kandel 1987 showed how regression can be used to test these hypotheses. To see
Ž .how regression can be used to test for intersection, start from Eq. 13 :

m yhi sb m yhi .Ž .r N R K

Replacing the expected returns m and m with realized returns r and R ,r R tq1 tq1

gives the regression

r saqbR q´ , 20Ž .tq1 tq1 tq1

with asm ybm , ´ su ybu , , u 'r ym and u , 'r R tq1 r , tq1 R tq1 r , tq1 tq1 r R tq1

R ym . It can readily be checked that under the null hypotheses of spanningtq1 R
w xand intersection Cov ´ , R s0. Notice that a is an N-dimensional vectortq1 tq1

of intercepts, b is an N=K-dimensional matrix of slope coefficients, and ´ istq1

an N-dimensional vector of error terms. The restrictions imposed by the hypothe-
Ž .sis of intersection in Eq. 13 can now be stated as

ayh i ybi s0. 21Ž . Ž .N K

With intersection, there are two cases of interest. First, we may be interested in
testing for intersection for a given value of the zero-beta rate h. In that case, the

Ž .restrictions in Eq. 21 should hold for this specific value of h, which is a set of
linear restrictions. In the sequel, we will mainly be interested in this case. Second,
the interest may be in the question whether there is intersection at some unknown
point of the frontier, i.e., for some unknown value of h. In that case, the

Ž .hypothesis is that there exists some h such that the restrictions in Eq. 21 hold.
This hypothesis can be stated as

a r 1yb i sa r 1yb i , i , js1, . . . , N ,Ž . Ž .i i K j j K

where b is the ith row of b. Thus, the hypothesis that there is intersection ati

some point of the frontier imposes a set of nonlinear restrictions on the regression
Ž .parameters in Eq. 20 . Notice that given estimates of a and b an estimate of thei i

Ž .zero-beta rate for which there is intersection can be obtained from a r 1yb i .i i K

Also note, that testing whether there is intersection at some unknown point of the



( )F.A. DeRoon, T.E. NijmanrJournal of Empirical Finance 8 2001 111–155 123

frontier only makes sense if NG2, since there is always intersection if Ns1.
ŽBecause there is always one efficient portfolio for which the weight in the new

.asset is zero.
Ž .Recall that the hypothesis of spanning implies that Eq. 21 holds for all values

of h. Therefore, going through the same steps, the restrictions imposed by the
hypothesis of spanning can be stated as

as0 and bi y i s0. 22Ž .K N

Ž .The restrictions in terms of the regression model in Eq. 20 are intuitively very
Ž .clear. For instance, the spanning restrictions in Eq. 22 state that if there is

spanning, then each return of the additional assets, r , is1,2, . . . , N, can bei, tq1

written as the return of a portfolio of the benchmark assets b R , b i s1, plusi tq1 i K

an error term ´ which has expectation zero and which is orthogonal to thei, tq1

returns R . Since such an asset can only add to the variance of portfolios oftq1

R , and not to the expected return, mean-variance optimizing agents will nottq1

include such an asset in their portfolio. A similar interpretation holds for the
intersection restrictions.

If the returns series R and r are stationary and ergodic, consistenttq1 tq1
Ž .estimates of the parameters a and b in Eq. 20 are easily obtained using OLS. In

Ž . Ž .writing down the test statistics for Eqs. 21 and 22 , it is convenient to use a
Ž .different specification of Eq. 20 , in which all the coefficients a and b are

stacked into one big vector:

r s I m 1 RX bq´ , 23Ž . Ž .Ž .tq1 N tq1 tq1

X ˆŽŽ . . Ž .where bsvec a b , a Kq1 N-dimensional vector. If b is the OLS estimate
ˆ ˆof b and Q is a consistent estimate of the asymptotic covariance matrix of b, the

hypotheses of intersection and spanning can be tested using a standard Wald test.
Defining

H h ' I m 1hiX 24aŽ . Ž . Ž .int N K

and

ˆh h 'H h byhi , 24bŽ . Ž . Ž .int int N

the Wald test statistic for intersection can be written as
y1X Xint ˆj sh h H h QH h h h . 25Ž . Ž . Ž . Ž . Ž .Ž .int int int intW

Similarly, defining

1 0X
K

H ' I m 26aŽ .Xspan N ž /0 iK

and

0ˆh 'H by i m , 26bŽ .span span N ž /1
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the Wald test statistic for spanning can be written as

y1
X Xspan ˆj sh H QH h . 27Ž .ž /W span span int span

Under the null hypotheses and standard regularity conditions, the limit distribution
of j int will be x 2 and the limit distribution of j span will be x 2 . The testW N W 2 N

Ž . Ž .statistics in Eqs. 25 and 27 have interesting economic interpretations in terms
of performance measures. The relationship between tests for intersection and
spanning and performance evaluation will be discussed in detail in Section 5.3.

Ž . Ž .Chen and Knez 1996 and Hall and Knez 1995 propose a test for intersection
Ž . Ž .that is based on Eq. 15 . Define the deviation from the equality in Eq. 15 to be

Ž .l Õ :

l Õ 'E m Õ r y i . 28Ž . Ž . Ž .tR t N

Ž .In Section 5.1, we will interpret l Õ scaled by Õ as a generalization of the
Ž .well-known Jensen measure. Given an estimate of the parameters w Õ using theR

Ž .sample equivalent of Eq. 5 :

y1T1 X

w Õ s R yR R yR i yÕR ,Ž .ˆ Ž . Ž . Ž .ÝR t t Kž /T ts1

ˆŽ .with R the sample mean of R , define l Õ ast t

X
l̂ Õ 'r Õqw Õ R yR y i .Ž . Ž .ˆ Ž .Ž .t t R t N

Ž .A test for the hypothesis of intersection, l Õ s0, can now be based on
XT T1 1$ y1

int ˆ ˆ ˆj s l Õ Var l Õ l Õ , 29Ž . Ž . Ž . Ž .Ý Ýt t tž /CK ž / ž /T Tts1 ts1

ˆw Ž . xwhere the estimate Var l Õ can for instance be obtained using the methodˆ t
Ž .suggested by Newey and West 1987 . The limit distribution of the test statistic

Ž int 2j is also x . Since for hs1rÕ, we haveCK N

T T1 1 X

l̂ Õ Õs r qr R yR w Õ h yhiŽ . Ž .ˆŽ .Ž .Ý Ýt t t t R Nž /T Tts1 ts1

ˆsaq bi y i h ,ˆ Ž .K N

it follows that

T1
ˆ ˆl Õ ÕsH h byh h ,Ž . Ž . Ž .Ý t int intž /T ts1
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Ž .and that the only difference in the Wald test statistic in Eq. 25 and the statistic
Ž .proposed in Eq. 29 is the way in which the covariance matrix is estimated.

Ž .A disadvantage of the test originally proposed by Chen and Knez 1996 is that
they test for intersection for a very specific stochastic discount factor, which
corresponds to the minimum second moment portfolio. This discount factor can be
found by projecting the kernel M on the asset returns only, excluding thetq1

constant. The corresponding portfolio on the mean-variance frontier is the one
with the minimum second moment among all portfolios on the frontier, and can
graphically be found as the tangency point between the mean-variance frontier and
a circle with its centre at the origin. The problem with this portfolio is that it is
located at the inefficient part of the frontier, implying that the test used by Chen

Ž .and Knez 1996 is for intersection at an inefficient portfolio. Therefore, it is
economically not very interesting, unless a risk-free asset is included. Since in the

Ž . Ž .test statistic in Eq. 29 , the discount factor m Õ results from a projection ofR tq1

M on R plus a constant, this test allows us to test for intersection at anytq1 tq1

mean-variance efficient portfolio, so this test does not suffer from the problem of
Ž .the test originally suggested by Chen and Knez. Dahlquist and Soderlind 1999 ,¨

who use the test proposed by Chen and Knez to evaluate the performance of
Swedish mutual funds, also acknowledge this problem and add a constant to the

Ž .set R such that the conditional mean of m Õ , equals one over the risk-freetq1 R tq1

rate, i.e., Õ s1rR .t f ,t
Ž . Ž .The distinction between the Wald tests in Eqs. 25 and 27 on the one hand
Ž .and the tests proposed by Chen and Knez in Eq. 29 is similar to the distinction

Ž .between tests based on the traditional regression methodology and on the SDF
Ž .methodology as discussed in Kan and Zhou 1999 . Their simulations suggest that

in small samples tests based on the regression methodology have better size and
power properties than tests based on the SDF methodology, which indicates that

Ž . Ž .the test in Eq. 25 may be preferred to Eq. 29 .
Alternative tests for the hypotheses of intersection and spanning are suggested,

Ž .e.g., by Huberman and Kandel 1987 , who propose a likelihood ratio test, and by
Ž . Ž .Snow 1991 and DeSantis 1995 , who propose a Generalized Method of Mo-
Ž .ments GMM procedure. This latter procedure is also identical to the region

Ž .subset test suggested by Hansen and Jagannathan 1995 , which is equivalent to a
test for intersection. A comparison of the small sample properties of various

Ž .test-procedures can be found in Bekaert and Urias 1996 . These small sample
results suggest that the likelihood test for spanning as proposed by Huberman and
Kandel has better power properties than the GMM-based tests, while it also has a
size distortion that is in most cases not worse than for the GMM-based tests. The
GMM-based test or region subset test is based on the observation that under the
null hypotheses of spanning or intersection, the kernel that prices R and rtq1 tq1

correctly is of the form

X X
m Õ sÕqw Õ R ym qw Õ r ym , with w Õ s0.Ž . Ž . Ž . Ž . Ž . Ž .tq1 R tq1 R r tq1 r r
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Ž . Ž .Given that w Õ s0, a GMM estimate of the K parameters in w Õ can ber R

obtained by using the KqN sample moments

T1 R Xtg w Õ s Õqw Õ R yR y iŽ . Ž Ž .Ž . Ž .ÝT R R t KqN½ 5rž /T tts1

T1
s g w Õ .Ž .Ž .Ý t RT ts1

Ž .A consistent estimate of w Õ can therefore be obtained by solvingR
X

min g w Õ W g w Õ sJ w Õ , 30Ž . Ž . Ž . Ž .Ž . Ž . Ž .T R T T R T R
Ž .w ÕR

where W is a symmetric nonsingular weighting matrix. Notice that the GMMT
Ž . Ž .estimate of the K parameters w Õ obtained from Eq. 30 is based on KqNR

moment restrictions. The N over-identifying restrictions are derived from the
Ž .hypothesis that m Õ must also price the N additional assets r . IntersectionR tq1 tq1

for a given value of Õ can now be tested by using the fact that under the null
Ž Ž .. 2hypothesis and regularity conditions TJ a Õ is asymptotically x -distributed.T R N

Ž . Ž .Since spanning implies that Eq. 15 holds for at least two different values of Õ,
Ž .the GMM-based test can easily be extended by estimating two vectors w Õ andR 1

Ž . Ž . Ž .w Õ simultaneously Õ /Õ using Eq. 30 . In this case, there are 2 KR 2 1 2
Ž .parameters to be estimated with 2 KqN moment conditions. The test for

spanning is therefore a test for the 2 N over-identifying restrictions and will
asymptotically be x 2 -distributed under the null hypothesis of spanning.2 N

4. Testing for spanning and intersection with conditioning information

The purpose of this section is to incorporate conditioning information in tests
for intersection and spanning. Until now, we assumed that returns are indepen-

Ž .dently and identically distributed i.i.d. . However, there is ample evidence that
asset returns are to some extent predictable. For instance, stock and bond returns
can be predicted from variables like lagged returns, dividend yields, short-term

Ž .interest rates, and default premiums see, e.g., Ferson, 1995 and future returns can
Ž .be predicted from hedging pressure variables see e.g. DeRoon et al., 2000 as

Ž .well as from the spread between spot and forward prices see, e.g., Fama, 1984 .
Ž .Kirby 1998 analyzes whether predictability of security returns is consistent with

rational asset pricing. He shows that the covariance between the pricing kernel
implied by an asset-pricing model and conditioning variables, restricts the slope
coefficients in a regression of security returns on those same conditioning vari-
ables. In Section 4.1, we will show how conditional information can be used in a

Žstraightforward way by using scaled returns see, e.g., Cochrane, 1996; Bekaert
.and Urias, 1996 . Although this is a fairly general and intuitive way of incorporat-
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ing conditional information, a disadvantage of this method is that the dimension of
the estimation and testing problem increases quickly. In Section 4.2, we show that
this problem can be circumvented if it is assumed that variances and covariances
are constant, while expected returns are allowed to vary over time, although this
assumption is not in accordance with most equilibrium models and with the
empirical evidence regarding time-varying second moments. Using this simplify-
ing assumption however, it is shown that the conditioning variables can easily be
accounted for by using them as additional regressors. The restrictions for the
intersection and spanning hypotheses then become similar to the restrictions in the
i.i.d. case. This way of incorporating conditional variables also has the additional
advantage that the regression estimates indicate under what economic circum-
stances, i.e., for what values of the conditioning variables, intersection and
spanning can or cannot be rejected. Finally, in Section 4.3, we will discuss the use

Ž .of conditioning variables as, e.g., in Shanken 1990 and Ferson and Schadt
Ž .1996 .

4.1. Incorporating conditional information using scaled returns

Ž .Suppose that z is an Ly1 -dimensional vector of instruments that hast

predictive power for R and r , and define the L-dimensional vector Z astq1 tq1 t
Ž X .XZ ' 1 z . A common way to use these instruments is to look at scaled returns:t t

Ž .Z mR . If M is a valid stochastic discount factor, then from Eq. 1 wet tq1 tq1

have:

E M Z mR N I sZ m i .Ž .tq1 t tq1 t t K

Taking unconditional expectations, this yields

w xE M Z mR sE Z m i . 31Ž . Ž .tq1 t tq1 t K

w xThus, the scaled return Z R has an average price equal to E Z . The scaledi, t j, tq1 i ,t

returns can be interpreted as the payoffs of a strategy where each period an
amount equal to Z dollars is invested in a security, yielding a payoff equal toi ,t

Z R . Therefore, we can also think of Z mR as the returns on managedi ,t j, tq1 t tq1
Ž .portfolios see, e.g., Cochrane, 1996 . By allowing for such managed portfolios,

we take into account that investors may use dynamic strategies, based on the
realized values of Z . In effect, this increases the set of available assets by a factort
Ž .L i.e., from K to K=L .

Ž .To simplify notation, denote the L=K -dimensional vector Z mR byt tq1
Z Ž . w xR . Also, denote the L=K -dimensional vector E Z m i by q . For furthertq1 t K K

reference, r Z and q are defined in a completely analogous way and we use atq1 N

superscript Z for all variables and parameters that correspond to RZ and r Z .tq1 tq1

Valid stochastic discount factors M Z now have to satisfytq1

Z ZE M R sq . 32Ž .tq1 tq1 K
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Ž .As shown by Bekaert and Urias 1996 , following the same line of reasoning as in
Sections 2.1 and 2.2, it is straightforward to show that the minimum variance
stochastic discount factor with expectation Õ is given by

XZ Z Z Zm Õ sÕqw Õ R ym ,Ž . Ž . Ž .tq1R tq1 R

y1Z Z Zw Õ s S q yÕm . 33Ž . Ž .Ž . Ž .R R K R

This expression for the volatility bound is a straightforward generalization of the
Ž . Ž .one given in Eqs. 4 and 5 . The restrictions imposed by the hypotheses of

intersection and spanning also turn out to be very similar to the ones given in
previous sections, as we will see below.

Thus, conditioning information can be incorporated by including managed
portfolios, the returns of which depend on the conditioning variables. If there is to
be conditional intersection or spanning of r by R , the unconditionaltq1 tq1

Ž . Zvolatility bound or mean-variance frontier of R must intersect or span thetq1
Ž . Ž Z Z .volatility bound or mean-variance frontier of R , r . The interest istq1 tq1

therefore in the returns R and r themselves plus the returns on all thetq1 tq1

managed portfolios. Intersection or spanning is equivalent to

Z ZE r m Õ sq , 34Ž . Ž .tq1tq1 R N

for one value of Õ or for all values of Õ, respectively. To see which restrictions
Ž . Ž .these hypotheses imply, substitute Eq. 33 into Eq. 34 to obtain

mZyb ZmZ
Õq b Zq yq s0, 35Ž .Ž . Ž .r R K N

for intersection, and

mZyb ZmZ s0, and b Zq yq s0, 36Ž .Ž . Ž .r R K N

Z Z Ž Z .y1 Ž . Ž .for spanning. Here, b sS S is a L=N = L=K matrix with sloperR R R

coefficients from a regression of r Z on RZ plus a constant. These restrictionstq1 tq1
Ž . Z Zare also given in Bekaert and Urias 1996 . Regressing r on R to incorporatet t

conditioning information is very similar to the approach to be discussed in Section
4.3, where the regression parameters a and b are time varying. In that section,

Ž .we will assume that the mean returns and the co variances are functions of the
instruments that can be linearized using a Taylor series approximation, leading to a
similar regression as in the case discussed here. Therefore, the use of scaled
returns can also be motivated as a convenient way of dealing with time-varying
means and variances.

The similarity with the case in which there was no conditioning information is
Ž . Ž .obvious. The only difference in the restrictions is that in Eqs. 35 and 36 , we

Ž Z . Ž .have b q yq instead of bi y i . The fact that q and q enter theK N K N K N

restrictions reflects the fact that RZ and r Z are not really returns, in the sensetq1 tq1

that their current prices are not necessarily equal to one. The average prices of
RZ and r Z are instead given by q and q . The average cost of the managedtq1 tq1 K N



( )F.A. DeRoon, T.E. NijmanrJournal of Empirical Finance 8 2001 111–155 129

portfolios with payoff vector r Z is given by the vector q , and the cost of thetq1 N

mimicking portfolios from RZ is given by b Zq . The interpretation of thetq1 K

restrictions given in Section 3.4 is therefore still valid.
The main disadvantage of this way of incorporating conditioning information is

that the number of parameters to be estimated as well as the number of restrictions
to be tested grows rapidly with the number of instruments L. The number of
exogenous variables equals K=L and the number of restrictions to be tested
equals N=L for the hypothesis of intersection, and 2 N=L for the hypothesis of
spanning. This is the case because for each new instrument there are K new
managed portfolios to be considered for the assets in R and N additionaltq1

managed portfolios for the assets in r .tq1

This problem can at least partially be circumvented if we are willing to assume
a more specific form of predictability. Specifically, in the next section we make
the assumption that only the expected returns of R and r depend linearly ontq1 tq1

the instruments z , whereas all variances and covariances are constants. In Sectiont

4.3, the slope coefficients b are assumed to depend linearly on the instruments,
which also allows for a straightforward way of incorporating conditional informa-
tion in the regression framework to test for intersection and spanning.

4.2. Expected returns linear in the conditional Õariables

In this section, we assume that there is a specific form of predictability, which
allows us to incorporate conditioning information in a straightforward way in the
regression framework for spanning and intersection. The assumption made is that
expected returns are linear in the conditional variables and that returns are
conditionally homoskedastic. This way of incorporating conditioning information

Ž . Ž .is used in Harvey 1989 , as well as, for instance, in Campbell and Viceira 1996
Ž .and DeRoon et al. 1998 . The assumption we make is that

w x XE R sc Z ,t tq1 R t

w x XE r sc Z , 37Ž .t tq1 r t

and the variances and covariances of R and r conditional on Z are giventq1 tq1 t
w x w x w xby Var R NZ sV , Var r NZ sV , and Cov r , R NZ sV .tq1 t R R tq1 t r r tq1 tq1 t rR

Ž .Starting from Eq. 1 , the minimum variance stochastic discount factor, condi-
tional on Z , is given byt

X w xm Õ sÕ qw Õ R yE R ,Ž . Ž . Ž .R t t t tq1 t tq1tq1 t

y1 w xw Õ sV i yÕ E R . 38Ž . Ž .Ž .t R R K t t tq1t

Notice that since the projection of the kernel on the asset returns is now
Ž .conditional on Z , we explicitly allow for time variation in the coefficients w Õ ,t t t

as well as in Õ , the conditional expectation of the stochastic discount factor. Alsot

note that in describing the conditional mean-variance frontier or volatility bound
we still can use Õ as a free parameter.t
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Ž .If there is intersection, m Õ must price r correctly conditional on Z ,R t tq1 tq1 t

which results in
X Xy1i sE r m Õ sÕ c Z qV V i yc ZŽ . Ž .N t tq1 R t t r t rR R R K R ttq1

m cX yV Vy1 cX Z Õ q V Vy1 i y i s0. 39Ž .Ž . Ž .r rR R R R t t rR R R K N

In case there is spanning, this condition must again hold for every Õ , implyingt

cX yV Vy1 cX Z s0 and V Vy1 i y i s0. 40Ž .Ž . Ž .R rR R R R t rR R R K N

It turns out that the regression framework that we used to test for spanning and
Ž . Ž .intersection can be modified to test the restrictions in Eqs. 39 and 40 .

Straightforward use of the algebra of partitioned matrices shows that in the
regression

r scZ qdR qu , 41Ž .tq1 t tq1 tq1

w x w xwith E u Z s0, and E u R s0, the OLS-estimates of c and d aretq1 t tq1 tq1
Ž X y1 X . Ž y1 .consistent estimates of c yV V c and V V i y i , respectively,r rR R R R rR R R K N

Ž . Ž . Žwhich are the parameters of interest in the restrictions in Eqs. 39 and 40 see
.DeRoon et al., 1998 . The hypotheses of intersection and spanning can therefore

Ž .be based on the OLS-estimates of Eq. 41 . The hypothesis that there is intersec-
tion for a given value of Õ and Z can be tested by testing the restrictionst t

cZ Õ q di y i s0, 42Ž . Ž .t t K N

and the hypothesis of spanning by testing the restrictions

cZ s0 and di y i s0. 43Ž . Ž .t K N

These restrictions are very similar to the restrictions implied by intersection and
Ž .spanning in the unconditional case, except that the intercept a in Eq. 20 is

replaced by cZ .t
Ž . Ž .It can easily be seen from Eqs. 42 and 43 that the number of restrictions to

be tested for intersection and spanning is the same as in the unconditional case,
which makes this method of incorporating conditional information more parsimo-

Ž .nious than using scaled returns. Note that the hypotheses underlying Eqs. 42 and
Ž .43 are that there is intersection or spanning for a particular value of Z , i.e., for at

particular state of the economy. This has the additional advantage that the
Ž .regression estimates of Eq. 41 make it possible to derive confidence intervals for

the values of Z for which there can be intersection or spanning.t

If the hypothesis of interest is whether there is spanning regardless of the state
Ž .of the economy, the restrictions in Eq. 43 should hold for all values of z ,t

implying that each element of c should be equal to 0. In that case, with L
instruments and N assets in r , there are L=N restrictions to be tested, which,tq1

Ž .although smaller than the 2=L=N restrictions in Eq. 36 , can be a large
Ž . Ž .number. Also, as follows readily from Eqs. 42 and 43 , in this case the

hypothesis of intersection and the hypothesis of spanning both imply the same
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restrictions. This latter result is due to the fact that the value of Õ for which wet

test intersection is a constant. Since the tangency point on the mean-variance
frontier that corresponds to Õ is a function of Z , the only way to have inter-t t

section irrespective of the specific value of Z is to have spanning.t

4.3. Regression coefficients linear in the conditional Õariables

An alternative way of incorporating conditional information in the regression
Ž . Ž .framework is suggested by Shanken 1990 and Ferson and Schadt 1996 e.g.,

where the coefficients a and b are assumed to be a linear function of the
Ž .instruments. In the regression in Eq. 20 , the ith row can be written as

r sa qb R q´ .i , tq1 i i tq1 tq1

Ž .Shanken 1990 simply assumes that

a sa qzX a ,i i0 t i1

b sb qzX b , 44Ž .i i0 t i1

where z are now supposed to be L demeaned variables. Here, a is scalar, a ist i0 i1

an L-vector, b is a K row-vector, and b is L=K matrix. Ferson and Schadti0 i1
Ž . Ž .1996 motivate Eq. 44 as a first-order Taylor-series expansion for a general

Ž X .X w x Ž .dependence of b on Z s 1 z . Let Cov r , R NZ sS Z , andt t tq1 tq1 t rR t
w x Ž . Ž .Var R NZ sS Z , where S P indicates some functional form for thetq1 t R R t

Ž .covariance matrix. Starting from Eq. 13 intersection for a given zero-beta rate
h s1rÕ conditional on Z meanst t t

w x w xE r yh i sb Z E R yh i mr yh iŽ .tq1 t N t tq1 t K tq1 t N

sb Z R yh i qu ,Ž . Ž .t tq1 t K tq1

Ž . Ž . Ž .y1 Ž Ž . . Ž w xwith b Z s S Z S Z , u ' r y b Z R y E r yt rR t R R t tq1 tq1 t tq1 tq1
Ž . w x. w x Ž .b Z E R , and E u NZ s0. Ferson and Schadt 1996 suggest a lineart tq1 tq1 t

Ž .approximation of b Z :i t

b Z fb qzX b , 45Ž . Ž .i t i0 t i1

from which

r sa qzX a qb R q zX b R q´ ,Ž .i , tq1 i0 t i1 i0 tq1 t i1 tq1 tq1

a sh 1yb i ,Ž .i0 t i0 K

a syh b i , 46Ž .i1 t i1 K

Ž Ž . X Ž X ..Ž .with ´ su q b Z yb y z b R yh i , for which it is as-i, tq1 i, tq1 i t i0 t i1 tq1 t K
w x Ž .sumed that E ´ NZ s0. This yields precisely the regression in Eq. 20i, tq1 t

where the regression parameters are linear in the instruments as assumed by
Ž .Shanken 1990 .
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Intersection for a given value of h s1rÕ and z can now be tested by testingt t t

the restrictions that

a qzX a q b qzX b i y1 h s0. 47� 4Ž . Ž . Ž .i0 t i1 0 t i1 K t

As in the previous section, these restrictions have the additional advantage that
Ž .statements can be made about in which state of the economy, i.e., values of zt

there is intersection. If there is intersection for all values of z , this impliest

a q b i y1 h s0,Ž .i0 i0 K t

a qb i h s0. 48Ž .i1 i1 K t

Ž .The regression in Eq. 46 can also be motivated from the scaled returns in Section
4.1. Using the pricing kernel that is linear in RZ and that is supposed to pricetq1

the returns r Z as well, the restrictions implied by intersection are very similar totq1
Ž .the ones in Eq. 48 . Thus, the use of managed returns is similar to the coefficients

in the spanning regression being linear in the instruments.3

Spanning for a given value of z is equivalent tot

a qzX a s0,i0 t i1

b qzX b i s1. 49Ž . Ž .i0 t i1 K

Again, for a specific value of z , i.e., for specific economic conditions, theset

restrictions can easily be tested in the regression framework outlined above. If
there is to be spanning under all economic conditions, the restrictions are

a s0,10

b i s1,10 K

a s0,i1

b s0.i1

Ž .If there are L instruments including a constant with K benchmark assets and N
Ž .new assets, we now have Kq1 =N=L restrictions to test, which is even larger

than with the scaled returns in Section 4.1. In addition, the numbers of parameters
Ž .to be estimated is Kq1 =N=L. Thus, in terms of the number of parameters

and the number of restrictions, this approach does not offer additional benefits
over the use of scaled returns. However, this approach does have the benefit that it
shows under what economic circumstances there may or may not be intersection
or spanning.

Notice that this way of incorporating conditional information is very similar to
the one suggested in the previous section. The restrictions on the regression

Ž . Ž .parameters in Eq. 46 are analogous to the ones on the parameters in Eq. 41 .
The main difference arises because the slope coefficients for R also depend ontq1

3 We thank the referee for pointing this out to us.
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the instruments, implying that the interaction term z R should also be includedt tq1

in the regression. It is easy to see that the approach in the previous section can be
interpreted as a special case of the approach outlined here, where only the

Ž .intercepts in Eq. 20 are a function of the instruments z , whereas the slopet

coefficients are constant.
Summarizing, we have shown that a number of approaches is available to

incorporate conditioning information in tests for intersection and spanning. Using
either scaled returns or regression coefficients that are linear functions of the
instruments, the regression approach outlined in Section 3 can easily be extended
to test for intersection or spanning. The restrictions implied by the hypotheses of
intersection and spanning are very similar to the case where there is no condition-

Ž .ing information i.e., where the only instrument is a constant and have very
similar interpretations as well. Our methods focus on specific functional forms of
incorporating conditioning information.

5. The relation between spanning tests, performance evaluation and optimal
portfolio weights

So far, the focus has been on the restrictions that are implied by the hypotheses
of intersection and spanning on the distribution of R and r and on tests oftq1 tq1

these hypotheses. In this section, the interest will be in the deviations from the
restrictions. We will show that the test statistics and regression estimates have
clear interpretations in terms of performance measures like Jensen’s alpha and the
Sharpe ratio as well as in terms of the new optimal portfolio weights. Since it is
natural to think about these performance measures in terms of mean-variance
efficient portfolios, most of the analysis in this section will be in terms of
mean-variance frontiers rather than volatility bounds. Nonetheless, the duality
between these two frontiers also holds for these performance measures. These
interpretations of tests for mean-variance efficiency, intersection, and spanning in

Ž .terms of performance measures can also be found in Cochrane 1996 , Dahlquist
Ž . Ž . Žand Soderlind 1999 , Gibbons et al. 1989 , Jobson and Korkie 1982, 1984,¨

. Ž .1989 , and Kandel and Stambaugh 1989 .

5.1. Performance measures

To set the stage, define the vector of Jensen’s alphas, or Jensen performance
Ž .measures, a h , as the intercepts in a regression of the N excess returnsJ

Ž . Ž .r yhi on the excess returns of the K benchmark assets, R yhi :tq1 N tq1 K

r yhi sa h qb R yhi q´ , 50Ž . Ž . Ž .tq1 N J tq1 K tq1

w x w xwith E ´ sE ´ R s0. Since it is not assumed that there exists atq1 tq1 tq1

risk-free asset, we define excess returns as the return on an asset or portfolio in
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excess of a given zero-beta rate. Alternatively, when regressing r on R astq1 tq1
Ž .in Eq. 20 , it follows that Jensen’s alpha is equal to

a h saq bi y i h , 51Ž . Ž . Ž .J K N

where asm ybm and bsS Sy1. Notice from this expression that ther R rR R R

hypothesis, that there is an intersection for a given value of h is equivalent to the
Ž .hypothesis that the Jensen performance measure is zero, i.e., a h s0. Similarly,J

Ž .the hypothesis of spanning is equivalent to the hypothesis that a h s0, ;h.J
Ž .Recall from Section 3.3, that the regression in Eq. 50 produces the same

Ž .intercept a h as a regression of r yhi on the excess return of a portfolioJ tq1 N

w) that is mean-variance efficient for R and that has h as its zero-beta rate,R tq1

i.e.,

r yhi sa h qb ) R) yh q´ .Ž . Ž .tq1 N J tq1 tq1

Ž .Following Jensen 1968 , it is common in the literature to define Jensen’s alpha as
the intercept of a regression of r in excess of the risk-free rate on the return oftq1

Ž .the market portfolio in excess of the risk-free rate. The definition in Eq. 50 is
more general and has this more traditional definition as a special case if there

Ž f .exists a risk-free asset hsR and if the market portfolio is mean-variancet
Ž ) m . Ž .efficient R sR . The Jensen measure in Eq. 50 is also referred to as thetq1 tq1

generalized Jensen measure. Given the minimum variance stochastic discount
Ž . Ž . Ž .factor m Õ as defined in Eqs. 4 and 5 , it can easily be seen that theR tq1

Ž . Ž .generalized Jensen measure is also equal to l Õ rÕ as defined in Eq. 28 . This is
Ž . Ž .also discussed in Cochrane 1996 and in Dahlquist and Soderlind 1999 .¨

The Sharpe ratio of a portfolio with return Rp is defined as the expectedtq1

excess portfolio return, divided by the standard deviation of portfolio return,
pE R yhtq1pSh R ,h ' .Ž .tq1 ps RŽ .tq1

By definition, for a given expected portfolio return, or for a given standard
Ž .deviation of portfolio return, the maximum attainable absolute Sharpe ratio is the

Sharpe ratio of the minimum-variance efficient portfolio. For a minimum-variance
efficient portfolio w) of the K assets R with zero-beta rate h, the Sharpe ratioR tq1

Ž .is equal to the slope of the line tangent to the frontier originating at 0, h in
Ž .mean-standard deviation space, and is denoted by u h :R

)E R yhtq1
u h s , 52Ž . Ž .R

)s RŽ .tq1

where R) 'w)
XR .tq1 tq1

Although both Jensen’s alpha and the Sharpe ratio are used as performance
measures, there is an important difference between the two. Whereas the Sharpe

Žratio is defined in terms of the characteristics of one portfolio the expected excess
.portfolio return and its standard deviation , Jensen’s alpha is defined in terms of
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one asset or portfolio relative to another. Sharpe ratios answer the question
whether one portfolio is to be preferred over another, whereas Jensen’s alpha
answers the question whether investors can improve the efficiency of their
portfolio by investing in the new asset. However, there is a close relation between
the two measures, in that Jensen’s alphas together with the covariance matrix of

Ž . Ž Ž ..the error terms ´ in Eq. 20 and Eq. 50 determine the potential improve-tq1

ment in the maximum attainable Sharpe ratio from adding the new assets r .tq1

Recall from Section 2.2 that we defined the variables A' i
X
Sy1i, B'm

X
Sy1i, and

C'm
X
Sy1m. For the set R , these variables will be denoted as A , B , and C ,tq1 R R R

whereas the absence of subscripts implies that these variables refer to the larger set
Ž .R , r . Using partitioned inverses, notice thattq1 tq1

y1 X Xy1 y1 y1S qb S b yb SS S R R ´´ ´´R R R ry1S s s . 53Ž .y1 y1ž /S S ž /yS b SrR r r ´´ ´´

From this, it follows that

As i
X
Sy1i q i

X
b

X
Sy1bi y2iX b

X
Sy1i q i

X
Sy1iK R R K K ´´ K K ´´ N N ´´ N

X y1sA q bi y i S bi y i , 54Ž . Ž . Ž .R K N ´´ K N

where bsS Sy1 and S is the covariance matrix of ´ , the error term in therR R R ´´ tq1
Ž .regression in Eq. 20 . In a similar way, it can easily be shown that

BsB qa
X
Sy1 i ybi , 55aŽ . Ž .R ´´ N K

CsC qa
X
Sy1a , 55bŽ .R ´´

Ž .where asm ybm , the intercept in the regression in Eq. 20 .r R

It is easy to show that for a given h, the Sharpe ratio of a mean-variance
efficient portfolio w) can be written asR

1r22u h s C y2 B hqA h . 56Ž . Ž .Ž .R R R R

Ž .A similar expression holds of course for u h , the maximum attainable Sharpe
Ž . Ž . Ž . Ž .ratio of the larger set R , r . Using Eqs. 54 , 55a and 55b , we derivetq1 tq1

2 2 2u h sCy2 BhqAh s C y2 B hqA hŽ . Ž .R R R

q a
X
Sy1ay2a X

Sy1 i ybi hŽ .Ž ´´ ´´ N K

X y1 2q i ybi S i ybi hŽ . Ž . .N K ´´ N K

X2 y1su h qa h S a h . 57Ž . Ž . Ž . Ž .R J ´´ J

Thus, the change in maximum attainable squared Sharpe ratios equals the inner
Ž .product of the vector of Jensen’s alphas, a h , weighted by the inverse of theJ

covariance matrix of ´ .4 If there is only one new asset, Ns1, the termtq1

4 Ž .This result can be found in Jobson and Korkie 1984 for instance.
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Ž . Ž .a h rs ´ is known as the adjusted Jensen measure or the appraisal ratioJ
Ž . Ž . Ž .Treynor and Black, 1973 . Notice once more that u h and u h characterizeR

Ž X X .X Ž .portfolios of R and R , r , respectively, whereas a h and S followtq1 tq1 tq1 J ´´

from a regression of r on R , and measure the performance of r relativetq1 tq1 tq1

to R . Stated differently, whereas Sharpe ratios can be used to compare thetq1

performance of different portfolios, Jensen’s alpha gives the potential improve-
ment in performance when the additional assets are included in the portfolio. The

Ž .hypotheses of intersection and spanning imply that Jensen’s alpha, a h , is zeroJ

for one or for all values of h, respectively. Therefore, if there is intersection
Ž .spanning then there is no improvement in the Sharpe measure possible by
including the additional assets r in the investors portfolio.tq1

Ž .Cochrane and Saa-Requejo 1995 show how a bound on the maximum Sharpe´
ratio can be used to price new assets in incomplete markets, which is referred to as

Ž .Agood deal pricing. In the context of Eq. 57 , this essentially comes down to
putting a bound on the maximum appraisal ratios of the new asset. This kind of

Ž .analysis is extended by Bernardo and Ledoit 1996 , who introduce the gain–loss
ratio as an alternative performance measure by which new assets can be priced if
restrictions on the maximum gain–loss ratio are imposed. This is similar to a
bound on the maximum Sharpe ratio as suggested by Cochrane and Saa-Requejo´
Ž . Ž .1995 , but the approach in Bernardo and Ledoit 1996 is more general and
allows for non-mean variance utility functions as well.

5.2. Changes in optimal portfolio weights

The performance measures and the intersection regressions discussed above can
also be used to infer the changes in optimal portfolio holdings when adding the
assets r . In this section, we will show that given the initial mean-variancetq1

efficient portfolio of the benchmark assets and the OLS-estimates of the regression
Ž .parameters in Eq. 20 , it is straightforward to determine the new optimal portfolio

weights. Some of the results presented in this section are also presented in Stevens
Ž .1998 . In order to derive the optimal portfolio weights from the regression results,

Ž .consider the mean-variance efficient portfolio for the extended set R , r fortq1 tq1

a given value of h:

w)sgy1Sy1 myhi .Ž .

Ž . )Substituting the partitioned inverse as given in Eq. 53 in the expression for w
gives that the optimal portfolio weights for the new assets, w) , can be written asr

w)sgy1Sy1 m ybm y i ybi h sgy1Sy1a h . 58Ž . Ž . Ž . Ž .Ž .r ´´ r R N K ´´ J

Thus, the optimal portfolio weights w) are determined by the vector of Jensen’sr

alphas and the covariance matrix of the residuals of the OLS-regression of r ontq1
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R .5 This result is simply a generalization of the well-known result in Treynortq1
Ž .and Black 1973 regarding the appraisal ratio. The difference with Treynor and

Black is that these authors assume that the error terms ´ for differenti, tq1
Ž .securities are uncorrelated, i.e., they assume the diagonal model Sharpe, 1963 ,

Ž .whereas the result in Eq. 58 allows for any correlation structure between the
securities.

Ž .In deriving the new optimal portfolio weights, a problem in Eq. 58 is that the
coefficient of risk aversion g is present. Notice that this is a different coefficient
than the one that appears in the optimal portfolio w) of the smaller set R :˜R tq1

w)sgy1Sy1 m yhi ,Ž .˜ ˜R R R R R K

where we now also add a ; to indicate that a variable refers to the set of
benchmark assets R only. It is only the zero-beta return h that is the same intq1

both problems, since we test whether there is intersection for a fixed value of h.
Similarly, the expected returns on the portfolios w) and w) are different, and we˜R

indicate these with m and m, respectively, i.e., m 'w)
X
m , and m'w)

X
m. In˜ ˜ ˜R R R R

order to substitute out the risk-aversion parameter g , note that
X y1gsByhAsB yhA qa h S i ybiŽ . Ž .R R J ´´ N K

X y1sg qa h S i ybi ,Ž . Ž .˜R J ´´ N K

and that
2m yh u hŽ .˜ R R

g s s .˜ XR
) )w S w m yh˜ ˜ ˜R R R R R

Using these latter two expressions, the optimal portfolio weights w) can ber

expressed as

m yh˜ R
) y1w s S a h . 59Ž . Ž .r ´´ JX2 y1ž /u h q m yh a h S i ybiŽ . Ž . Ž .Ž .˜R R J ´´ N K

Ž .The advantage of Eq. 59 is that it contains only variables that either result from
the initial optimal portfolio w) , or from a regression of r on R .˜R tq1 tq1

Along the same lines, it is straightforward to show that the new optimal weights
w) are given byR

2
u hŽ .R X

) ) )w s w yb w . 60Ž .˜R R rX2 y1ž /u h q m yh a h S i ybiŽ . Ž . Ž .Ž .˜R R J ´´ N K

Again, this expression only depends on characteristics of the old portfolio, w) ,˜R

and the regression output. Therefore, given the initial mean-variance efficient
portfolio w) of the benchmark assets and the OLS-estimates of the regression in˜R

5
) Ž .As an aside, in terms of volatility bounds, notice that w gsyw 1rh , i.e., the elements ofr r

Ž . Ž .w Õ in Eq. 5 that correspond to r . Thus, if we want to know the minimum variance stochastictq1
Ž .discount factor from R ; r , rather than from R , the projection coefficients corresponding totq1 tq1 tq1

y1 Ž .the additional assets r are given by yS a h .tq1 ´´ J
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Ž . Ž . Ž .Eq. 20 , Eqs. 59 and 60 answer the question how to adjust the portfolio in
order to obtain the new mean-variance efficient portfolio w).

Ž .In order to give an interpretation of the new portfolio weights in Eqs. 59 and
Ž . 660 , it is useful to rewrite them in the following way:

myh
) y1w s S a h , 61Ž . Ž .r ´´ J2

u hŽ .
and

2
u h myhŽ .R X

) )w s w yb w . 62Ž .˜R R r2 m yh˜u hŽ . R

Ž . Ž .If there is only one new asset, i.e., Ns1, Eq. 61 first of all shows that a hJ
) Ž .determines the sign of the new portfolio weight w given that myh)0 : ifr

Ž .Jensen’s alpha is positive negative , the investor can improve the performance of
Ž .his portfolio by taking long short positions in the new asset. When there is more

than one new asset, the sign of the portfolio weights is not only determined by the
sign of Jensen’s alpha, but also by the inverse of the covariance matrix of ´ . Iftq1

the mean-variance frontier is not strongly affected by the introduction of the new
Ž Ž .2 Ž .2 .Ž . Ž .assets, then u h ru h myh r m yh f1, and the coefficients b show˜R R

which of the old assets are replaced by the new assets.
Finally, notice that we did not consider a risk-free asset. The portfolio weights

given above are for the tangency portfolio when the zero-beta rate is h. If a
f Ž . Ž .risk-free asset is available, we can replace h with R in Eqs. 61 and 62 and

these equations still give the portfolio weights for the tangency portfolio. The new
tangency portfolio has an expected return equal to m, whereas the old tangency
portfolio has an expected return m . Notice though, that in case a risk-free asset is˜ R

available it is easy to shift funds between the tangency portfolio and the risk-free
asset and to let the expected portfolio return vary. For practical purposes, the
interest may be in the new portfolio w) that has the same expected return as the
old portfolio. Given that there is a risk-free asset available, this is easily achieved

f f Ž . Ž .by letting myR sm yR . In this case, Eqs. 61 and 62 simplify to˜ R

myR f
) y1w s S a 63Ž .r ´´ J2u

and

u 2
R X

) )w s w yb w . 64Ž .˜R R r2u

Notice that here it is not necessarily the case that the weights in w) and w) sumr R
Ž X

)
X

) .to one. The investor will have to borrow or lend a fraction 1y i w y i w toK R N r

achieve an expected portfolio return equal to m.

6 Ž .2 Ž . Ž .X y1 ŽHere, we use the fact that u h r m yh s A yhB , and that A yB qa h S i y˜R R R R R R J ´´ N
.bi s AyhB.K
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5.3. Interpretation of spanning and intersection tests in terms of performance
measures

Finally, we want to relate the Wald test statistics presented in Section 3 to the
performance measures discussed above. It will be shown that these test statistics

Ž .can be expressed as changes in maximum Sharpe ratios of R and R , r ,tq1 tq1 tq1

respectively. Therefore, they have a clear economic interpretation. In order to
interpret the test statistics for intersection and spanning in terms of performance

Ž .measures, recall the basic regression model in Eq. 20 :

r saqbR q´ ,tq1 tq1 tq1

where intersection for a given value of h means that

a h saq bi y i hs0.Ž . Ž .J K N

Thus, the restrictions on the regression coefficients that are imposed by the
hypothesis of intersection have a natural interpretation in terms of Jensen’s alphas,
and—as noted before—testing whether there is intersection for h, is equivalent to
testing whether Jensen’s alpha is zero. Testing for spanning is of course equivalent
to testing whether the Jensen’s alphas are zero for all values of h.

It can be shown that the test statistics for intersection and spanning, j int andW

j span, presented in Section 3.4, can also be interpreted in terms of Jensen’s alphasW

and Sharpe ratios. To see this, start again from the specification of the regression
Ž .equation in Eq. 23 :

r s I m 1 RX bq´ .Ž .Ž .tq1 N tq1 tq1

Ž .Note that using partitioned inverses the asymptotic covariance matrix of the
ˆ Ž .OLS-estimates of b, b in Eq. 23 is given by

y1X X Xy1 y11 m 1qm S m ym SR R R R R R R R
S m sS m . 65Ž .X´´ ´´ y1 y1ž /w xm E R R ž /yS m SR t t R R R R R

Ž . Ž .Straightforward algebra shows that premultiplying Eq. 65 with H h andint
Ž .X Ž .postmultiplying with H h as defined in Eq. 25 , yieldsint

2Var a h sS 1qu h 66Ž . Ž . Ž .ˆ Ž .J ´´ R

Ž . Ž .where the Sharpe ratio u h was defined in Eq. 56 . Since from the analysisR
Ž . Ž . Ž .above we know that the term h h as defined in Eq. 24b equals a h , Eq.int J

Ž . int57 can be used to rewrite the test statistic for intersection, j , asW

X 2y1ˆ ˆa h S a h 1qu hŽ . Ž . Ž .ˆ ˆJ ´´ Jintj sT sT y1 , 67Ž .W 2 2ž /ˆ ˆ1qu h 1qu hŽ . Ž .R R

ˆ ˆŽ . Ž . Ž .where u h , u h , and a h are the sample Sharpe ratios and Jensen’s alpha,ˆR J
Ž . Ž .respectively. Eq. 67 is a well-known result from, e.g., Jobson and Korkie 1982
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Ž .and Gibbons et al. 1989 . It clearly shows that the Wald test statistic for
intersection can easily be interpreted as the percentage increase in squared Sharpe
ratios scaled by the sample size. Under the null hypothesis that there is intersec-

Ž . Ž .tion, u h su h and the increase of the sample Sharpe ratios scaled by theR
Ž Ž .. 2 7sample size T as in Eq. 67 will asymptotically have a x -distribution.ŽN .
Ž .MacKinlay 1995 uses a similar interpretation of the Wald test statistic in case

Ž .returns are normally distributed together with Eq. 57 to distinguish between
risk-based alternatives for the CAPM and nonrisk-based alternatives. His analysis
suggests that for reasonable values of the maximum attainable Sharpe ratios a

Ž .multifactor model like the one proposed by Fama and French 1996 cannot
explain the deviations from the CAPM that are found in the cross-section of asset
returns.

For the spanning test statistic, a similar interpretation can be given. Let h 0
R

denote the expected return on the global minimum variance portfolio of R , i.e.,tq1
0 Ž 0.2h sB rA , and let the variance of this portfolio be given by s . Similarly,R R R R
Ž 0.2 Ž .let s be the global minimum variance of R , r . It is shown intq1 tq1

Appendix B that the Wald test statistic for spanning, j span, can be written asW

2 20 0ˆ1qu h sˆ ˆŽ . Ž .R Rspanj sT y1 qT y1 . 68Ž .W 2 20 0ž /ž /ˆ1qu h sŽ .ˆ ˆŽ .R R

This shows that the spanning test statistic consists of two parts. The first part is
Ž .similar to the test statistic for intersection in Eq. 67 and is determined by a
Ž .change in Sharpe ratios. The Sharpe ratios in Eq. 68 are for a zero-beta rate

Ž .equal to the in-sample expected return on the global minimum variance portfolio
however, and therefore are the slopes of the asymptotes of the mean-variance
frontier. Notice that the slope of the upper limb of the frontier is simply the
negative of the slope of the lower limb of the frontier, and therefore, the squared
Sharpe ratios for those two extremes are the same. The first term of the spanning
test statistic in a sense measures whether there is intersection at the most extreme

Žpoints of the frontier i.e., whether there is a limiting form of intersection if we go
.sufficiently far up or down the frontier . The second term of the statistic in Eq.

Ž .68 is determined by the change in the global minimum variance of the portfolios,
and measures whether the point most to the left on the frontier changes or not. Put
differently, the first term measures whether there is intersection for a mean-vari-

Ž .ance investor with a very small risk aversion gs0 , while the second term
measures whether there is intersection for a mean-variance investor with a very

7 Ž .Gibbons et al. 1989 study the small sample properties of this test statistic in case there is a
risk-free asset, as well as the distribution under the alternative hypothesis. Kandel and Stambaugh
Ž . Ž .1987 and Shanken 1987 extend their results to the case where the mean-variance efficient

Ž .benchmark portfolio or intersection portfolio cannot be observed but has a given correlation with the
observed proxy portfolio.
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Ž .high risk aversion g™` . Note that in the second term, the old global minimum
variance appears in the numerator and the new global minimum variance in the
denominator, since this variance can only decrease as assets are added to the

Ž .portfolio. Therefore, both terms in Eq. 68 are always larger than or equal to one.
Ž .Jobson and Korkie 1989 derive a similar result for a likelihood ratio test for

spanning.

6. Specification error bounds and intersection

As in the previous section, in this section the focus will be on deviations from
intersection rather than on intersection itself. In a recent paper, Hansen and

Ž .Jagannathan 1997 analyze specification errors in stochastic discount factor
models which, in some special cases, can be interpreted as deviations from
intersection. They derive bounds on the magnitude of these specification errors.

Recall from the discussion in Section 2.1 that each asset-pricing model assigns
Ž .a particular function to the pricing kernel M . Hansen and Jagannathan 1997tq1

note that the pricing kernels implied by most asset-pricing models do not yield
correct asset prices, either because the asset-pricing model can only be viewed as
an approximation, or because of measurement error. Measurement errors are for
instance often considered to be an important problem in measuring consumption
and testing consumption-based asset-pricing models. Therefore, the pricing kernel
implied by an asset-pricing model will in general only serve as a proxy stochastic
discount factor that will not yield the correct prices or expected payoffs of the

Ž .assets under consideration. In a related paper, Balduzzi and Robotti 2000 focus
on the estimation of risk premia as a separate problem from the testing of
asset-pricing models. They estimate risk premia by looking at the prices assigned
by the minimum variance kernel to risk variables, or by the prices of hedge
portfolios that are the linear projections of risk variables on asset returns.

The interest of Hansen and Jagannathan is in the least squares distance between
a proxy stochastic discount factor and the set of valid stochastic discount factors.
They derive a lower bound on this distance, the specification error bound, as a
measure of how well the model performs. These specification error bounds will be
derived formally below and it will also be shown that these bounds have a clear
economic interpretation in terms of maximum pricing errors or maximum expected

Ž .payoff errors implied by the asset-pricing model. Hansen and Jagannathan 1995
derive the limiting distribution for the corresponding estimator of the specification
error bounds.

It turns out that if we take the minimum variance stochastic discount factor for
the subset R as a proxy stochastic discount factor for the larger set of assetstq1
Ž .R , r , we can interpret the specification error bounds in terms of mean-tq1 tq1

variance intersection and the performance measures discussed in the previous
section. In particular, provided that both the proxy stochastic discount factor and
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the discount factors that price R and r correctly have the same expectationtq1 tq1

Õ, the squared specification error bound scaled by Õ turns out to be equal to the
difference between the maximum squared Sharpe ratio implied by the set Rtq1

Ž .and the maximum squared Sharpe ratio implied by R , r . This also allowstq1 tq1

us to interpret the specification errors in terms of mean-variance portfolio choice
again. Given that a mean-variance investor is aware of the fact that a portfolio
chosen from the subset R is suboptimal relative to a portfolio chosen from thetq1

Ž .larger set R , r , the specification error bound gives an estimate of thetq1 tq1

extent to which the portfolio is suboptimal in terms of Sharpe ratios.

6.1. Specification error bounds

Ž .As noted above, in Hansen and Jagannathan 1997 , the interest is in proxy
stochastic discount factors, denoted by y that assign approximate prices totq1

portfolio payoffs. For instance, the CAPM implies that the proxy is of the form
aqbRm , with Rm the return on the market portfolio. As before, let Rp betq1 tq1 tq1

the return on some portfolio, not necessarily mean-variance efficient, such that
w pXi s1. The expected price assigned to such a portfolio by a proxy stochasticK

aŽ p .discount factor will be denoted by p R :tq1

p a pE y R sp R . 69Ž .Ž .tq1 tq1 tq1

Ž p .Of course, valid stochastic discount factors M would assign a price p Rtq1 tq1

s1 to any portfolio w p that satisfies w pXi s1. Because the proxy y may beK tq1

derived from an asset-pricing model that is strictly speaking not valid, or because
the proxy may be measured with error, the prices assigned by the proxy,

aŽ p .p R , will in general not be equal to one. We only consider payoffs that aretq1
Ž .returns, i.e., payoffs with correct prices equal to one. Hansen and Jagannathan

Ž .1997 take more general payoffs x with current prices q . Given that we wanttq1 t

to establish the relation between specification errors and mean-variance intersec-
tion, the use of returns is not very restrictive however. Moreover, the results
derived below can easily be adjusted to the results of Hansen and Jagannathan
along the lines of Section 4.1, where we incorporated conditioning information by
allowing for payoffs z mR with current prices q .t tq1 t

A second way in which the results here are somewhat more restrictive than the
Ž .ones in Hansen and Jagannathan 1997 is that we will always consider valid

Ž .stochastic discount factors M Õ that have the same expectation as the proxytq1
w xy , i.e., ÕsE y . This may be considered as restrictive, since this assump-tq1 tq1

tion in fact requires that the proxy assigns the correct price to the risk-free payoff,
if it exists. Once more, given that the interest here is in the relation with
mean-variance intersection in the absence of a risk-free asset, and given that we
always defined intersection for a known value of Õ, this is not restrictive for our
purposes.
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Ž .The problem addressed in Hansen and Jagannathan 1997 is to derive a lower
bound d on the distance between y and the set of stochastic discount factorstq1

that price R correctly, which we denote as MM:tq1

ds min Iy yM Õ I , 70Ž . Ž .tq1tq1 R
}}� Ž .M Õ g MMR tq1

5 5 w 2 x1r2 Ž .where x 'E x . Because y and M Õ have the same expecta-tq1 tq1 tq1 R tq1
Ž . Ž .tion, the distance between y and M Õ in Eq. 70 is equal to the standardtq1 R tq1

Ž . 5 Ž . 5 Ž Ž . .deviation of y yM Õ , i.e., y yM Õ ss y yM Õ .tq1 R tq1 tq1 R tq1 tq1 R tq1
Ž . Ž .We will denote the stochastic discount factor that solves Eq. 70 by m Õ .˜ R tq1

Ž .Thus, m Õ is the stochastic discount factor that prices R correctly and˜ R tq1 tq1

that is closest to y in a least squares sense.tq1
Ž .To solve the problem in Eq. 70 , consider the least squares projections of ytq1

Ž .and M Õ on R and a constant:R tq1 tq1
X

y sProj y N1, R sÕqz Õ R ym ,Ž . Ž . Ž .ˆtq1 tq1 tq1 tq1 R

y sy qu , 71Ž .ˆtq1 tq1 tq1

and
X

m Õ sProj M Õ N1, R sÕqw Õ R ym ,Ž . Ž . Ž . Ž .Ž .tq1 tq1R R tq1 tq1 R

M Õ sm Õ qw , 72Ž . Ž . Ž .tq1 tq1R R tq1

Ž .where m Õ is the minimum variance stochastic discount factor derived inR tq1
Ž . Ž . Ž .Section 2.1, and w Õ is defined in Eq. 5 . The projection coefficients in Eq. 71

are given by Sy1S , with S the K=1-vector of covariances between RR R R y R y tq1
5 Ž . 5 2 w Ž . xand y . Noting that y yM Õ sVar y yM Õ , it easilytq1 tq1 R tq1 tq1 R tq1

follows that

w xVar y yM Õ sVar y ym Õ qVar u ywŽ . Ž .ˆtq1 tq1tq1 R tq1 R tq1 tq1

GVar y ym Õ .Ž .ˆ tq1tq1 R

Ž . Ž Ž . .Because y ym Õ sy y m Õ qu and u is orthogonal toˆtq1 R tq1 tq1 R tq1 tq1 tq1
Ž .R , this lower bound on the variance of y yM Õ is attainable for thetq1 tq1 R tq1

stochastic discount factor

m Õ sm Õ qu , 73Ž . Ž . Ž .˜ tq1 tq1R R tq1

and we have that
2d sVar y ym Õ . 74Ž . Ž .˜ tq1tq1 R

Ž .A more detailed characterization of m Õ and d will be given in the˜ R tq1

following section. For this moment, note that subtracting the variable y ytq1
Ž .m Õ from the proxy y yields a valid stochastic discount factor. Therefore,˜ R tq1 tq1

Ž . Ž .as noted by Hansen and Jagannathan 1997 , y ym Õ is the smallest˜tq1 R tq1

adjustment in a least squares sense that is necessary to make y a validtq1

stochastic discount factor, and d is a measure of the magnitude of this adjustment.
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Hansen and Jagannathan also show that d can be interpreted as a maximum
pricing error. In order to do so, let v denote a position in R that does nottq1

necessarily satisfy the requirement v
X
i s1, i.e., v is in general not a portfolio.K

Ž . XDenote the payoff of such a position as R v sv R and note that thetq1 tq1

correct price of such a position is
X XE v R M Õ sp R v svi ,Ž . Ž .Ž .tq1tq1 R K

aŽ Ž . .whereas the price assigned by the proxy y is p R v . The pricing errortq1 tq1
aŽ Ž . . Ž Ž . .of the proxy y is therefore p R v yp R v , and Hansen andtq1 tq1 tq1

Jagannathan show that d provides an upper bound on the absolute value of this
pricing error, for positions that have a unit norm:

< a <ds max p R v yp R v .Ž . Ž .Ž . Ž .tq1 tq1
Ž . Ž .R v ,IR v Is1tq1 tq1

Thus, by looking at a particular class of positions, i.e., positions with a unit norm,
d can be interpreted as the maximum pricing error assigned by the proxy to the
payoffs of those unit norm positions.

A more intuitive interpretation can be given if we consider errors in expected
payoffs, or expected returns, rather than pricing errors. Recall that a valid
stochastic discount factor assigns the correct expected return to a one-dollar

p Ž pXŽ .investment in portfolio w for which, by definition, w s1 which, using Eq.
Ž .3 , can be written as

p1 Cov M Õ , RŽ . tq1R tq1pE R s y ,tq1
Õ Õ

i.e., as one over the expectation of the pricing kernel, which equals the risk-free
rate if it exists, plus a risk term that is determined by the covariance of the
portfolio return and the pricing kernel. Observe that use of the proxy, that also has

aw p xexpectation Õ, would give an approximate expected return E R for a one-dol-tq1
p w p xlar investment in w that in general differs from E R , because the covariancetq1

of the proxy with the portfolio return will be different from the covariance of a
valid stochastic discount factor with the portfolio return, i.e.:

p1 Cov y , Rtq1 tq1a pE R s y .tq1
Õ Õ

From these relations, we define the expected return error

pCov M Õ yy , RŽ . tq1R tq1 tq1a p pE R yE R s , 75Ž .tq1 tq1
Õ

for which the Cauchy–Schwarz inequality implies that

s y yM Õ s RpŽ . Ž .Ž .tq1tq1 R tq1a p p< <E R yE R F .tq1 tq1
Õ
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Ž .Since this inequality holds for all valid stochastic discount factors M Õ , itR tq1
Ž . Ž .also holds for the stochastic discount factor that solves Eq. 70 , m Õ ,˜ R tq1

implying

ds RpŽ .tq1a p p< <E R yE R F .tq1 tq1
Õ

Ž p . Ž w p xSince for a given value of Õ, the Sharpe ratio is defined as Sh R ' E Rtq1 tq1
. Ž p .y1rÕ rs R , and the approximate Sharpe ratio, i.e., the Sharpe ratio accord-tq1

aŽ p . Ž aw p x . Ž p .ing to the proxy y , as Sh R ' E R y1rÕ rs R , this can betq1 tq1 tq1 tq1

rewritten as

d
a p p< <Sh R ySh R F . 76Ž .Ž . Ž .tq1 tq1

Õ

Thus, using errors in expected returns rather than errors in assigned prices, the
specification error bound d scaled by the expectation of the proxy has a very clear
interpretation in terms of Sharpe ratios. For any portfolio w p formed from the
assets in R , the absolute difference between the approximate Sharpe ratiotq1

assigned to the portfolio returns by y and the actual Sharpe ratio of thetq1

portfolio can never exceed the scaled specification error bound drÕ. This interpre-
tation is also somewhat easier than the one given for the expected payoff error in

Ž .Hansen and Jagannathan 1997 , where they focus on the maximum error in
expected payoffs for positions v with unit norm.

6.2. The relation between specification error bounds and intersection

The purpose of this section is to show that there is a close relation between
intersection and a special case of the specification error bounds. In particular, if

Ž .the interest is in stochastic discount factors that price the returns R , rtq1 tq1

correctly and we choose for the proxy y the minimum variance stochastictq1
Ž .discount factor based on the subset R , m Õ , the specification error boundtq1 R tq1

can simply be expressed as a deviation from intersection, as was the case with the
performance measures discussed in Section 5. To show this, let us first give a

Ž . Ž . Ž .more precise characterization of m Õ and d than given in Eqs. 73 and 74 .˜ tq1
Ž . Ž .Recall that m Õ is given by m Õ qu , where u sy yy .˜ ˆR tq1 R tq1 tq1 tq1 tq1 tq1

Ž . Ž . Ž .Using Eqs. 71 and 72 , this implies for m Õ :˜ R tq1
X X

m Õ sÕqw Õ R ym qy y Õqz Õ R ym� 4Ž . Ž . Ž . Ž . Ž .˜ tq1R tq1 R tq1 tq1 R

X
sy q w Õ yz Õ R ymŽ . Ž . Ž .Ž .tq1 tq1 R

X y1sy q i yÕm yS S R ym , 77Ž . Ž . Ž .� 4tq1 K R R y R R tq1 R

and for d 2:
X2 y1d s i yÕm yS S i yÕm yS . 78Ž . Ž . Ž .� 4 � 4K R R y R R K R R y
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Ž .For further reference, it is useful to define the vector k Õ as

k Õ sw Õ yz Õ sSy1 i yÕm yS . 79Ž . Ž . Ž . Ž . Ž .� 4R R K R R y

Ž . 2Notice that the expressions for k Õ and d given here differ slightly from the
Ž .ones given in Hansen and Jagannathan 1997 because we explicitly included a

Ž .constant in the projections of M Õ and y on R .tq1 tq1 tq1
Ž . 2 Ž . Ž .The expressions for m Õ and d in Eqs. 77 and 78 provide a basis to˜ R tq1

relate the specification error bounds to intersection. In case of intersection, the
interest is in stochastic discount factors that price both R and r , i.e., intq1 tq1
Ž . Ž . Ž .M Õ . Therefore, in the expressions 77 and 78 , we should leave out all thetq1

Ž X X .XR-subscripts, replace R with the vector R r , and note that all vectorstq1 tq1 tq1

and matrices have dimension KqN rather than K. As before, with intersection
we want to know if the minimum variance stochastic discount factor based on

Ž .R only, m Õ can be used to price both R and r . In terms oftq1 R tq1 tq1 tq1
Ž .specification errors, this means that we want to use m Õ as a proxy y forR tq1 tq1

Ž .the stochastic discount factors M Õ . Also, in the spirit of the previous section,tq1
Ž . Ž .when using m Õ as a proxy, we recognize beforehand that m Õ will notR tq1 R tq1

assign the correct prices to r , but the interest is in the extent to which thetq1

assigned prices are wrong, i.e., the extent to which there are deviations from
intersection, as measured by d .

Ž .Recall that the proxy y sm Õ is now given bytq1 R tq1

X
y sm Õ sÕqw Õ R ym ,Ž . Ž . Ž .tq1tq1 R R tq1 R

w Õ sSy1 i yÕm .Ž . Ž .R R R K R

Ž . Ž .Substituting these expressions into Eqs. 77 and 78 , properly adjusted for the
fact that the interest is now in stochastic discount factors that price both R andtq1

r , straightforward algebra shows thattq1

X2 y1 y1d s i yÕm yS S i yÕm S i yÕm�Ž . Ž . Ž .� 4N r rR R R K R ´´ N r

Xy1 2 y1yS S i yÕm sÕ a 1rÕ S a 1rÕ , 80Ž . Ž . Ž . Ž .4rR R R K R J ´´ J

or

d 1r22 2s u 1rÕ yu 1rÕ ,Ž . Ž .� 4R
Õ

where S is the covariance matrix of the residuals ´ from a regression of r´´ tq1 tq1

on R and a constant. Also, the stochastic discount factor closest to y is nowtq1 tq1

given by
X y1m Õ sm Õ qÕa 1rÕ S ´ sm Õ . 81Ž . Ž . Ž . Ž . Ž .˜ tq1 tq1 tq1R J ´´ tq1

Thus, if we want to use the stochastic discount factor that is on the volatility
Žbound of R , as a proxy stochastic discount factor for the larger set R ,tq1 tq1
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. Ž .r , then the valid discount factor that is closest to m Õ is the discounttq1 R tq1
Ž .factor with the same expectation Õ that is on the volatility bound of R , r .tq1 tq1

Therefore, d is the least squares distance between two stochastic discount factors
Ž .that are on the volatility bounds of R , r and its sub-set R , respectively,tq1 tq1 tq1

and is a straightforward measure of the deviation from intersection, which shows
the close relation between this special case of the specification error bound and

Ž .intersection. This relationship also follows from Eq. 80 , which shows that d is
directly related to the change in the maximum squared Sharpe ratios that can be

Ž .attained with R and R , r , respectively. It also follows that d measurestq1 tq1 tq1

the difference between the variances of the two minimum variance kernels:
w Ž . x w Ž . xdsVar m Õ yVar m Õ .tq1 R tq1

An estimate of d 2 can easily be obtained from the sample equivalent of Eq.
ˆ 2Ž .78 , which we will denote by d . If the interest is in whether or not there is

intersection, then we want to know whether or not ds0, and this hypothesis can
Ž .easily be tested as outlined in Section 3. From the expression in Eq. 80 and the

discussion in previous sections, it follows that under the null hypothesis that
ds0,

ˆ 2d
2T ;x . 82Ž .N22 ˆÕ 1qu 1rÕŽ .Ž .R

In case of specification errors however, the interest is in the case where d is
ˆstrictly positive rather than zero. For that case, the limiting distribution of d is

Ž .derived in Hansen and Jagannathan 1995 .
Ž .Once we concede that y sm Õ is not a valid stochastic discount factortq1 R tq1

Ž . Ž .for R , r , we want to have a measure of the difference between m Õtq1 tq1 R tq1
Ž .and the valid stochastic discount factor that is closest to it, m Õ . Thetq1

specification error bound d is one such measure, allowing us to make statements
about how good or how bad the proxy performs. The fact that d 2 is equal to the
change in maximum Sharpe ratios, makes the measure d also useful in terms of
the optimal portfolio choice for a mean-variance investor. Recall that a mean-vari-
ance investor that initially only invests in R can improve his Sharpe ratio fromtq1

Ž . Ž .u 1rÕ to u 1rÕ by including r in his portfolio. Given that there is noR tq1
ˆŽ .intersection between the mean-variance frontiers of R and R , r , dtq1 tq1 tq1

provides an estimate for the potential increase in Sharpe ratios. Notice though that
such an estimate can also be derived directly from the Wald test statistic for
intersection.

7. Summary

The purpose of this paper is to analyze and illustrate the concept of mean-vari-
ance spanning and intersection. We show that there is a duality between mean-
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variance frontiers and volatility bounds and that mean-variance spanning and
intersection can be understood both in terms of mean-variance frontiers and
volatility bounds. The paper shows how regression-based tests can be used to test
for spanning and intersection and how these regression based tests are related to
tests for mean-variance efficiency, performance measurement, optimal portfolio
choice and specification error bounds.
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Appendix A. The graphical relationship between mean-variance frontiers and
volatility bounds

In this appendix, we will show some graphical relations between the volatility
bound and the mean-variance frontier for a set of asset returns R withtq1

expectation m and covariance matrix S. We will start from a point on the
volatility bound where the expectation of the minimum variance pricing kernel is
Õ, i.e.,

E m Õ sÕ. 83Ž . Ž .tq1

Ž .Using the efficient set variables A, B, and C, and the variance of m Õ astq1
Ž . Ž .given in Eq. 7 , the variance of m Õ can be written astq1

2Var m Õ sAy2 BÕqCÕ , 84Ž . Ž .tq1

which is a simple quadratic function of Õ that describes the volatility bound. The
w Ž . xsecond panel of Fig. 1 gives a plot of Var m Õ as a function of Õ.tq1

Ž .As shown in Section 2.2, each minimum variance pricing kernel m Õ tq1

corresponds to a mean-variance efficient portfolio that has a zero-beta rate
hs1rÕ. Recall that a mean-variance efficient portfolio satisfies

wsgy1Sy1 myhi ,Ž .
for a given risk aversion g and associated zero-beta rate h. Using i

Xws1 it
follows that

gsByhA.

Furthermore, the expected portfolio return m
Xw satisfies

CyhB
X y1m wsg CyhB s .Ž .

ByhA
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Ž .Fig. 1. The figure shows the relationship between the mean-variance frontier upper panel and the
Ž .volatility bound for the stochastic discount factor lower panel . The letters A, B, and C correspond to

the efficient set constants as defined in the text. The markers show the corresponding points on the two
graphs.

Denote the return on the mean-variance efficient portfolio with zero-beta rate
Ž . Ž . w Ž . xhs1rÕ as R Õ and define m Õ 'E R Õ . From the previous relationstq1 tq1

Ž .m Õ can be written as a function of Õ:
ByCÕ

m Õ s . 85Ž . Ž .
AyBÕ

Also, the variance wX
Sw for a mean-variance efficient portfolio w can be written

Ž .as a function of m Õ :
2Am Õ y2 Bm Õ qCŽ . Ž .

Var R Õ s ,Ž . tq1 2ACyB
or as a function of Õ:

Ay2 BÕqCÕ2

Var R Õ s , 86Ž . Ž .tq1 2AyBÕŽ .
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The first panel of Fig. 1 shows the standard mean-variance efficient frontier,
Ž .where the expected portfolio return m Õ is plotted as a function of the standard

w Ž . x w Ž . xŽ1.rŽ2.deviation of the portfolio return SD R Õ sVar R Õ .tq1 tq1

In this appendix, we will restrict ourselves to characterizing the relation
between the volatility bound and the mean-variance frontier in terms of Õ and
Ž . Ž . Ž .m Õ . Given the relations 84 to 86 above, it is straightforward to derive the

variances of the pricing kernel and the associated mean-variance efficient portfolio
as well.

To see the relation between the two graphs, first of all notice that the expected
Ž . Ž .portfolio return m Õ is decreasing in Õ, since from Eq. 85 we have that

Em Õ B2yACŽ .
s -0,2EÕ AyÕBŽ .

and where the inequality follows from the fact that AC)B2, by the Cauchy–
Ž .Schwarz inequality see also Ingersoll, 1987, p. 85 .
Ž . Ž .Next, from Eq. 85 it also follows that for Õs0 we have that m Õ sBrA,

which is the expected return on the Global Minimum Variance portfolio. Looking
at the volatility of the pricing kernel, we can of course also distinguish the Global
Minimum Variance Pricing Kernel, the expectation of which can be found using

Ž .Eq. 84 :

EVar m ÕŽ . tq1
) )0s sy2 Bq2CÕ mÕ sBrC.

EÕ

The second derivative 2C is always positive, which confirms that this is indeed a
Ž . Ž .minimum. Using Eq. 85 again, ÕsBrC corresponds to m Õ s0. Thus, when

the expectation of the kernel is zero, Õs0, this corresponds to the Global
Minimum Variance portfolio on the mean-variance frontier, whereas a zero

Ž .expected return for the mean-variance efficient portfolio, m Õ s0, in turn
corresponds to the Global Minimum Variance kernel on the volatility bound.

Having characterized the global minima of the two frontiers, the next step is to
Ž .look at the other extremes, i.e., where Õ™"` and where m Õ ™"`. Taking

Ž .limits and using Eq. 85 , we get that
ByCÕ C ByCÕ C

lim s , lim s .
AyBÕ B AyBÕ BÕ™y` Õ™q`

Thus, both extremes of the left and right limb of the volatility bound correspond to
the same single point on the mean-variance frontier, where the expected portfolio

Ž .return is m Õ sCrB. Since by the Cauchy–Schwarz inequality CrB)BrA if
Ž .B)0, the point where m Õ sCrB will plot on the upper limb of the mean-vari-

ance frontier. B)0 is the typical case, since this implies that with positive interest
rates or zero-beta returns, efficient portfolios have positive expected returns. It is

Ž .useful to note that m Õ sCrB corresponds to the point where a straight line
Žthrough the origin is tangent to the mean-variance frontier since Õ™"`

.corresponds to hs0 .
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Ž .Finally, by rewriting Eq. 85 as

ByAm ÕŽ .
Õs ,

CyBm ÕŽ .
Ž .we can find the point s on the volatility bound that correspond to the extremes of

Ž .the mean-variance frontier, i.e., where m Õ ™"`. Taking limits again, we get
that

ByAm Õ A ByAm Õ AŽ . Ž .
lim s , lim s .

CyBm Õ B CyBm Õ BŽ . Ž .Ž . Ž .m Õ ™y` m Õ ™q`

Notice that we already discussed this result in Section 2 since ÕsArBmhs
BrA, i.e., the case where the zero-beta return equals the expected return on the
Global Minimum Variance portfolio and where there are no corresponding mean-
variance efficient portfolios, since the asymptotes of the mean-variance frontier
cross the y-axis at BrA, but there is no line tangent to the frontier starting at this
point. Again, if B)0, then the Cauchy–Schwarz inequality implies that ArB)

BrC, implying that this point will be located on the right limb of the volatility
bound. Finally, it is useful to note that if we would plot the volatility bound as the

w Ž . xŽ1.rŽ2.standard deviation of the pricing kernel, Var m Õ , as a function of Õ,tq1

then ÕsArB would correspond to the point where a straight line through the
origin is tangent to the volatility bound, similar to the mean-variance frontier when
Ž .m Õ sCrB.

Appendix B. The spanning test statistic in terms of Sharpe ratios

In this appendix, we show how the spanning test statistic can be interpreted in
terms of Sharpe ratios, a result that was presented in Section 5.3. Recall from

ˆSection 5.3 that the covariance matrix of the OLS-estimates b equals

1qm
X
Sy1 m ym

X
Sy1

R R R R R R Ry1S mT .´´ y1 y1ž /yS m SR R R R R

X Ž .Premultiplying with H and postmultiplying with H as defined in Eqs. 55aspan span
Ž .and 55b yields

1qm
X
Sy1 m ym

X
Sy1

R R R R R R R Xy1H S mT Hspan ´´ spany1 y1ž /ž /yS m SR R R R R

1qC yBR Ry1sS mT , 87Ž .´´ ž /yB AR R
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the inverse of which is

T A BR Ry1S m . 88Ž .´´ 2 ž /B 1qCA 1qC yBŽ . R RR R R

Ž . Ž .Similarly, for h in Eqs. 55a and 55b we havespan

a° ¶1

b i y11 K

a2X1 0K 0 b i y1I m by I m s . 89Ž .2 KXN N ž /iž /ž /0 i .K ..
aN¢ ßb i y1N K

Ž . XPremultiplying Eq. 88 with h and postmultiplying with h , we get, afterspan span

replacing population moments by their sample equivalents:

XX Xy1 y1 y1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆA a S ay2 B a S i ybi q 1qC i ybi S i ybiˆ ˆ ˆ Ž . Ž . Ž . Ž .R ´´ R ´´ N K R N K ´´ N Kspanj sT .W 2ˆ ˆ ˆA 1qC yBŽ .R R R

90Ž .

Next, note that the maximum attainable Sharpe ratio from R , for hsB rA ,tq1 R R

is equal to

2 2B BR R
u sC y .R Rž /A AR R

For simplicity, write AsA qD A, BsB qDB, and CsC qDC, where theR R R
Ž . Ž . Ž .definitions of D A, DB, and DC follow from Eqs. 54 , 55a and 55b .

Ž .Evaluating u h in this same value of h, we get

2 2B B BR R R
u sCy2 B qA 2ž /A A AR R R

B B2
R R

sC qDCy2 B qDB q A qD AŽ . Ž .R R R 2A AR R

2 2B 1 BR R
su q A DCy2 B DBq D AR R Rž / ž /A A AR R R
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Ž . 2 ŽŽ . Ž ..2Dividing by 1qC yB rA s1qu B r A givesR R R R R R

2 2 2B B BR R R
u yu A DCy2 B DBq D AR R Rž / ž /A A AR R Rs2 2A 1qC yBŽ .B R R RR

1quR ž /AR

2BR
A DCy2 B DBq C q1y1yu D AR R R ž /ž /AR

s 2A 1qC yBŽ .R R R

A DCy2 B DBq 1qC D A D AŽ .R R R
s y .2 AA 1qC yBŽ . RR R R

Replacing all population moments with their sample equivalents again and noting
that 1rA is the variance of the global minimum variance portfolio of R , i.e.,R tq1

Ž 0.2 Ž 0.21rA s s , and similarly, 1rAs s , we finally obtainR R

2 2B BR Rˆ ˆu yuR ˆ ˆž / ž / AyAA A RR Rspanj sT qTW 2 ÂB RRˆ1quR ž /AR

2 20 0ˆ1qu h ŝŽ . Ž .R R
sT q y2 .2 20 0ž /ˆ1qu h sŽ .ˆŽ .R R
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