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Abstract

In this paper, we present a survey on the various approaches that can be used to test
whether the mean-variance frontier of a set of assets spans or intersects the frontier of a
larger set of assets. We analyze the restrictions on the return distribution that are needed to
have mean-variance spanning or intersection. The paper explores the duality between
mean-variance frontiers and volatility bounds, analyzes regression-based test procedures for
spanning and intersection, and shows how these regression-based tests are related to tests
for mean-variance efficiency, performance measurement, optimal portfolio choice and
specification error bounds. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years, the finance literature has witnessed an increasing use of tests
for mean-variance spanning and intersection, as introduced by Huberman and
Kandel (1987). In this paper, we will provide a survey of the literature on testing
for mean-variance spanning and intersection, as well as of its relationships with
volatility bounds, tests for mean-variance efficiency, performance evaluation and
the specification error bounds that have recently been proposed by Hansen and
Jagannathan (1997). There exists a vast literature on most of these subjects and the
intention here is not to give a complete overview, but merely to illustrate that the
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concept of mean-variance spanning and intersection provides a framework in
which many other results can be understood.

The literature on mean-variance spanning and intersection analyzes the effect
that the introduction of additional assets has on the mean-variance frontier. If the
mean-variance frontier of the benchmark assets and the frontier of the benchmark
plus the new assets have exactly one point in common, this is known as
intersection. This means that there is one mean-variance utility function for which
there is no benefit from adding the new assets. If the mean-variance frontier of the
benchmark assets plus the new assets coincides with the frontier of the benchmark
assets only, there is spanning. In this case, no mean-variance investor can benefit
from adding the new assets to his (optimal) portfolio of the benchmark assets only.
For instance, DeSantis (1995) and Cumby and Glen (1990) consider the question
whether US-investors can benefit from international diversification. Taking the
viewpoint of a US-investor who initially only invests in the US, these authors
study the question whether they can enhance the mean-variance characteristics of
their portfolio by also investing in other (developed) markets. Similarly, taking the
perspective of a US-investor who invests in the US and (possibly) in other
developed markets such as Japan and Europe, DeSantis (1994), Bekaert and Urias
(1996), Errunza et a. (1999), and DeRoon et a. (2001) e.g., investigate whether
the investors can improve upon their mean-variance portfolio by investing in
emerging markets. As afina example, Glen and Jorion (1993) investigate whether
mean-variance investors with a well-diversified international portfolio of stocks
and bonds should add currency futures to their portfolio, i.e., whether or not they
should hedge the currency risk that arises from their positions in stocks and bonds.

As shown by DeSantis (1994), Ferson and Schadt (1993), Ferson (1995) and
Bekaert and Urias (1996), the hypothesis of mean-variance spanning and intersec-
tion can be reformulated in terms of the volatility bounds introduced by Hansen
and Jagannathan (1991). In that case, the interest is in the question whether a set
of additional assets contains information about the volatility of the pricing kernel
or the stochastic discount factor that is not already present in the initial set of
assets considered by the econometrician. For instance, in the case of emerging
markets, the question is whether considering returns from the US-market together
with returns from emerging markets produces tighter volatility bounds on the
stochastic discount factor than returns from the US-market only.

The duality between mean-variance frontiers and volatility bounds for the
stochastic discount factors will be the subject of Section 2. The analysis provided
in that section will allow us to study mean-variance spanning and intersection,
both in terms of mean-variance frontiers and in terms of volatility bounds. The
concept of mean-variance spanning and intersection will be formally introduced in
Section 3. In that section, it will aso be shown how simple regression techniques
can be used to test for mean-variance spanning and intersection. In Section 4, we
will consider how conditioning information can be incorporated in the test
procedures. In Section 5, we will show how deviations from mean-variance
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intersection and spanning can be interpreted in terms of performance measures like
Jensen’s alpha and the Sharpe ratio, and how the regression tests for intersection
can be used to derive the new optimal portfolio weights. In Section 6, we provide
a brief discussion of the specification error bound introduced by Hansen and
Jagannathan (1997) and how this is related to mean-variance intersection. As with
the performance measures in Section 5, specification error bounds are especially of
interest when there is no intersection. This paper will end with a summary.

2. Volatility bounds and the duality with mean-variance frontiers

The purpose of this section is to give an introduction to volatility bounds and
mean-variance frontiers and to show the duality between these two frontiers.
Because mean-variance spanning and intersection can be defined from volatility
bounds as well as from mean-variance frontiers, this section provides a basis for
the analysis of mean-variance spanning and intersection in the remainder of the

paper.
2.1. Volatility bounds

Suppose an investor chooses his portfolio from a set of K assets, with current
prices given by the K-dimensional vector P, and whose payoffs in the next period
are given by the vector P, , (including dividends and the like). Returns R, ;, ; are
payoffs with prices equal to one. Assuming there are no market frictions such as
short-sales constraints and transaction costs and assuming that the law of one price
holds, there exists a stochastic discount factor or pricing kernel, M, ,, such that*

E[Mt+lRt+1||t] = ks (1)
where ¢, is a K-dimensional vector containing ones, and |, is the information set
that is known to the investor at time t. In the sequel, we will use E[-] as
shorthand notation for E[- [ I,].

Apart from the law of one price, an alternative way to motivate Eq. (1) is to
look at the discrete time consumption and portfolio problem that an investor
solves:

)y ij(Ct+j)
j=0

StW. =W Rt+1(VVt - Ct) ,

W =1, Vt (2)
where C, is consumption at time t, W, is the wealth owned by the investor at time
t, p is the subjective discount factor of the investor, and w, is the K-dimensional

max E;
{w;,C

: Replacing the law of one price with the stronger condition that there are no arbitrage opportunities
we would also have that M, , > 0.
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vector of portfolio weights that the investor has to choose. The function
#(C,Ciiy,...)=27_ p'U(C,,)) is adrictly increasing and concave time-sep-
arable utility function. The first-order conditions of problem (2) imply that

(e
t+1 = P~ | coptworts
U(c) o

is a valid stochastic discount factor with U’(-) being the first derivative of U.
Thus, one way to think about the stochastic discount factor or pricing kernel is as
the intertemporal marginal rate of substitution (IMRS). This interpretation of the
pricing kernel is more restrictive than the law of one price though, since it aso
implies that M,, ; > 0.

In many of the problems we consider in this paper, it is convenient to look at a
more simple portfolio problem. Usually we will restrict ourselves to one-period
portfolio problems, where the agent maximizes his indirect utility of wealth
function (see, e.g., Ingersoll, 1987, p. 66):

maxE,[u(W, ;)]
{w}

st. W, = WWR, 4,
Wi = 1.

In this case, a valid stochastic discount factor is W, X U(W,_;)/m, with u(-)
being the first derivative of the indirect utility function evaluated in the optimal
portfolio choice, and m the Lagrange multiplier for the restriction that w'v, = 1.

The expectation of the stochastic discount factor will be denoted by v,, i.e,
v, = E[M,, ,]. The name stochastic discount factor refers to the fact that M, ;
discounts payoffs differently in different states of the world. To illustrate this,
using the definition of covariance, Eq. (1) can be rewritten as

w=E[M 1R 1= B[R 1]+ Cov[ R 1, M 4] 3

The first term in Eq. (3) uses v, to discount the expected future payoffs, while the
second term is a risk adjustment (recall that v, is the price-vector of the returns
R., ). Accordingly, risk premia are determined by the covariance of asset payoffs
with M,, ;. If one of the assets is a risk-free asset with return R{, then it follows
from the conditional expectation in Eq. (1) that R' = 1/v,. In the sequel, we will
usualy not impose the presence of such a risk-free asset. If a risk-free asset is
available however, then we can always substitute 1/R! for v,.

Eqg. (1) is the starting point for most asset pricing models. In fact, differencesin
asset-pricing models can be interpreted as differences in the function that each
model assigns to M, ; (see, eg., Cochrane, 1996). Since each valid stochastic
discount factor has to satisfy Eg. (1), observed asset returns can be used to derive
information about these discount factors. For instance, following Hansen and
Jagannathan (1991), it is possible to derive a lower bound on the variance of
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M., ;, that each valid stochastic discount factor has to satisfy, which is known as
the volatility bound. To see this, we start from the unconditional version of Eq.
(1), and leave out the time subscripts for the expectations and (co)variance
operators, as well as for v. In this paper, the expectation of the stochastic discount
factor will usually be a free parameter. We will denote all discount factors that
satisfy Eq. (1) and that have unconditional expectation v with M(v),, ;, and derive
a lower bound for the variance of each M(v),, ;.

Let the expectation and covariance matrix of the returns R, , be given by g
and 3 g, respectively, and assume that al returns are independently and identi-
caly distributed (i.i.d.), so that the expectations and covariances do not vary over
time. This assumption will be relaxed in Section 4 of this paper. Given the set of
asset returns R, 4, let mg(v),, ; be a candidate stochastic discount factor that has
expectation v and that is linear in the asset returns:

Me(0) 1 =0+ @(v) (R 1 — Mg), (4)

where we write @(v) to indicate that these coefficients are a function of the
expectation of M(v),, ;. Substituting Eq. (4) into Eq. (1), we obtain:

e(v) =EI;I%(LK_U/~LR)' (5)

Since both M(v),,; and mg(v),, , satisfy Eq. (1) we have that E[(M(v),, , —
mg(vV),; )R, ;1= 0, so the difference between any M(v),, , that satisfies Eq. (1)
and mg(v),, , isorthogonal to R,, ; and therefore to mg(v),, , itself. Thisimplies
for the variance of M(v),, ; that:

Va[M(v) 1] =Vamg(v) ] +Var[(M(U)t+l_ mR(U)t+1)]

> Var[mg(v) 4], (6)

which shows that mg(v),, ; has the lowest variance of all valid stochastic discount
factors M(v),, ;. This minimum variance can be obtained by combining Egs. (4)
and (5):

Var[mR(U)t+1] = (1 —vpgr) 3ri(t — vR) - (7)

Thus, any pricing model that aims to price the assets R, ; correctly, has to yield a
pricing kernel that, for a given v, has a variance at least as large as Eq. (7).
Equivalently, if we know that agents choose their optimal portfolio from the assets
that are in R, ,, then Eq. (7) gives the minimum amount of variation of their
IMRS that is needed to be consistent with the distribution of asset returns. Luttmer
(1996) extends this kind of anaysis taking into account market frictions such as
short-sales constraints and transaction costs. For the frictionless-market setting,
Snow (1991) provides a similar analysis to derive bounds on other moments of the
discount factor as well, and Bansal and Lehmann (1997) provide a bound on the
mean of the logarithm of the pricing kernel, using growth optimal portfolios.
Balduzzi and Kallal (1997) show how additional knowledge about risk premia
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may lead to sharper bounds on the volatility of the stochastic discount factor and
Balduzzi and Robotti (2000) use the minimum variance discount factor to estimate
risk premia associated with economic risk variable. Finaly, Bekaert and Liu
(1999) and Ferson and Siegel (1997) study the use of conditioning information to
derive optimally scaled volatility bounds.

2.2. Duality between volatility bounds and mean-variance frontiers

In the previous section, we derived the minimum amount of variation in
stochastic discount factors that is needed to be consistent with the distribution of
asset returns. In this section, we will show that there is a close correspondence
between these volatility bounds and mean-variance frontiers and that stochastic
discount factors that correspond to mean-variance optimizing behavior are the
stochastic discount factors with the lowest volatility. Mean-variance optimizing
behavior is a specia case of the portfolio problem considered before, where the
problem the agent faces is max,,, E[u(W,, )], and where E[u(-)] is of the form
f(Wug,W3zrwW), with f increasing in its first argument and decreasing in its
second argument.

For further reference, it is useful to define the efficient set variables (see, eg.,
Ingersoll, 1987)

A= Spi, B=up3pri, and  C=plr 3ok pg.
A mean-variance efficient portfolio w* is the solution to the problem

r?a}XL = Wi = Y W2ggW — (Wi, — 1),

)

where vy is the coefficient of risk aversion. From the first-order conditions of this
problem, it follows that a portfolio w* is mean-variance efficient if there exist
scalars y and 7 such that?

W =y ZRr( MR — Mk ) (8)
Because of the restriction wi, = 1, it also follows that y = B — An, implying that
each mean-variance efficient portfolio is uniquely determined when either y or 5
is known, unless n=B/A. It is straightforward to show that for a given
mean-variance efficient portfolio w*, the Lagrange multiplier n equals the
expected return on the zero-beta portfolio of w*, i.e, the intercept of the line
tangent to the mean-variance frontier at w* (in mean-standard deviation space).
Since B/A, is the expected return on the global minimum variance (GMV)
portfolio, this is the intercept of the asymptotes of the mean-variance frontier, but

2 More precisely, these are the minimum variance portfolios, i.e., the portfolios that have minimum
variance for a given expected return. The mean-variance efficient portfolios, i.e., the portfolios that also
have maximum expected return for a given variance, require in addition that y > 0.
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there are no lines tangent to the frontier originating at this point (see, eg.,
Ingersoll, 1987, p. 86).

To show the duality between mean-variance frontiers and volatility bounds,
take ¢(v) for a given v, and choose a mean-variance efficient portfolio such that
n=1/v. It follows from Egs. (5) and (8) that

1
* ERQ(“R‘E‘K) Sed(uc—oma)  (v)
Wi (v) = 1 - A—uvB T (v)’ ©)
B__A K‘P
v

which shows that the vector ¢(v) is proportional to a mean-variance efficient
portfolio with zero-beta return egqual to 1/v. Thus, each point on the volatility
bound of stochastic discount factors, i.e., each (v, Var[m(v),, ;]), corresponds to a
unique point on the mean-variance frontier, ( Mp 0y ), and each coefficient vector
¢(v) corresponds to a unique w* (v). The only exception to this result is the case
where ¢, (v) =0, which is the case if v =A/B, or equivaently, n=B/A. As
already noted, this is the case where the zero-beta return equals the expected return
on the global minimum variance portfolio (see aso Hansen and Jagannathan,
1991). The duality between the mean-variance frontier of R,, ; and the volatility
bound derived from R,,; can also be seen directly from Egs. (5) and (8).
Comparing the coefficients ¢(v) for the minimum variance stochastic discount
factor in Eq. (5) and the portfolio weights w* in Eq. (8) for n=1/v, it can be
seen that the coefficients ¢(v) are proportional to the portfolio weights w*, where
the coefficient of proportionality is equal to —n/7v, i.e, w* =(—n/v)e(v). In
Appendix A, we show graphically which points on the volatility bound correspond
to points on the mean-variance frontier.

Summarizing, finding stochastic discount factors that have the lowest variance
of all stochastic discount factors that price a set of asset returns R, , correctly is
tantamount to finding mean-variance efficient portfolios for these same assets
R, ;- Inthe remainder of this paper, we will study the effects of adding new assets
to the set of assets available to investors. Although most of the results will be
stated in terms of mean-variance frontiers and mean-variance efficient portfolios, it
should be kept in mind that there is always a dual interpretation in terms of
volatility bounds.

3. Mean-variance spanning and inter section

In the previous section, we considered the volatility bounds and mean-variance
frontiers that can be derived from a given set of K assets with return vector R, ;.
Suppose now that an investor takes an additional set of N assets with return vector
I, into account in his portfolio problem. The question we are interested in is
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under what conditions mean-variance efficient portfolios derived from the set of
returns R, , are also mean-variance efficient for the larger set of K+ N assets
(R4 1, ;1) This problem was addressed in the seminal paper of Huberman and
Kandel (1987). If there is only one vaue of y or i for which mean-variance
investors cannot improve their mean-variance efficient portfolio by including r, ,
in their investment set, the mean-variance frontiers of R, ; and (R, 4, I, ;) have
exactly one point in common, which is referred to as intersection. In this case, we
will say that the mean-variance frontier of R,,, intersects the mean-variance
frontier of (R, 4, r,,¢), or simply that R, ; intersects (R, 4, I, ;). If thereisno
mean-variance investor that can improve his mean-variance efficient portfolio by
including r,., in his investment set, the mean-variance frontiers of R,,; and
(R, ', 1) coincide, which is referred to as spanning. In this case, we will say
that (the mean-variance frontier of) R,,; spans (the mean-variance frontier of)
(Riyps Mgy

As suggested by the previous section, and as shown by Ferson and Schadt
(1993), DeSantis (1994), Ferson (1995) and Bekaert and Urias (1996), the concept
of mean-variance spanning and intersection has a dual interpretation in terms of
volatility bounds. In terms of volatility bounds, mean-variance spanning means
that the volatility bound derived from the returns R,, ; is the same as the bound
derived from (R, ;, ry, ). Therefore, the minimum variance stochastic discount
factors for Ry.;, mg (v), are aso the minimum variance stochastic discount
factors for (R, 4, rHli, and the asset returns r, ., do not provide information
about the necessary volatility of stochastic discount factors that is not already
present in R,, ;. As will be shown formally below, mean-variance intersection is
equivalent to saying that the volatility bounds derived from R, ; and (R, ,, fy, 1)
have exactly one point in common. Thus, in case of intersection, there is exactly
one value of v for which the minimum variance stochastic discount factor does
not change, whereas for al other values of v it does.

In finite samples, it will in general be the case that adding assets causes a shift
in the estimated mean-variance frontier and the estimated volatility bound. This
shift may very well be the result of estimation error however, and the main
guestion is whether the observed shift is too large to be attributed to chance.
Therefore, to answer the question whether or not the observed shift in the
mean-variance frontier is significant in statistical terms, in this section we will also
show how regression analysis can be used to test for spanning and intersection.

3.1. Spanning and intersection in terms of mean-variance frontiers

To state the problem formally, the hypothesis of mean-variance intersection
means that there is a portfolio w*, which is mean-variance efficient for the
smaler set R,,; and which is aso mean-variance efficient for the larger set
(R4 1, My q)- Inthe sequel, variables that refer to the smaller set R, ; (r,, ;) will
be referred to with a subscript R (r), or with their dimension K (N), whereas
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variables that refer to the larger set (R, 4, r, ), Will not have any subscript or
will have their dimension as subscript, K + N. Thus, wy isa K-dimensional vector
with portfolio weights for the assets in R,, ;, and w is a (K + N)-dimensional
vector with portfolio weights for al the avalable assets (R, ;, r,,,). The
hypothesis of mean-variance intersection comes down to the statement that there
exists a mean-variance efficient portfolio w* of the form

C [ 10
wo={o | (10)
i.e, there exist scalars y and 7, such that

We

M—mK+N=72(O : (11)
N

If such a portfolio w* exists, there is one point on the mean-variance frontier of
R,,, that aso lies on the mean-variance frontier of (R, ,, r,,). Using obvious
notation, consists of two subvectors w and w,, and ¥ consists of submatrices
Sery 2rrr e and 3. Thefirgt K rows of Eq. (11) imply that

R~ M = YZraWr © W = ¥ Spa( e — M) (12)

Eqg. (12) simply says that wy is indeed mean-variance efficient for the smaller set
R s

The next step is to derive the restrictions on the distribution of R, , and r,_

that are equivalent to mean-variance intersection. In order to do so, substitute Eq.
(12) in the last N rows of Eq. (11) to obtain:

My — nLNZZrREI;l%( MR — mK)"D ( M — BMR) + ( Bk — LN)TT: 0,
(13)

with B= 3 ;333 Thus, if there is a portfolio that is mean-variance efficient for
the smaller set R,, ; that is also mean-variance efficient for the larger set (R,, ;,
Iy 1), there must exist an n such that the restriction in Eq. (13) holds. It follows
immediately from the derivation above that this n is the zero-beta return that
corresponds to the portfolio wg (and w*).

If there is mean-variance spanning then al mean-variance efficient portfolios
w* must be of the form (10), i.e., Eqg. (11) must be true for all values of n and
the corresponding +y's. Going through the same steps, if Eq. (11) must hold for any
1, Eq. (13) must hold for any #, and this can only be the case if

w— Bugr=0 and By — =0, (14)

which are the restrictions imposed by the hypothesis of spanning. If these
restrictions on the distribution of R,,; and r,,, hold, every point on the
mean-variance frontier of R, ; is aso on the mean-variance frontier of (R, 4,
r., 1) and the two frontiers coincide.
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3.2. Spanning and intersection in terms of volatility bounds

In the previous section, we defined mean-variance spanning and intersection
from the properties of mean-variance efficient portfolios and we derived the
equivalent restrictions on the distribution of asset returns, which have previously
been derived by Huberman and Kandel (1987). In this section, we analyze
mean-variance intersection and spanning from the properties of minimum variance
stochastic discount factors that price the assets in R,,; and in (R, r, )
correctly and we show that this imposes the same restrictions on the distribution of
the asset returns. In terms of volatility bounds, the hypothesis of intersection is
that there is a value of v such that the minimum variance stochastic discount
factor for R,, 4, i.e, mg(v),, 4, is aso the minimum variance stochastic discount
factor for the larger set (R,, 4, Iy, 1)- The discount factor mg(v),, , as defined by
Egs. (4) and (5) is the minimum variance stochastic discount factor for this larger
set if it also prices r,,, correctly. If mg(v),,, prices both R, and r
correctly, the difference between mg(v),,, and any other M(v),,, that prices
R, and r,, , correctly is orthogonal to R, ; and r,, ,, implying that mg(v),,
must have the lowest variance among all stochastic discount factors M(v),, ;, by
the same reasoning that leads to Eq. (6).

Thus, the hypothesis of intersection for volatility bounds can be stated as:

Jvst. E[r  Ma(0)s1] = iy (15)

To show that this hypothesis imposes the same restrictions on the distribution of
R,.; and r,; asin Eq. (13), substitute Egs. (4) and (5) into Eq. (15):

E[I’Hl(u + (Ry1— #r) Zra(u — UMR))] =N
< (1~ ZpZripe)v + (SirSrhn — w) =0,

< (= Bug)v+ (B —ty) =0. (16)
Dividing both sides of Eq. (16) by v shows that the hypothesis of intersection in
terms of volatility bounds indeed implies the same restrictions as the hypothesis of
intersection in terms of mean-variance frontiers, if we choose n = 1/v. This could
be expected beforehand, since from the duality between mean-variance frontiers
and volatility boundsin Eq. (9) we already knew that the vector ¢x(v) that defines
mg(v),,,, is proportiona to a mean-variance efficient portfolio with zero-beta
return n =1/v. The hypothesis that w* is of the form (wg’ 0)) is therefore
equivalent to the hypothesis that ¢(v) is of the form (pg(v) 0y ).

By the same logic, the hypothesis of spanning in terms of volatility bounds,
requires that mg(v),, ; prices the returns r,, , for all values of v:

E[re ame(v) ] = w. Vo, (17)

since in that case the entire volatility bound derived from (R,, 4, r,, ) coincides
with the volatility bound derived from (R,, ;) only. This requirement implies that
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Eqg. (16) holds for all values of v, and this can only be the case if the restrictions
in Eq. (14) hold.

3.3. Intersection and mean-variance efficiency of a given portfolio

A question that is of obvious interest both from a portfolio choice perspective
and from an asset-pricing perspective, is the question whether or not a given
portfolio wP is mean-variance efficient. From a portfolio-choice perspective, an
investor will be interested in whether or not his portfolio has the desired properties
of a mean-variance efficient portfolio. From an asset-pricing perspective, the
frequently analyzed question is, e.g., whether or not the market portfolio is
mean-variance efficient as the CAPM predicts. Alternative asset-pricing models
may identify other portfolios as being mean-variance efficient. For instance, in the
Consumption-CAPM the portfolio that mimics aggregate per-capita consumption
is mean-variance efficient and the Intertempora-CAPM implies that the market
portfolio and the portfolios hedging changes in the investment-opportunity set are
mean-variance efficient.

Denote the return on some portfolio wP by R, ; and its expectation by uP. The
guestion whether or not wP is mean-variance efficient with respect to the N+ 1
assets (RP, 4, r,. ), is obviously a special case of the question whether or not
there is mean-variance intersection with K=1 and R,,; = RP, ;, since intersec-
tion in this case simply means that the portfolio wP is on the mean-variance
frontier of (R, ;, r.,,). Therefore, if wP is mean-variance efficient for the set
(RP,,, r..,), the following restrictions on the distribution of RP,; and r,,,
should hold:

e =y + BP(uP—m), (18)

where 8P is the N-dimensional vector Covir,,,, RP,,]/ValRP, ], and uP=
E[ RP, ;1. When testing for mean-variance efficiency, RP, ; is usually the return on
a portfolio of r,, ;.

What we want to establish in this section however, is that the hypothesis that
the mean-variance frontier of R, ; (K > 1) intersects the frontier of (R, 1, I, )
at agiven value of n=1/v, is tantamount to the hypothesis that the portfolio wg
that is mean-variance efficient for R, ; and that has (as its zero-beta rate is aso
mean-variance efficient with respect to (R, ;, r,. ;). Denote the return on w; as
R/, and its expectation as n*. Recall that the portfolio wy is given by the first
K rows of Eq. (11)

We =y 3Ra( e — Mk ),
from which
po=m

Wg'(( MR — M) = YWR SgpWr < v = ValRi]"
t+ 1
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Substituting these relations into Eq. (11) and defining 8= Covir,,,, R 11/
Val R/, ], resultsin

O=(m—B'u)+(B" —y)n. (19)

These are the same restrictions as Eq. (18) for wP = w*. Thus, the hypothesis of
intersection indeed implies the same restrictions on the distribution of R, ; and
I, as the hypothesis that wg is mean-variance efficient with respect to r,_ ;.

3.4. Testing for spanning and intersection

So far, we derived the restrictions implied by the hypotheses of mean-variance
intersection and spanning for the distribution of R, ; and r,, ;. Huberman and
Kandel (1987) showed how regression can be used to test these hypotheses. To see
how regression can be used to test for intersection, start from Eq. (13):

My — ey = B( g — Mg ).

Replacing the expected returns u, and wg with realized returns r,, and R, 4,
gives the regression

Mer=a+ BR 1+ &, (20)

With a=p, — Bug, €1= Ui = BUritsn Upgpn =TFg— g and U,y =
R;.1— mg. It can readily be checked that under the null hypotheses of spanning
and intersection Cov[ ¢, ;, R, ;] =0. Notice that « is an N-dimensional vector
of intercepts, B isan N X K-dimensional matrix of slope coefficients, and ¢, , is
an N-dimensional vector of error terms. The restrictions imposed by the hypothe-
sis of intersection in Eq. (13) can now be stated as

a—n(w—Buy)=0. (21)

With intersection, there are two cases of interest. First, we may be interested in
testing for intersection for a given value of the zero-beta rate n. In that case, the
restrictions in Eq. (21) should hold for this specific value of n, which is a set of
linear restrictions. In the sequel, we will mainly be interested in this case. Second,
the interest may be in the question whether there is intersection at some unknown
point of the frontier, i.e., for some unknown value of 7. In that case, the
hypothesis is that there exists some n such that the restrictions in Eg. (21) hold.
This hypothesis can be stated as

a,/(1-Bi) =aj/(l—BjLK),i,j =1,...,N,

where B; is the ith row of B. Thus, the hypothesis that there is intersection at
some point of the frontier imposes a set of nonlinear restrictions on the regression
parameters in Eq. (20). Notice that given estimates of «; and B; an estimate of the
zero-beta rate for which there is intersection can be obtained from «; /(1 — Bty )-
Also note, that testing whether there is intersection at some unknown point of the
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frontier only makes sense if N> 2, since there is always intersection if N= 1.
(Because there is adways one efficient portfolio for which the weight in the new
asset is zero.)

Recall that the hypothesis of spanning implies that Eq. (21) holds for all values
of n. Therefore, going through the same steps, the restrictions imposed by the
hypothesis of spanning can be stated as

a=0 and By —y=0. (22)

The restrictions in terms of the regression model in Eq. (20) are intuitively very
clear. For instance, the spanning restrictions in Eq. (22) state that if there is
spanning, then each return of the additiona assets, r;,,,, i=12,...,N, can be
written as the return of a portfolio of the benchmark assets 8 R, 1, Bt = 1, plus
an error term ¢; ., ; Which has expectation zero and which is orthogonal to the
returns R, ;. Since such an asset can only add to the variance of portfolios of
R, ., and not to the expected return, mean-variance optimizing agents will not
include such an asset in their portfolio. A similar interpretation holds for the
intersection restrictions.

If the returns series R,,, and r,,, are stationary and ergodic, consistent
estimates of the parameters o and B in Eqg. (20) are easily obtained using OLS. In
writing down the test statistics for Egs. (21) and (22), it is convenient to use a
different specification of Eqg. (20), in which al the coefficients « and B are
stacked into one big vector:

M1 =(In® (1R 1))b+ &y, (23)
where b= ved((a B)), a(K + 1)N-dimensional vector. If b is the OLS estimate
of b and Q is aconsistent estimate of the asymptotic covariance matrix of b, the
hypotheses of intersection and spanning can be tested using a standard Wald test.
Defining

H(n)ine = In ® (1mei) (249)
and
h(n)intEH(n)intB_nLNa (24b)
the Wald test statistic for intersection can be written as
. , ~ , -1
\Il\rlnzh(n)int(H(n)imQH(n)int) n(7)int.- (25)
Similarly, defining
H,.. =1 10 26
span — 'N ® 0 ”’K ( a)

and

r 0
Ngpan = spanb—LN®(1), (26b)
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the Wald test statistic for spanning can be written as

A -1
\i/pan = Hspan( Hspan QHi,nt) hspan' (27)

Under the null hypotheses and standard regularity conditions, the limit distribution
of &M will be x2 and the limit distribution of ¢ will be x2,. The test
statistics in Eqgs. (25) and (27) have interesting economic interpretations in terms
of performance measures. The relationship between tests for intersection and
spanning and performance evaluation will be discussed in detail in Section 5.3.

Chen and Knez (1996) and Hall and Knez (1995) propose a test for intersection
that is based on Eq. (15). Define the deviation from the equality in Eq. (15) to be
AMo):

A(v) = E[mg(v)er] = uy- (28)

In Section 5.1, we will interpret A(v) scaled by v as a generalization of the
well-known Jensen measure. Given an estimate of the parameters ¢g(v) using the
sample equivalent of Eg. (5):

17 _ A\ _
@R(u)=(?E(Rt—R)(Rt—R)) (u —vR),
t=1
with R the sample mean of R,, define A(v), as
X(U)tErt(U—i—g'bR(v)'(Rt—ﬁ))—LN.

A test for the hypothesis of intersection, A(v) =0, can now be based on

&= (3 i) (Elion)

ét_ilx(U)t)’ (29

where the estimate Vaf [A(v),] can for instance be obtained using the method
suggested by Newey and West (1987). The limit distribution of the test statistic
(& isaso ya. Since for n=1/v, we have

|

it follows that

T 1T .
;A(U)t)/l}:?;(rt_'—rt(Rt_R) Q"\’R(U)”’I)_”’ILN

=l

17 . ~
(?_Z/\(U)t)/U=H(T’)intb_h(n)intv
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and that the only difference in the Wald test statistic in Eq. (25) and the statistic
proposed in Eq. (29) is the way in which the covariance matrix is estimated.

A disadvantage of the test originally proposed by Chen and Knez (1996) is that
they test for intersection for a very specific stochastic discount factor, which
corresponds to the minimum second moment portfolio. This discount factor can be
found by projecting the kernel M,,; on the asset returns only, excluding the
constant. The corresponding portfolio on the mean-variance frontier is the one
with the minimum second moment among all portfolios on the frontier, and can
graphically be found as the tangency point between the mean-variance frontier and
a circle with its centre at the origin. The problem with this portfolio is that it is
located at the inefficient part of the frontier, implying that the test used by Chen
and Knez (1996) is for intersection at an inefficient portfolio. Therefore, it is
economically not very interesting, unless a risk-free asset is included. Since in the
test statistic in Eq. (29), the discount factor mg(v),, ; results from a projection of
M, on R ; plus a constant, this test alows us to test for intersection at any
mean-variance efficient portfolio, so this test does not suffer from the problem of
the test originally suggested by Chen and Knez. Dahlquist and Soderlind (1999),
who use the test proposed by Chen and Knez to evaluate the performance of
Swedish mutual funds, also acknowledge this problem and add a constant to the
set R, ; such that the conditional mean of mg(v),, ;, equals one over the risk-free
rate, i.e., v,=1/R;,.

The distinction between the Wald tests in Egs. (25) and (27) on the one hand
and the tests proposed by Chen and Knez in Eq. (29) is similar to the distinction
between tests based on the (traditional) regression methodology and on the SDF
methodology as discussed in Kan and Zhou (1999). Their simulations suggest that
in small samples tests based on the regression methodology have better size and
power properties than tests based on the SDF methodology, which indicates that
the test in Eq. (25) may be preferred to Eq. (29).

Alternative tests for the hypotheses of intersection and spanning are suggested,
e.g., by Huberman and Kandel (1987), who propose a likelihood ratio test, and by
Snow (1991) and DeSantis (1995), who propose a Generdized Method of Mo-
ments (GMM) procedure. This latter procedure is also identical to the region
subset test suggested by Hansen and Jagannathan (1995), which is equivalent to a
test for intersection. A comparison of the small sample properties of various
test-procedures can be found in Bekaert and Urias (1996). These small sample
results suggest that the likelihood test for spanning as proposed by Huberman and
Kandel has better power properties than the GMM-based tests, while it also has a
size distortion that isin most cases not worse than for the GMM-based tests. The
GMM-based test or region subset test is based on the observation that under the
null hypotheses of spanning or intersection, the kernel that prices R,,, and r
correctly is of the form

m(v)yq=v+ QDR(U),( Rit1— Mg) + QDr(U),(rH—l_ me), with e (v) =0.
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Given that ¢,(v) =0, a GMM estimate of the K parameters in ¢g(v) can be
obtained by using the K + N sample moments

or(on() =7 [

t=1

w+%uﬂa—®}wMN

1 T
= ?tg,lgt(@R(U))-

A consistent estimate of ¢g(v) can therefore be obtained by solving
m(in)gT(QDR(U)),WTgT(GDR(U))=JT(€DR(U))’ (30)
erlv

where W, is a symmetric nonsingular weighting matrix. Notice that the GMM
estimate of the K parameters ¢g(v) obtained from Eq. (30) is based on K+ N
moment restrictions. The N over-identifying restrictions are derived from the
hypothesis that mg(v),, ; must also price the N additional assets r,, ,. Intersection
for a given value of v can now be tested by using the fact that under the null
hypothesis and regularity conditions TJ;(ag(v)) is asymptotically y3-distributed.
Since spanning implies that Eq. (15) holds for (at least) two different values of v,
the GMM-based test can easily be extended by estimating two vectors ¢g(v,) and
or(v,) simultaneously (v, #v,) using Eqg. (30). In this case, there are 2K
parameters to be estimated with 2(K + N) moment conditions. The test for
spanning is therefore a test for the 2N over-identifying restrictions and will
asymptotically be y2\-distributed under the null hypothesis of spanning.

4. Testing for spanning and intersection with conditioning information

The purpose of this section is to incorporate conditioning information in tests
for intersection and spanning. Until now, we assumed that returns are indepen-
dently and identically distributed (i.i.d.). However, there is ample evidence that
asset returns are to some extent predictable. For instance, stock and bond returns
can be predicted from variables like lagged returns, dividend yields, short-term
interest rates, and default premiums (see, e.g., Ferson, 1995) and future returns can
be predicted from hedging pressure variables (see e.g. DeRoon et a., 2000) as
well as from the spread between spot and forward prices (see, e.g., Fama, 1984).
Kirby (1998) analyzes whether predictability of security returns is consistent with
rational asset pricing. He shows that the covariance between the pricing kernel
implied by an asset-pricing model and conditioning variables, restricts the slope
coefficients in a regression of security returns on those same conditioning vari-
ables. In Section 4.1, we will show how conditional information can be used in a
straightforward way by using scaled returns (see, e.g., Cochrane, 1996; Bekaert
and Urias, 1996). Although thisis a fairly general and intuitive way of incorporat-
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ing conditional information, a disadvantage of this method is that the dimension of
the estimation and testing problem increases quickly. In Section 4.2, we show that
this problem can be circumvented if it is assumed that variances and covariances
are constant, while expected returns are allowed to vary over time, although this
assumption is not in accordance with most equilibrium models and with the
empirical evidence regarding time-varying second moments. Using this simplify-
ing assumption however, it is shown that the conditioning variables can easily be
accounted for by using them as additiona regressors. The restrictions for the
intersection and spanning hypotheses then become similar to the restrictions in the
i.i.d. case. This way of incorporating conditional variables also has the additional
advantage that the regression estimates indicate under what economic circum-
stances, i.e., for what values of the conditioning variables, intersection and
spanning can or cannot be rejected. Finaly, in Section 4.3, we will discuss the use
of conditioning variables as, e.g., in Shanken (1990) and Ferson and Schadt
(1996).

4.1. Incorporating conditional information using scaled returns

Suppose that z is an (L — 1)-dimensional vector of instruments that has
predictive power for R,,; and r,,,, and define the L-dimensional vector Z, as
Z,=(1 z). A common way to use these instrumentsis to look at scaled returns:
Z,® R, If M, is avaid stochastic discount factor, then from Eq. (1) we
have:

E[M1(Z®R, 1) I1] =Z ® .
Taking unconditional expectations, this yields

E[M (Z @R, 1) =E[Z® 1 ]. (31)

Thus, the scaled return Z; (R; . ; has an average price equal to E[Z; ,]. The scaled
returns can be interpreted as the payoffs of a strategy where each period an
amount equal to Z; , dollars is invested in a security, yielding a payoff equal to
Z R, ;1. Therefore, we can aso think of Z, ® R, ; as the returns on managed
portfolios (see, e.g., Cochrane, 1996). By allowing for such managed portfolios,
we take into account that investors may use dynamic strategies, based on the
realized values of Z,. In effect, this increases the set of available assets by a factor
L (i.e, from K to KX L).

To simplify notation, denote the (L X K)-dimensional vector Z, ® R,,; by
RZ, ;. Also, denote the (L X K)-dimensional vector E[Z, ® ¢, ] by q. For further
reference, 4, and gy are defined in a completely analogous way and we use a
superscript Z for all variables and parameters that correspond to RZ, ; and rZ ;.
Valid stochastic discount factors MZ ; now have to satisfy

E[ MtZJrlRtZJrl] = Ok - (32)
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As shown by Bekaert and Urias (1996), following the same line of reasoning asin
Sections 2.1 and 2.2, it is straightforward to show that the minimum variance
stochastic discount factor with expectation v is given by

ME(0) 11 =0+ @*(v) (R 1~ 1R),

e%(v) = (54a) (o — onh). (33)
This expression for the volatility bound is a straightforward generalization of the
one given in Egs. (4) and (5). The restrictions imposed by the hypotheses of
intersection and spanning also turn out to be very similar to the ones given in
previous sections, as we will see below.

Thus, conditioning information can be incorporated by including managed
portfolios, the returns of which depend on the conditioning variables. If thereisto
be conditional intersection or spanning of r.,, by R, ;, the unconditional
volatility bound (or mean-variance frontier) of RZ , must intersect or span the
volatility bound (or mean-variance frontier) of (RZ ,, rZ,). The interest is
therefore in the returns R,,; and r,,, themselves plus the returns on al the
managed portfolios. Intersection or spanning is equivaent to

E[rt%rlmé(v)wl] =0On> (34)

for one value of v or for all values of v, respectively. To see which restrictions
these hypotheses imply, substitute Eq. (33) into Eqg. (34) to obtain

(i —BpR)v+ (B —ay) =0, (35)
for intersection, and
(mf—BHE) =0, and (B%dc—ay)=0, (36)

for spanning. Here, B%= 3% (325 Y isa(L X N) X (L X K) matrix with Slope
coefficients from a regression of r% ; on RZ, ; plus a constant. These restrictions
are also given in Bekaert and Urias (1996). Regressing r# on R? to incorporate
conditioning information is very similar to the approach to be discussed in Section
4.3, where the regression parameters « and B are time varying. In that section,
we will assume that the mean returns and the (co)variances are functions of the
instruments that can be linearized using a Taylor series approximation, leading to a
similar regression as in the case discussed here. Therefore, the use of scaled
returns can also be motivated as a convenient way of dealing with time-varying
means and variances.

The similarity with the case in which there was no conditioning information is
obvious. The only difference in the restrictions is that in Egs. (35) and (36), we
have ( B%qy — qy) instead of (B — ¢y). The fact that g, and q, enter the
restrictions reflects the fact that RZ, , and r? ; are not really returns, in the sense
that their current prices are not necessarily equal to one. The average prices of
RZ , and r% , areinstead given by g, and . The average cost of the managed
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portfolios with payoff vector rZ ; is given by the vector gy, and the cost of the
mimicking portfolios from RZ, , is given by B4qg.. The interpretation of the
restrictions given in Section 3.4 is therefore still valid.

The main disadvantage of this way of incorporating conditioning information is
that the number of parameters to be estimated as well as the number of restrictions
to be tested grows rapidly with the number of instruments L. The number of
exogenous variables equals K X L and the number of restrictions to be tested
equals N X L for the hypothesis of intersection, and 2N X L for the hypothesis of
spanning. This is the case because for each new instrument there are K new
managed portfolios to be considered for the assets in R,,; and N additional
managed portfolios for the assets in r,, ;.

This problem can at least partially be circumvented if we are willing to assume
a more specific form of predictability. Specifically, in the next section we make
the assumption that only the expected returns of R, ; and r,,, depend linearly on
the instruments z,, whereas all variances and covariances are constants. In Section
4.3, the slope coefficients B are assumed to depend linearly on the instruments,
which also allows for a straightforward way of incorporating conditional informa-
tion in the regression framework to test for intersection and spanning.

4.2. Expected returns linear in the conditional variables

In this section, we assume that there is a specific form of predictability, which
allows us to incorporate conditioning information in a straightforward way in the
regression framework for spanning and intersection. The assumption made is that
expected returns are linear in the conditional variables and that returns are
conditionally homoskedastic. This way of incorporating conditioning information
is used in Harvey (1989), as well as, for instance, in Campbell and Viceira (1996)
and DeRaon et al. (1998). The assumption we make is that

Et[ Rt+l] = CrZ,

Elr..]=c2z, (37)
and the variances and covariances of R, ; and r,,; conditional on Z, are given
by VarR 1 1Z]=Oge, Valr,,1Z]=14,, and Covlr,,, R ;1Z]= 0.
Starting from Eq. (1), the minimum variance stochastic discount factor, condi-
tional on Z,, is given by

Me( ) 1= 0+ @(0)(Rir 1 = B[ Ri; 1),

QD(Ut)t:‘QEé(LK_UtEt[ Rt+l])' (38)
Notice that since the projection of the kernel on the asset returns is now
conditional on Z,, we explicitly alow for time variation in the coefficients ¢(uv,),,
aswell asin v, the conditional expectation of the stochastic discount factor. Also

note that in describing the conditional mean-variance frontier or volatility bound
we still can use v, as a free parameter.
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If there is intersection, mg(v,),, ; must price r,, , correctly conditional on Z,
which results in

n= Et[ Mot 1 Me( Ut)t+1] =06 Z + Qg Qri(w — CRZ,)

‘:’(C'r_QrRQl;éC'R)ZtUt+(-QrR-QEFle‘K_ LN) =0. (39
In case there is spanning, this condition must again hold for every v,, implying
(C’R_‘QrRQEFl{C/R)tho and (‘QrRQI;éLK_LN)=O' (40)

It turns out that the regression framework that we used to test for spanning and
intersection can be modified to test the restrictions in Egs. (39) and (40).
Straightforward use of the agebra of partitioned matrices shows that in the
regression

rt+1=czt+th+1+ut+l’ (41)

with E[u,,,Z]1=0, and E[u,,;R,,,]1=0, the OLS-estimates of ¢ and d are
consistent estimates of (c, — £,z 2z3ck) and (g Qzhuc — vy), respectively,
which are the parameters of interest in the restrictions in Egs. (39) and (40) (see
DeRoon et d., 1998). The hypotheses of intersection and spanning can therefore
be based on the OLS-estimates of Eq. (41). The hypothesis that there is intersec-
tion for a given value of v, and Z, can be tested by testing the restrictions

cZw, + (duc = 1) =0, (42)
and the hypothesis of spanning by testing the restrictions
cZ,=0and(dw —ty) =0. (43)

These restrictions are very similar to the restrictions implied by intersection and
spanning in the unconditional case, except that the intercept « in Eq. (20) is
replaced by cZ,.

It can easily be seen from Egs. (42) and (43) that the number of restrictions to
be tested for intersection and spanning is the same as in the unconditional case,
which makes this method of incorporating conditional information more parsimo-
nious than using scaled returns. Note that the hypotheses underlying Egs. (42) and
(43) are that there is intersection or spanning for a particular value of Z,, i.e., for a
particular state of the economy. This has the additional advantage that the
regression estimates of Eq. (41) make it possible to derive confidence intervals for
the values of Z, for which there can be intersection or spanning.

If the hypothesis of interest is whether there is spanning regardless of the state
of the economy, the restrictions in Eq. (43) should hold for all values of z,
implying that each element of ¢ should be equal to O. In that case, with L
instruments and N assetsin r,, ,, there are L X N restrictions to be tested, which,
athough smaller than the 2 X L X N restrictions in Eqg. (36), can be a large
number. Also, as follows readily from Egs. (42) and (43), in this case the
hypothesis of intersection and the hypothesis of spanning both imply the same
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restrictions. This latter result is due to the fact that the value of v, for which we
test intersection is a constant. Since the tangency point on the mean-variance
frontier that corresponds to v, is a function of Z,, the only way to have inter-
section irrespective of the specific value of Z, is to have spanning.

4.3. Regression coefficients linear in the conditional variables

An alternative way of incorporating conditional information in the regression
framework is suggested by Shanken (1990) and Ferson and Schadt (1996) e.g.,
where the coefficients « and B are assumed to be a linear function of the
instruments. In the regression in Eq. (20), the ith row can be written as

Mir1= o+ BiR 1+ &g
Shanken (1990) simply assumes that
@ =aj+ 23y,
Bi=bio+4bi1i (44)

where z, are now supposed to be L demeaned variables. Here, a,, is scaar, a;; is
an L-vector, b,y isa K row-vector, and b, is L X K matrix. Ferson and Schadt
(1996) motivate Eq. (44) as a first-order Taylor-series expansion for a genera
dependence of B on Z,=(1 Zz). Let Covlr,,,, R.,1Z]=23gr(Z), and
ValR,, ,1Z]=3g:(Z), where 3(-) indicates some functional form for the
covariance matrix. Starting from Eq. (13) intersection for a given zero-beta rate
1, = 1/v, conditiona on Z, means

Elr:—mn] =B(Z)E[Riys — e ] = s — meey
=B(Z)(Riy1— muc) +Upq,

with  B(Z) = 3 (Z) 3gr(Z)~Y, Uy = (g — B(ZIR ) — (Elry,,] -
B(Z)E[R,, ], and Elu,,,|Z]=0. Ferson and Schadt (1996) suggest a linear
approximation of B,(Z,):

Bi(Z) = b+ zby, (45)
from which

Mir1= &t Za T bR+ (ZDb) Ry + &40,

ap = (1= bioe),

a; = — by, (46)
with & 1 =U 1+ (B(Z) — by — (Zb )R, — M), for which it is as-
sumed that Ele ,,1Z]=0. This yields precisely the regression in Eq. (20)

where the regression parameters are linear in the instruments as assumed by
Shanken (1990).
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Intersection for a given value of 1, =1/v, and z, can now be tested by testing
the restrictions that

(80 + zay;) + {(by+ Zby) ey — L}n = 0. (47)

As in the previous section, these restrictions have the additional advantage that
statements can be made about in which state of the economy, (i.e., values of z)
there is intersection. If there is intersection for all values of z, this implies

8o+ (bow — L) =0,
a;; +byyem =0. (48)

The regression in Eq. (46) can also be motivated from the scaled returnsin Section
4.1. Using the pricing kernel that is linear in R?, ; and that is supposed to price
the returns rZ ; as well, the restrictions implied by intersection are very similar to
the ones in Eq. (48). Thus, the use of managed returns is similar to the coefficients
in the spanning regression being linear in the instruments.®

Spanning for a given value of z, is equivalent to

ao+za,; =0,
(bio +Zbiy) e = 1. (49)
Again, for a specific value of z, i.e, for specific economic conditions, these

restrictions can easily be tested in the regression framework outlined above. If
there is to be spanning under all economic conditions, the restrictions are

a,, =0,
by =1,
a;; =0,
b, = 0.

If there are L instruments (including a constant) with K benchmark assets and N
new assets, we now have (K + 1) X N X L restrictions to test, which is even larger
than with the scaled returns in Section 4.1. In addition, the numbers of parameters
to be estimated is (K + 1) X N X L. Thus, in terms of the number of parameters
and the number of restrictions, this approach does not offer additional benefits
over the use of scaled returns. However, this approach does have the benefit that it
shows under what economic circumstances there may or may not be intersection
or spanning.

Notice that this way of incorporating conditional information is very similar to
the one suggested in the previous section. The restrictions on the regression
parameters in Eq. (46) are analogous to the ones on the parameters in Eq. (41).
The main difference arises because the slope coefficients for R, ; aso depend on

% We thank the referee for pointing this out to us.
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the instruments, implying that the interaction term z,R, , , should aso be included
in the regression. It is easy to see that the approach in the previous section can be
interpreted as a special case of the approach outlined here, where only the
intercepts in Eq. (20) are a function of the instruments z,, whereas the slope
coefficients are constant.

Summarizing, we have shown that a number of approaches is available to
incorporate conditioning information in tests for intersection and spanning. Using
either scaled returns or regression coefficients that are linear functions of the
instruments, the regression approach outlined in Section 3 can easily be extended
to test for intersection or spanning. The restrictions implied by the hypotheses of
intersection and spanning are very similar to the case where there is no condition-
ing information (i.e., where the only instrument is a constant) and have very
similar interpretations as well. Our methods focus on specific functional forms of
incorporating conditioning information.

5. The relation between spanning tests, performance evaluation and optimal
portfolio weights

So far, the focus has been on the restrictions that are implied by the hypotheses
of intersection and spanning on the distribution of R,,; and r, ., and on tests of
these hypotheses. In this section, the interest will be in the deviations from the
restrictions. We will show that the test statistics and regression estimates have
clear interpretations in terms of performance measures like Jensen’'s alpha and the
Sharpe ratio as well as in terms of the new optimal portfolio weights. Since it is
natural to think about these performance measures in terms of mean-variance
efficient portfolios, most of the analysis in this section will be in terms of
mean-variance frontiers rather than volatility bounds. Nonetheless, the duality
between these two frontiers also holds for these performance measures. These
interpretations of tests for mean-variance efficiency, intersection, and spanning in
terms of performance measures can also be found in Cochrane (1996), Dahlquist
and Soderlind (1999), Gibbons et al. (1989), Jobson and Korkie (1982, 1984,
1989), and Kandel and Stambaugh (1989).

5.1. Performance measures

To set the stage, define the vector of Jensen’'s alphas, or Jensen performance
measures, «,(n), as the intercepts in a regression of the N excess returns
(r., 1 — my) on the excess returns of the K benchmark assets, (R, ; — mu):

Meer— My =a3(n) + B(Req1 — M) + &41, (50)

with El[e,, ;]1=Ele, R ,;]1=0. Since it is not assumed that there exists a
risk-free asset, we define excess returns as the return on an asset or portfolio in
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excess of a given zero-beta rate. Alternatively, when regressing r,,; on R, as
in Eq. (20), it follows that Jensen’s alpha is equal to

ay)(n) = a+ ( Buc— ), (51)
where a=u, — Bug and B= 3,z 3z Notice from this expression that the
hypothesis, that there is an intersection for a given value of 7 is equivalent to the
hypothesis that the Jensen performance measure is zero, i.e., a,(n) = 0. Similarly,
the hypothesis of spanning is equivalent to the hypothesis that «,(n) =0, V7.
Recall from Section 3.3, that the regression in Eq. (50) produces the same
intercept «,(n) as a regression of r,, ; — nuy ON the excess return of a portfolio
wg that is mean-variance efficient for R, ; and that has n as its zero-beta rate,
i.e,

Mer—mn=ay(m) + B (RG1—m) + &q
Following Jensen (1968), it is common in the literature to define Jensen’'s alpha as
the intercept of a regression of r,, , in excess of the risk-free rate on the return of
the market portfolio in excess of the risk-free rate. The definition in Eq. (50) is
more general and has this more traditional definition as a specia case if there
exists a risk-free asset (n=R!) and if the market portfolio is mean-variance
efficient (R, ; = RT} ;). The Jensen measure in Eq. (50) is also referred to as the
generalized Jensen measure. Given the minimum variance stochastic discount
factor mg(v),, ; as defined in Egs. (4) and (5), it can easily be seen that the
generalized Jensen measure is also equal to A(v) /v as defined in Eq. (28). Thisis
also discussed in Cochrane (1996) and in Dahlquist and Soderlind (1999).

The Sharpe ratio of a portfolio with return RP, , is defined as the expected
excess portfolio return, divided by the standard deviation of portfolio return,

E[ R&l] -m

g’]( RF‘FI’T’) = O_(Rp
t+1

By definition, for a given expected portfolio return, or for a given standard
deviation of portfolio return, the maximum attainable (absolute) Sharpe ratio is the
Sharpe ratio of the minimum-variance efficient portfolio. For a minimum-variance
efficient portfolio ws of the K assets R, ; with zero-beta rate », the Sharpe ratio
is equal to the slope of the line tangent to the frontier originating at (0, n) in
mean-standard deviation space, and is denoted by 0(n):

E[ R, 1] L
Or(n) = —————~— (52)
® o (R4
where R, ; =W"'R,, ;.
Although both Jensen’s alpha and the Sharpe ratio are used as performance
measures, there is an important difference between the two. Whereas the Sharpe
ratio is defined in terms of the characteristics of one portfolio (the expected excess

portfolio return and its standard deviation), Jensen’s alpha is defined in terms of
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one asset or portfolio relative to another. Sharpe ratios answer the question
whether one portfolio is to be preferred over another, whereas Jensen’'s apha
answers the question whether investors can improve the efficiency of their
portfolio by investing in the new asset. However, there is a close relation between
the two measures, in that Jensen’s alphas together with the covariance matrix of
the error terms &, , in Eq. (20) (and Eq. (50)) determine the potential improve-
ment in the maximum attainable Sharpe ratio from adding the new assets r,. ;.
Recall from Section 2.2 that we defined the variables A= 3%, B= w34, and
C= w3 . For theset R, ,, these variables will be denoted as Ay, Bg, and Cy,
whereas the absence of subscripts implies that these variables refer to the larger set
(R, 1, ;1) Using partitioned inverses, notice that

S (ERR zm) R T R YD
Sr 2 -3.B 3
From this, it follows that
A= Sprik + e B Bue — 20 B3 w oy 3w
=Ag+ (Buc— i) 3. ( Buc — ) (54)

where 8= 3 ;3z4 and 3., isthe covariance matrix of &, ,, the error termin the
regression in Eq. (20). In a similar way, it can easily be shown that

B=Br+ a3 (ty— Bi), (55a)
C=Cr+ a3 a, (55b)

where @ = u, — Bug, the intercept in the regression in Eqg. (20).
It is easy to show that for a given 7, the Sharpe ratio of a mean-variance
efficient portfolio wg can be written as

0r(m) = (Cr— 2Bgn + Agn?) (56)
A similar expression holds of course for 8(7), the maximum attainable Sharpe
ratio of the larger set (R, 4, I, 1)- Using Egs. (54), (55a) and (55b), we derive

49(7])2= C- ZBn+A772=(CR— ZBRn+ARn2)
+(a'§8_81a —2a'3 M (uy— Bu)m
+ (e — B )/ 2;51( N BLK)"’Iz)
= 9R(77)2 + O‘J(”’I), 2;3]“3(”’1)- (57)
Thus, the change in maximum attainable squared Sharpe ratios equals the inner

product of the vector of Jensen’s alphas, a4(n), weighted by the inverse of the
covariance matrix of &, ,.* If there is only one new asset, N=1, the term

(53)

1/2

“ This result can be found in Jobson and Korkie (1984) for instance.
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a(m)/a(e) is known as the adjusted Jensen measure or the appraisal ratio
(Treynor and Black, 1973). Notice once more that 6x(n) and 6(n) characterize
portfolios of R,,; and (R, ,, r{, ), respectively, whereas a,(n) and 3, follow
from aregression of r,, on R, ,;, and measure the performance of r,, relative
to R, ;. Stated differently, whereas Sharpe ratios can be used to compare the
performance of different portfolios, Jensen's apha gives the potential improve-
ment in performance when the additional assets are included in the portfolio. The
hypotheses of intersection and spanning imply that Jensen’s alpha, a,(n), is zero
for one or for al values of m, respectively. Therefore, if there is intersection
(spanning) then there is no improvement in the Sharpe measure possible by
including the additional assets r,. ; in the investors portfolio.

Cochrane and Saa-Requejo (1995) show how a bound on the maximum Sharpe
ratio can be used to price new assets in incomplete markets, which is referred to as
“good deal pricing. In the context of Eq. (57), this essentially comes down to
putting a bound on the maximum appraisal ratios of the new asset. This kind of
analysis is extended by Bernardo and Ledoit (1996), who introduce the gain—loss
ratio as an aternative performance measure by which new assets can be priced if
restrictions on the maximum gain—loss ratio are imposed. This is similar to a
bound on the maximum Sharpe ratio as suggested by Cochrane and Saa-Requejo
(1995), but the approach in Bernardo and Ledoit (1996) is more general and
allows for non-mean variance utility functions as well.

5.2. Changes in optimal portfolio weights

The performance measures and the intersection regressions discussed above can
also be used to infer the changes in optimal portfolio holdings when adding the
assets r,,,. In this section, we will show that given the initial mean-variance
efficient portfolio of the benchmark assets and the OL S-estimates of the regression
parametersin Eq. (20), it is straightforward to determine the new optimal portfolio
weights. Some of the results presented in this section are also presented in Stevens
(1998). In order to derive the optimal portfolio weights from the regression results,
consider the mean-variance efficient portfolio for the extended set (R, 4, T, ;) for
a given value of n:

W=y I3 (p— ).

Substituting the partitioned inverse as given in Eq. (53) in the expression for w*
gives that the optimal portfolio weights for the new assets, w,*, can be written as

W=y SN — Bug) — (o — B )m) = v 2 (). (58)

Thus, the optimal portfolio weights w,* are determined by the vector of Jensen's
aphas and the covariance matrix of the residuals of the OL S-regression of r,,; on
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R, ;> This result is simply a generaization of the well-known result in Treynor
and Black (1973) regarding the appraisa ratio. The difference with Treynor and
Black is that these authors assume that the error terms &;,,, for different
securities are uncorrelated, i.e., they assume the diagonal model (Sharpe, 1963),
whereas the result in Eqg. (58) alows for any correlation structure between the
securities.

In deriving the new optimal portfolio weights, a problem in Eqg. (58) is that the
coefficient of risk aversion vy is present. Notice that this is a different coefficient
than the one that appears in the optimal portfolio Wi of the smaller set R, ;:

We = Y= Srr( #r— M),
where we now also add a ~ to indicate that a variable refers to the set of
benchmark assets R, ; only. It is only the zero-beta return n that is the same in
both problems, since we test whether there is intersection for a fixed value of 7.
Similarly, the expected returns on the portfalios W; and w* are different, and we
indicate these with Mg and m, respectively, i.e,, My = W3 ug, and m=w*u. In
order to substitute out the risk-aversion parameter v, note that

y=B—nA=Bz— nAg+ ay(n) 3. (v — Bi)

=Yt “J(”’)), Zs_sl( i~ Buw),
and that

~ 2
- Mg—7 Or(m)
YR == ®/ o~k == *

Wg SppWr Mg — 17

Using these latter two expressions, the optimal portfolio weights w.* can be
expressed as

Mg — 7 _
T Y 2ee0(m). (59)
Or(m)” + (Mr— M) ay(n) 2 (en — Bek)
The advantage of Eq. (59) is that it contains only variables that either result from
the initial optimal portfolio Wy, or from a regression of r,,, on R, ;.

Along the same lines, it is straightforward to show that the new optimal weights
wg are given by

) ( Or(n)
W,

*

W=

Br(m)” + (M = ) ay(m) 3o = Bug)
Again, this expression only depends on characteristics of the old portfolio, Wg,
and the regression output. Therefore, given the initial mean-variance efficient
portfolio W of the benchmark assets and the OL S-estimates of the regression in

)\TVFI - B'w*.  (60)

® As an aside, in terms of volatility bounds, notice that w,*y = — ¢,(1/7), i.e, the elements of
¢(v) in Eq. (5) that correspond to r,, ;. Thus, if we want to know the minimum variance stochastic
discount factor from (R, ; Iy 1), rather than from R,, ,, the projection coefficients corresponding to
the additional assets r,, , are given by — 3 a,(n).
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Eqg. (20), Egs. (59) and (60) answer the question how to adjust the portfolio in
order to obtain the new mean-variance efficient portfolio w*.

In order to give an interpretation of the new portfolio weights in Egs. (59) and
(60), it is useful to rewrite them in the following way:®

-
w=——3"Tu , 61
0(7])2 J(”’)) ( )
and
6 2 m-—
wi = BT (62)
0(n)” Mr—m

If there is only one new asset, i.e., N=1, Eq. (61) first of all shows that «,(n)
determines the sign of the new portfolio weight w,* (given that m— »n > 0): if
Jensen’s alpha is positive (negative), the investor can improve the performance of
his portfolio by taking long (short) positions in the new asset. When there is more
than one new asset, the sign of the portfolio weights is not only determined by the
sign of Jensen’s alpha, but also by the inverse of the covariance matrix of &, ;. If
the mean-variance frontier is not strongly affected by the introduction of the new
assets, then (05(n)?/0(n)*)(m— 1) /(M; — 1) = 1, and the coefficients B show
which of the old assets are replaced by the new assets.

Finally, notice that we did not consider a risk-free asset. The portfolio weights
given above are for the tangency portfolio when the zero-beta rate is . If a
risk-free asset is available, we can replace  with R in Egs. (61) and (62) and
these equations still give the portfolio weights for the tangency portfolio. The new
tangency portfolio has an expected return equal to m, whereas the old tangency
portfolio has an expected return M. Notice though, that in case a risk-free asset is
available it is easy to shift funds between the tangency portfolio and the risk-free
asset and to let the expected portfolio return vary. For practical purposes, the
interest may be in the new portfolio w* that has the same expected return as the
old portfolio. Given that there is a risk-free asset available, this is easily achieved
by letting m— R" = M, — R". In this case, Egs. (61) and (62) simplify to

. m-R »
Wr = 02 EseaJ (63)
and
R
WE = W~ BW, (64)

Notice that here it is not necessarily the case that the weightsin w," and ws sum
to one. The investor will have to borrow or lend a fraction (1 — ¢ Wy — ¢ty W,") to
achieve an expected portfolio return equal to m.

® Here, we use the fact that 65(1)? /(g — 1) = Ag — 1Bg, and that Az — Bg + ay(n)3.," (o —
Bi)= A—nB.
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5.3. Interpretation of spanning and intersection tests in terms of performance
measures

Finally, we want to relate the Wald test statistics presented in Section 3 to the
performance measures discussed above. It will be shown that these test statistics
can be expressed as changes in maximum Sharpe ratios of R, ; and (R, 1, I, 1),
respectively. Therefore, they have a clear economic interpretation. In order to
interpret the test statistics for intersection and spanning in terms of performance
measures, recall the basic regression model in Eq. (20):

M= a+BRy g+ ey
where intersection for a given value of n means that

ay(n) =a+ ( By~ w)n=0.
Thus, the restrictions on the regression coefficients that are imposed by the
hypothesis of intersection have a natural interpretation in terms of Jensen’s alphas,
and—as noted before—testing whether there is intersection for 7, is equivalent to
testing whether Jensen’'s alphais zero. Testing for spanning is of course equivalent
to testing whether the Jensen’s alphas are zero for all values of 7.
It can be shown that the test statistics for intersection and spanning, &' and
W, presented in Section 3.4, can also be interpreted in terms of Jensen’s alphas
and Sharpe ratios. To see this, start again from the specification of the regression
equation in Eq. (23):

re1=(Iw® (1R, 1))b+ ey

Note that (using partitioned inverses) the asymptotic covariance matrix of the
OLS-estimates of b, b in Eq. (23) is given by

-1

>

£E

!

MR
MR E[ R Rt]

1+ pr3riMr  —MrIRR

- 2,;,% MR F;l%
Straightforward algebra shows that premultiplying Eq. (65) with H(%),, and
postmultiplying with H(n);,, as defined in Eq. (25), yields

where the Sharpe ratio 0x(n) was defined in Eq. (56). Since from the analysis
above we know that the term h(n),,, as defined in Eq. (24b) equals a,(n), Eq.
(57) can be used to rewrite the test statistic for intersection, £\, as

Go(n) 3.8 (n) _ [ 1+0(n)°
1+ 5R(n)2 1+ éR(7l)2 ,

3. ®

EE

(65)

int _
w =T

(67)

where éR(n), 6(n), and a,(n) are the sample Sharpe ratios and Jensen’s apha,
respectively. Eq. (67) is a well-known result from, e.g., Jobson and Korkie (1982)
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and Gibbons et al. (1989). It clearly shows that the Wald test statistic for
intersection can easily be interpreted as the percentage increase in squared Sharpe
ratios scaled by the sample size. Under the null hypothesis that there is intersec-
tion, 6(n) = 6x(n) and the increase of the sample Sharpe ratios scaled by the
sample size T (as in Eq. (67)) will asymptotically have a x 3, -distribution.”

MacKinlay (1995) uses a similar interpretation of the Wald test statistic in case
returns are normally distributed together with Eq. (57) to distinguish between
risk-based alternatives for the CAPM and nonrisk-based alternatives. His analysis
suggests that for reasonable values of the maximum attainable Sharpe ratios a
multifactor model like the one proposed by Fama and French (1996) cannot
explain the deviations from the CAPM that are found in the cross-section of asset
returns.

For the spanning test statistic, a similar interpretation can be given. Let 1
denote the expected return on the global minimum variance portfolio of R, 4, i.e,
ng = Bz/Ag, and let the variance of this portfolio be given by (o)?. Similarly,
let (o°)? be the global minimum variance of (R, Iy, ,). It is shown in
Appendix B that the Wald test statistic for spanning, &3®", can be written as

1+ 6(79)° (69)°

1+ O(Q)° (697

This shows that the spanning test statistic consists of two parts. The first part is
similar to the test statistic for intersection in Eq. (67) and is determined by a
change in Sharpe ratios. The Sharpe ratios in Eq. (68) are for a zero-beta rate
equal to the (in-sample) expected return on the globa minimum variance portfolio
however, and therefore are the slopes of the asymptotes of the mean-variance
frontier. Notice that the slope of the upper limb of the frontier is simply the
negative of the slope of the lower limb of the frontier, and therefore, the squared
Sharpe ratios for those two extremes are the same. The first term of the spanning
test statistic in a sense measures whether there is intersection at the most extreme
points of the frontier (i.e., whether there is a limiting form of intersection if we go
sufficiently far up or down the frontier). The second term of the statistic in Eq.
(68) is determined by the change in the global minimum variance of the portfolios,
and measures whether the point most to the left on the frontier changes or not. Put
differently, the first term measures whether there is intersection for a mean-vari-

ance investor with a very small risk aversion (y=0), while the second term
measures whether there is intersection for a mean-variance investor with a very

span _
w

(68)

7 Gibbons et al. (1989) study the small sample properties of this test statistic in case there is a
risk-free asset, as well as the distribution under the alternative hypothesis. Kandel and Stambaugh
(1987) and Shanken (1987) extend their results to the case where the mean-variance efficient
benchmark portfolio (or intersection portfolio) cannot be observed but has a given correlation with the
observed proxy portfolio.
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high risk aversion (y — «). Note that in the second term, the old global minimum
variance appears in the numerator and the new global minimum variance in the
denominator, since this variance can only decrease as assets are added to the
portfolio. Therefore, both terms in Eq. (68) are always larger than or equal to one.
Jobson and Korkie (1989) derive a similar result for a likelihood ratio test for
Spanning.

6. Specification error bounds and inter section

As in the previous section, in this section the focus will be on deviations from
intersection rather than on intersection itself. In a recent paper, Hansen and
Jagannathan (1997) analyze specification errors in stochastic discount factor
models which, in some specia cases, can be interpreted as deviations from
intersection. They derive bounds on the magnitude of these specification errors.

Recall from the discussion in Section 2.1 that each asset-pricing model assigns
a particular function to the pricing kernel M, ;. Hansen and Jagannathan (1997)
note that the pricing kernels implied by most asset-pricing models do not yield
correct asset prices, either because the asset-pricing model can only be viewed as
an approximation, or because of measurement error. Measurement errors are for
instance often considered to be an important problem in measuring consumption
and testing consumption-based asset-pricing models. Therefore, the pricing kernel
implied by an asset-pricing model will in general only serve as a proxy stochastic
discount factor that will not yield the correct prices or expected payoffs of the
assets under consideration. In a related paper, Balduzzi and Robotti (2000) focus
on the estimation of risk premia as a separate problem from the testing of
asset-pricing models. They estimate risk premia by looking at the prices assigned
by the minimum variance kernel to risk variables, or by the prices of hedge
portfolios that are the linear projections of risk variables on asset returns.

The interest of Hansen and Jagannathan is in the least squares distance between
a proxy stochastic discount factor and the set of valid stochastic discount factors.
They derive a lower bound on this distance, the specification error bound, as a
measure of how well the model performs. These specification error bounds will be
derived formally below and it will aso be shown that these bounds have a clear
economic interpretation in terms of maximum pricing errors or maximum expected
payoff errors implied by the asset-pricing model. Hansen and Jagannathan (1995)
derive the limiting distribution for the corresponding estimator of the specification
error bounds.

It turns out that if we take the minimum variance stochastic discount factor for
the subset R, , as a proxy stochastic discount factor for the larger set of assets
(R4 1y Mii1), We can interpret the specification error bounds in terms of mean-
variance intersection and the performance measures discussed in the previous
section. In particular, provided that both the proxy stochastic discount factor and
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the discount factors that price R, ; and r,. , correctly have the same expectation
v, the squared specification error bound scaled by v turns out to be equal to the
difference between the maximum squared Sharpe ratio implied by the set R, ;
and the maximum squared Sharpe ratio implied by (R,, ;, 1, ;). This aso alows
us to interpret the specification errors in terms of mean-variance portfolio choice
again. Given that a mean-variance investor is aware of the fact that a portfolio
chosen from the subset R, ; is suboptimal relative to a portfolio chosen from the
larger set (R, ;, ry.;), the specification error bound gives an estimate of the
extent to which the portfolio is suboptimal in terms of Sharpe ratios.

6.1. Specification error bounds

As noted above, in Hansen and Jagannathan (1997), the interest is in proxy
stochastic discount factors, denoted by y,,, that assign approximate prices to
portfolio payoffs. For instance, the CAPM implies that the proxy is of the form
a+ bR, ;, with R[".; the return on the market portfolio. As before, let RP, ; be
the return on some portfolio, not necessarily mean-variance efficient, such that
wPy, = 1. The expected price assigned to such a portfolio by a proxy stochastic
discount factor will be denoted by 72(RP, ,):

E[ yt+1R'?+l] = 7Ry, ,). (69)

Of course, vaid stochastic discount factors M,, ; would assign a price w(RP, ;)
=1 to any portfolio wP that satisfies wPi, = 1. Because the proxy y,,, may be
derived from an asset-pricing model that is strictly speaking not valid, or because
the proxy may be measured with error, the prices assigned by the proxy,
7?(RP, 1), will in general not be equal to one. We only consider payoffs that are
returns, i.e., payoffs with (correct) prices equal to one. Hansen and Jagannathan
(1997) take more general payoffs x,, , with current prices g,. Given that we want
to establish the relation between specification errors and mean-variance intersec-
tion, the use of returns is not very restrictive however. Moreover, the results
derived below can easily be adjusted to the results of Hansen and Jagannathan
along the lines of Section 4.1, where we incorporated conditioning information by
alowing for payoffs z ® R, ; with current prices .

A second way in which the results here are somewhat more restrictive than the
ones in Hansen and Jagannathan (1997) is that we will always consider valid
stochastic discount factors M(v),, ; that have the same expectation as the proxy
Yis 1 i€, v=ElYy,,,]. This may be considered as redtrictive, since this assump-
tion in fact requires that the proxy assigns the correct price to the risk-free payoff,
if it exists. Once more, given that the interest here is in the relation with
mean-variance intersection in the absence of a risk-free asset, and given that we
always defined intersection for a known value of v, thisis not restrictive for our
purposes.
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The problem addressed in Hansen and Jagannathan (1997) is to derive a lower
bound & on the distance between vy, ; and the set of stochastic discount factors
that price R, , correctly, which we denote as .#:

o= min 1Yes1 = Me(0) 41l (70)

{MR(0)y €L}

where || x,, ,ll = E[ X2, ;1*/2. Because v, , and Mg(v),,, have the same expecta-
tion, the distance between vy, ; and Mg(v),, ; in Eq. (70) is equa to the standard
deviation of y,,; — Mg(0),, 1, i€, [1Visq — Mg(0)ill= o (Y1 — Mg(0),, 1)
We will denote the stochastic discount factor that solves Eq. (70) by Mg(v),, ;.
Thus, M(v),., is the stochastic discount factor that prices R, ; correctly and
that is closest to y,, , in aleast squares sense.

To solve the problem in Eq. (70), consider the least squares projections of ., ;
and Mg(v),,; on R, and a constant:

o1 = Proi( Vi1 1 LR 1) =0+ L(0) (R — mg),

Yer1=Ye1 U (71)
and

Mg(v) 1= Projl(Mg(0) 1411 LR 1) =v+ () (Rt — mr),

Me(0)t+1=Mp(0) 1 + Wy, (72)

where mg(v),,; is the minimum variance stochastic discount factor derived in
Section 2.1, and ¢(v) is defined in Eqg. (5). The projection coefficientsin Eq. (71)
are given by 3213, , with 3 the K X 1-vector of covariances between R, ,
and y,,,. Noting that ||y,,; — Mg(0),, I =Varly,,; — Mg(v),.,], it easily
follows that

Var[Yt+1_ MR(U)H—l] =Var[91+1_ mR(U)t+1] +Varfug, 3 — W]
Zvar[)A’Hl_ mR(U)t+1]-

Because ¥, — M(v)y 1 = Yiq — (Mg()y g + Ui, o) and Uy, is orthogonal to
R, 1, this lower bound on the variance of vy, ; — Mg(v),, , is attainable for the
stochastic discount factor

Me(0) 41 =Mr(0) 141+ Upsq, (73)
and we have that
azzvar[ytJrl_mR(U)Hl]' (74)

A more detailed characterization of M(v),,, and & will be given in the
following section. For this moment, note that subtracting the variable vy, , —
Mg(v),, , from the proxy vy, , yieldsavalid stochastic discount factor. Therefore,
as noted by Hansen and Jagannathan (1997), v,,; — Mg(v),,, is the smallest
adjustment in a least squares sense that is necessary to make y, ., a valid
stochastic discount factor, and 6 is a measure of the magnitude of this adjustment.
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Hansen and Jagannathan also show that & can be interpreted as a maximum
pricing error. In order to do so, let w denote a position in R, ; that does not
necessarily satisfy the requirement 'y, = 1, i.e, o isin general not a portfolio.
Denote the payoff of such a position as R(w),,,; = o'R,,; and note that the
correct price of such a position is

E[@'Ri;1Me(0)] = 7(R(®)111) = o,

whereas the price assigned by the proxy V,, ; is 7% R(w),, ). The pricing error
of the proxy vy,,, is therefore 7(R(w),, ;) — 7(R(w),,,), and Hansen and
Jagannathan show that & provides an upper bound on the absolute value of this
pricing error, for positions that have a unit norm:
5= max [T (R(®)111) — T(R(@) 1)l
R(@)y1 1, IIR(@)y 4]l =1

Thus, by looking at a particular class of positions, i.e., positions with a unit norm,
& can be interpreted as the maximum pricing error assigned by the proxy to the
payoffs of those unit norm positions.

A more intuitive interpretation can be given if we consider errors in expected
payoffs, or expected returns, rather than pricing errors. Recall that a valid
stochastic discount factor assigns the correct expected return to a one-dollar
investment in portfolio wP (for which, by definition, w”(= 1) which, using Eq.
(3), can be written as

E[RP, ] = % B COV[ MR(U)H—laRPJrl] ,

v

i.e, as one over the expectation of the pricing kernel, which equals the risk-free
rate if it exists, plus a risk term that is determined by the covariance of the
portfolio return and the pricing kernel. Observe that use of the proxy, that also has
expectation v, would give an approximate expected return E[RP, ,] for a one-dol-
lar investment in wP that in general differs from E[RP, ,], because the covariance
of the proxy with the portfolio return will be different from the covariance of a
valid stochastic discount factor with the portfolio return, i.e.:

B[R, | = % _ Cov[ Y. 1, RE, 4] .

v

From these relations, we define the expected return error

Cov| My(v — ,RP
E°[RP,.] —E[RP,,] = [Me)us =Y REs]. (75)

2

for which the Cauchy—Schwarz inequality implies that
0 (Yir1 = Mr(v)r1) o (RE )

v

|Ea[ Rtp+l] - E[ RP+1]| =<
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Since this inequality holds for all valid stochastic discount factors Mg(v), . ,, it
also holds for the stochastic discount factor that solves Eq. (70), Mg(v)y, 1,
implying

60 (R
ERE ] — B[R]l ),

Since for a given value of v, the Sharpe ratio is defined as SW(RP, ;) = (E[RP, ;]
—1/v)/0(R?, ;), and the approximate Sharpe ratio, i.e., the Sharpe ratio accord-
ing to the proxy Yy, ,, a Sh*(RP, ) =(EfRP ;1-1/v)/0(RP, ), this can be
rewritten as

1)
|Sha( Rt+1 Sh( R&l)|S ; (76)

Thus, using errors in expected returns rather than errors in assigned prices, the
specification error bound & scaled by the expectation of the proxy has a very clear
interpretation in terms of Sharpe ratios. For any portfolio wP formed from the
assets in R, ,;, the absolute difference between the approximate Sharpe ratio
assigned to the portfolio returns by vy, , and the actual Sharpe ratio of the
portfolio can never exceed the scaled specification error bound 6 /v. Thisinterpre-
tation is also somewhat easier than the one given for the expected payoff error in
Hansen and Jagannathan (1997), where they focus on the maximum error in
expected payoffs for positions » with unit norm.

6.2. The relation between specification error bounds and intersection

The purpose of this section is to show that there is a close relation between
intersection and a special case of the specification error bounds. In particular, if
the interest is in stochastic discount factors that price the returns (R, 1, Iy, )
correctly and we choose for the proxy V,,, the minimum variance stochastic
discount factor based on the subset R, ;, mg(v),, ;, the specification error bound
can simply be expressed as a deviation from intersection, as was the case with the
performance measures discussed in Section 5. To show this, let us first give a
more precise characterization of M(v),, ; and & than given in Egs. (73) and (74).

Recall that Mg(v),. , isgiven by mg(v),, ; + U, Where U, =Y. 1 — Yii 1
Using Egs. (71) and (72), this implies for Mg(v),, ;:

Me(v)tr1 =0+ @(0) (Res1 = BR) + Vi1 — {0+ £(0) (Rt — mr)}
=Yerr + (@(0) = £(0)) (Rey1 = mg)
=Yt {( ) ZRy}’ 3rR(Ri1— mr), (77)
and for §2:

= {( bk — UMR) - ERy}, 2@%{( bk — UMR) - ZRy}' (78)
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For further reference, it is useful to define the vector x(v) as
k() =@(v) = L(v) = 3RA{(w — vir) = Zry}- (79)

Notice that the expressions for k(v) and 82 given here differ sightly from the
ones given in Hansen and Jagannathan (1997) because we explicitly included a
constant in the projections of M(v),,; and y,,, on R, ;.

The expressions for Mg(v),, , and 82 in Egs. (77) and (78) provide a basis to
relate the specification error bounds to intersection. In case of intersection, the
interest is in stochastic discount factors that price both R, and r,,, i.e, in
M(v),, ;. Therefore, in the expressions (77) and (78), we should leave out al the
R-subscripts, replace R, ; with the vector (R, ,r;, ), and note that all vectors
and matrices have dimension K + N rather than K. As before, with intersection
we want to know if the minimum variance stochastic discount factor based on
R, only, mg(v),,, can be used to price both R,,, and r,, . In terms of
specification errors, this means that we want to use mg(v),, ; asaproxy Yy, , for
the stochastic discount factors M(v),, ;. Also, in the spirit of the previous section,
when using mg(v),, ; as a proxy, we recognize beforehand that mz(v),, ; will not
assign the correct prices to r,, ,, but the interest is in the extent to which the
assigned prices are wrong, i.e., the extent to which there are deviations from
intersection, as measured by §.

Recall that the proxy y,,; = mg(v),, ; iS now given by

Vi1 = mR(U)t+1= v+ @R(U)/(Rt+l_ MR)’
er(v) = ZI;I%(LK — UUR)-

Substituting these expressions into Eqgs. (77) and (78), properly adjusted for the
fact that the interest is now in stochastic discount factors that price both R, ; and
I 1 Straightforward algebra shows that

82= {(LN - U“’r) - ErREIE}%( lk — UI-LR)}, Zf;l{(LN - UMr)
— Zr3ra(w — vmup) } = viy(L/0) 3y (1/0), (80)
or
1/2

{0(1/0)* = 0x(1/0)%) ",

where 3,__ isthe covariance matrix of the residuals &, , from aregressionof r, ,
on R, ; and a constant. Also, the stochastic discount factor closest to vy, ; isnow
given by

M(0) 1= Mr(0) 11+ vay(1/0) 3 e, =M(0) 1 (81)

Thus, if we want to use the stochastic discount factor that is on the volatility
bound of R,,;, as a proxy stochastic discount factor for the larger set (R, 4,

v
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r..,), then the valid discount factor that is closest to mg(v),, , is the discount
factor with the same expectation v that is on the volatility bound of (R,, 1, ry, 1)
Therefore, & is the least squares distance between two stochastic discount factors
that are on the volatility bounds of (R,, , r,, ;) and itssub-set R, ;, respectively,
and is a straightforward measure of the deviation from intersection, which shows
the close relation between this special case of the specification error bound and
intersection. This relationship also follows from Eq. (80), which shows that § is
directly related to the change in the maximum squared Sharpe ratios that can be
attained with R, ; and (R, , I, ), respectively. It also follows that § measures
the difference between the variances of the two minimum variance kernels:
o= Var[rT(b)t+l] Var[mR(U)H.l]

An estimate of 82 can easily be obtained from the sample equivalent of Eq.
(78), which we will denote by 52. If the interest is in whether or not there is
intersection, then we want to know whether or not 6 = 0, and this hypothesis can
easily be tested as outlined in Section 3. From the expression in Eg. (80) and the
discussion in previous sections, it follows that under the null hypothesis that
6=0,

52
Uz(l + éR(l/U)z)

In case of specification errors however, the interest is in the case where § is
strictly positive rather than zero. For that case, the limiting distribution of & is
derived in Hansen and Jagannathan (1995).

Once we concede that y,, ; = mg(v),, , isnot avalid stochastic discount factor
for (R, 4, Iy, 1), Wwe want to have a measure of the difference between mg(v),, ;
and the valid stochastic discount factor that is closest to it, m(v),,,. The
specification error bound & is one such measure, allowing us to make statements
about how good or how bad the proxy performs. The fact that 62 is equal to the
change in maximum Sharpe ratios, makes the measure 6 also useful in terms of
the optimal portfolio choice for a mean-variance investor. Recall that a mean-vari-
ance investor that initially only investsin R, ; can improve his Sharpe ratio from

6:(1/v) to 6(1/v) by including r.,, in his portfolio. Given that there is no
intersection between the mean-variance frontiers of R, and (R,,, f,,,), o
provides an estimate for the potential increase in Sharpe ratios. Notice though that
such an estimate can also be derived directly from the Wald test statistic for
intersection.

~ XN (82)

7. Summary

The purpose of this paper is to analyze and illustrate the concept of mean-vari-
ance spanning and intersection. We show that there is a duality between mean-
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variance frontiers and volatility bounds and that mean-variance spanning and
intersection can be understood both in terms of mean-variance frontiers and
volatility bounds. The paper shows how regression-based tests can be used to test
for spanning and intersection and how these regression based tests are related to
tests for mean-variance efficiency, performance measurement, optimal portfolio
choice and specification error bounds.
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Appendix A. The graphical relationship between mean-variance frontiers and
volatility bounds

In this appendix, we will show some graphical relations between the volatility
bound and the mean-variance frontier for a set of asset returns R, ., with
expectation w and covariance matrix Y. We will start from a point on the
volatility bound where the expectation of the minimum variance pricing kernel is
v, i.e,

E[m(v)q] =v. (83)
Using the efficient set variables A, B, and C, and the variance of m(v),,, as
given in Eq. (7), the variance of m(v),, ; can be written as

Va[m(v), 1] =A—2Bv+ Cv?, (84)

which is a simple quadratic function of v that describes the volatility bound. The
second panel of Fig. 1 gives a plot of Var[m(v), ;] as a function of v.

As shown in Section 2.2, each minimum variance pricing kernel m(v),, ,
corresponds to a mean-variance efficient portfolio that has a zero-beta rate
n=1/v. Recall that a mean-variance efficient portfolio satisfies

w=y 3 u—m),
for a given risk aversion y and associated zero-beta rate m. Using J/w=1 it
follows that

v=B—nA.
Furthermore, the expected portfolio return u'w satisfies
C—-nB
B—nA’

pw=y(C—nB)=



F.A. DeRoon, T.E. Nijman / Journal of Empirical Finance 8 (2001) 111-155 149

Mean-Variance Frontier

E[R(V)]

m=

Volatility Bound stdev[R(v)]

m=C/B

Var[m(v)]
3
n
S

0 BIC AB v = Em]

Fig. 1. The figure shows the relationship between the mean-variance frontier (upper panel) and the
volatility bound for the stochastic discount factor (lower panel). The letters A, B, and C correspond to
the efficient set constants as defined in the text. The markers show the corresponding points on the two
graphs.

Denote the return on the mean-variance efficient portfolio with zero-beta rate
n=1/v as R(v),,,; and define w(v) = E[R(v),, ,]. From the previous relations
u(v) can be written as a function of v:
B—-Cv
w(v) =g
Also, the variance wXw for a mean-variance efficient portfolio w can be written
as a function of u(v):

(85)

Ap,(u)2 —2Bu(v) +C
AC — B2 ,

Var[ R(U)l+l] =
or as a function of v:
A—2Bv + Cv?

Va[R(v) 4] = (A—Bv)z

: (86)



150 F.A. DeRoon, T.E. Nijman / Journal of Empirical Finance 8 (2001) 111-155

The first panel of Fig. 1 shows the standard mean-variance efficient frontier,
where the expected portfolio return w(v) is plotted as a function of the standard
deviation of the portfolio return SD[ R(v),, ;1= ValR(v),, ;.

In this appendix, we will restrict ourselves to characterizing the relation
between the volatility bound and the mean-variance frontier in terms of » and
w(v). Given the relations (84) to (86) above, it is straightforward to derive the
variances of the pricing kernel and the associated mean-variance efficient portfolio
as well.

To see the relation between the two graphs, first of all notice that the expected
portfolio return w(v) is decreasing in v, since from Eq. (85) we have that

ou(v) BZ— AC

W (A—uB)’

and where the inequality follows from the fact that AC > B2, by the Cauchy—
Schwarz inequality (see also Ingersoll, 1987, p. 85).

Next, from Eq. (85) it also follows that for v = 0 we have that u(v) = B/A,
which is the expected return on the Global Minimum Variance portfolio. Looking
at the volatility of the pricing kernel, we can of course aso distinguish the Global
Minimum Variance Pricing Kernel, the expectation of which can be found using
Eq. (84):

_var[m(v) 4]

0= ————— = -2B+2C" »u" =B/C.
1%

The second derivative 2C is always positive, which confirms that this is indeed a
minimum. Using Eq. (85) again, v = B/C corresponds to u(v) = 0. Thus, when
the expectation of the kernel is zero, v =0, this corresponds to the Global
Minimum Variance portfolio on the mean-variance frontier, whereas a zero
expected return for the mean-variance efficient portfolio, u(v)=0, in turn
corresponds to the Global Minimum Variance kernel on the volatility bound.

Having characterized the global minima of the two frontiers, the next step is to
look at the other extremes, i.e., where v — + and where u(v) - +o. Taking
limits and using Eq. (85), we get that

B-Cv C B-Cv C

lim =—, lim = —,
vo>-—oA—Byv B s5+«A—Bv B

Thus, both extremes of the left and right limb of the volatility bound correspond to
the same single point on the mean-variance frontier, where the expected portfolio
return is u(v) = C/B. Since by the Cauchy—Schwarz inequality C/B> B/A if
B > 0, the point where u(v) = C/B will plot on the upper limb of the mean-vari-
ance frontier. B > 0 isthe typical case, since thisimplies that with positive interest
rates or zero-beta returns, efficient portfolios have positive expected returns. It is
useful to note that u(v) = C/B corresponds to the point where a straight line
through the origin is tangent to the mean-variance frontier (since v » +©
corresponds to n = 0).

<0,




F.A. DeRoon, T.E. Nijman / Journal of Empirical Finance 8 (2001) 111-155 151

Finaly, by rewriting Eg. (85) as
B—Au(v)
U i —— ’
C—Bu(v)

we can find the point(s) on the volatility bound that correspond to the extremes of
the mean-variance frontier, i.e., where u(v) — 4. Taking limits again, we get
that

 B—Au(v) A B—Au(r) A

lim —==—, Iim —=—.

p)—-»C—=Bu(v) B uw-+=C—Bu(v) B

Notice that we already discussed this result in Section 2 since v=A/Be n=
B/A, i.e, the case where the zero-beta return eguals the expected return on the
Globa Minimum Variance portfolio and where there are no corresponding mean-
variance efficient portfolios, since the asymptotes of the mean-variance frontier
cross the y-axis at B/A, but there is no line tangent to the frontier starting at this
point. Again, if B> 0, then the Cauchy—Schwarz inequality impliesthat A/B >
B/C, implying that this point will be located on the right limb of the volatility
bound. Finally, it is useful to note that if we would plot the volatility bound as the
standard deviation of the pricing kernel, Varlm(v),, 1%, as a function of v,
then v = A/B would correspond to the point where a straight line through the
origin is tangent to the volatility bound, similar to the mean-variance frontier when
w(v)=C/B.

Appendix B. The spanning test statistic in terms of Sharpe ratios

In this appendix, we show how the spanning test statistic can be interpreted in
terms of Sharpe ratios, a result that was presented in Section 5.3. Recall from
Section 5.3 that the covariance matrix of the OLS-estimates b equals
1+ M'RZEI% Mg IU’,RZIEI%

> T 1! - N
_ERI%/-LR ZRI%

foro)

Premultiplying with Hg,,, and postmultiplying with Hg,,, as defined in Egs. (552)

and (55b) yields

1+ pp3pakr  —Mr3RR
— 3pr g Srr

1+C, —Bg

- BR AR '

H/

span

Hspan(Em T 1

=3 ®T!? (87)
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the inverse of which is

s-1g T Ag Bg 88
e © A1+ Cq) —BZ By 1+Cgf (88)
Similarly, for hg,, in Egs. (55a) and (55b) we have
oy
Bk —1
o
1 0 0 ’
e g B b—IN®(b)= szK.—l . (89)
ay
Bk — 1

Premultiplying Eq. (88) with hg,,, and postmultiplying with H,,,, we get, after
replacing population moments by their sample equivalents:

AR@3,78 —2Br@3, (on — Buc) + (14 CR) (o — Buc ) 2 (en — Bu)

span _ T - R
& Ar(1+Cg) — B3

(90)

Next, note that the maximum attainable Sharpe ratio from R, ;, for n = Bz /Ag,
is equal to

By \° B2
Ol — | =Ca— —.
AR AR

For simplicity, write A=Az +AA, B=Bz+ AB, and C= C; + AC, where the
definitions of AA, AB, and AC follow from Egs. (54), (55a) and (55b).
Evaluating 6(n) in this same value of 7, we get

2

B \° B B
ol —| =C-2B— + A=
AR AR

Br B
= Cq+AC—2(By+AB)— + (Ag+AA) —
AR AR

2 2

B
ARAC — 2B,AB+ —AA
AR

1
+ —
AR

B
- QR(_R
Ar
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Dividing by (1+ Cg) — B3/Az =1+ 65 ((Bg)/(AR))? gives

2 2 2
Br R Br
ol — | —0x| — ARAC —2BAB+ —AA
Ar Ar Ar
Br 2 Ar(1+Cg) — BR
1+ 6g| —
Ar

B 2
ARAC — 2BLAB + CR+1—1—0(—R) AA

Ar

Ag(1+CR) —Bé
ARAC—2BAB+ (1+Ci)AA AA
AR(1+ CR) - Bé AR .

Replacing al population moments with their sample equivalents again and noting
that 1/Ay is the variance of the global minimum variance portfolio of R, 4, i.e,
1/Ag = (02)?, and similarly, 1/A = (¢ °)?, we finally obtain

i =) af =
o Ag Rl AR A-Aq
Span — S+ T—
~ [ Bg Ag
1+ 6g| —
AR
~ 2 ~ 2
1+6(n,g) (chO)
=T s b 2]
1+9R(”’7R) (‘7)
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