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Abstract

We revisit the empirical evidence on the tournament hypothesis for the behavior of
mutual fund managers provided by Busse (2001). First, we give analytical expressions
for the biases arising in volatility estimates (based on both daily and monthly data)
due to first-order autocorrelation effects in daily fund returns. These calculations show
that tests of the tournament hypothesis based on monthly data are more robust to
autocorrelation effects than tests based on daily data. Second, to address the impact of
cross-correlated fund returns on these tests, we provide explicit conditions under which
the tests proposed in the literature have appropriate size properties.
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1 Introduction

During the last two decades, the mutual fund industry experienced tremendous growth
both in number of funds and amount of assets under management. It is not surprising that
this industry attracts a lot of attention of the regulatory agencies that would like to ensure
that fund managers select investment strategies that are optimal from the investors’ point
of view. The joint occurrence of two well-established facts in the mutual fund industry may
lead to an agency conflict between mutual fund managers and mutual fund shareholders.
First, managers’ compensation is typically based on a percentage of the fund’s net assets
(see, e.g., Khorana, 1996). Second, the top-performing funds receive the bulk of new cash
inflows, while bad performance does not lead to significant outflows (see, e.g., Sirri and
Tufano, 1998). Together with the observation that at least some investors look at calendar
year fund performance for their investment decisions (see, Chevalier and Ellison, 1997,
p. 1183), these effects suggest that mutual fund managers participate in annual tournaments
where they compete for the top rankings. This leads to the conjecture that funds performing
badly during the first part of the year have an incentive to increase risk in the second part
of the year in order to try to catch up with mid-year winners at the end of the year. This
conjecture is called the tournament hypothesis.

A number of studies verifies the tournament hypothesis from an empirical point of
view. Brown, Harlow, and Starks (1996) find evidence supporting the tournament hypo-
thesis using a contingency table methodology applied to monthly data of 334 growth funds
over the period 1976-1991. This technique compares volatility changes from the first to
the second semester with mid-year performance. Koski and Pontiff (1998) use regression
analysis and find a negative relation between interim performance and subsequent change
in risk, in line with the tournament hypothesis. Koski and Pontiff (1998) use 798 domestic
equity funds from 1992-1994. Finally, Chevalier and Ellison (1997), using 398 growth
and growth&income funds from 1982-1992, obtain different regression results depending
on whether fund risk is measured on the basis of fund portfolio holdings or monthly fund
returns.

While previous studies, using monthly fund returns, have found strong evidence in favor
of the tournament hypothesis over the period studied, Busse (2001) finds no such evidence
using the contingency table methodology applied to daily data of 230 US domestic equity
funds in 1985-1995 (new entrants after 1984 are not included). This appears surprising,
since daily data provide, in principle, much more precise volatility estimates and hence
tests based on daily data can be expected to be more powerful in detecting evidence in
favor of the tournament hypothesis than tests based on monthly data. Busse (2001) offers
two explanations for this apparent paradox. First, Busse (2001) argues that biases in
monthly volatility estimates due to autocorrelation in daily fund returns may adversely
affect the tests based on monthly data. Such autocorrelation could be caused by mutual
fund managers loading on small stocks that exhibit first-order autocorrelation due to non-
synchronous trading effects (compare, e.g., Boudoukh, Richardson, and Whitelaw, 1994).
Second, Busse (2001) notes that standard statistical tests used so far in the literature rely
on the contestable assumption that mutual fund returns are cross-sectionally independent.

In this paper, we analyze both the impact of autocorrelation and cross-correlation on
tests of the tournament hypothesis from an analytical point of view. First, we calculate the
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biases arising in volatility estimates based on monthly or daily return data due to first-order
autocorrelation in the returns. More precisely, we express the ratio of the volatility over
the second part of the year with respect to that over the first part of the year (henceforth,
“standard deviation ratio” or SDR) in terms of the autocorrelation of daily fund returns.
We do this both for volatilities estimated using daily data (henceforth called the “daily
SDR”) and for those based on monthly data (henceforth “monthly SDR”). These results
show that, in line with Busse’s (2001) claim, monthly SDR’s are indeed (in absolute terms)
more sensitive to changes in the autocorrelation pattern than daily SDR’s. However, the
smaller absolute bias in daily SDR’s has a larger effect on the distribution of the tests of
the tournament hypothesis, since volatility estimates based on daily data are more precise
compared to volatility estimates based on monthly data. Therefore, at the end of the day,
tests of the tournament hypothesis based on monthly data are more robust to autocorre-
lation in daily fund returns than tests based on daily data1. Thus, if the autocorrelation
effects are such that they adversely affect the tournament tests based on monthly data,
they would certainly affect the tests based on daily data. Our calculations also rationalize
some of the differences in the autocorrelation of daily returns that Busse (2001) reports for
funds whose monthly volatility increases/decreases during the second half of the year.

While we only consider contingency table tests as in Brown, Harlow, and Starks (1996),
Busse (2001) also reports empirical evidence concerning the tournament hypothesis using
regression techniques similar to those of Koski and Pontiff (1999). The reader will easily
convince herself that our arguments extend to those techniques, because our discussion
concerning both the bias in volatility estimates and the required form of (in)dependence
in mutual fund returns are independent of the actual test employed (be it a contingency
table test or a regression based tests). Busse (2001) also presents tests of the tournament
hypothesis based on ratios of the residual volatility of fund returns in an MA(1) model. The
conclusions from these tests for the 1985-1995 sample period are the same as those based
on the total return volatility (see Table 2 and Table 3 of Busse, 2001). These test results
are not corrected for cross-correlation effects in fund returns. However, it is important to
note that Busse’s (2001) and our results only hold for studies that are based on return data
only. Studies using actual mutual fund holdings (like, e.g., Chevalier and Ellison, 1997) do
not necessarily suffer from the biases discussed in the present paper. The extent to which
mutual fund holdings are correlated in cross-sections of mutual funds and the effect on tests
of the tournament hypothesis, still has to be established.

A second contribution of the present paper is the derivation of explicit conditions for the
validity of the tournament hypothesis tests. We show that these tests implicitly assume that
fund returns follow a factor structure with uncorrelated idiosyncratic errors across funds.
This is what Chamberlain and Rothchild (1983) have named a strict factor structure. If
this hypothesis is not satisfied, size corrected p-values can be obtained using simulation or
bootstrap techniques. When using these size corrected p-values, the evidence in favor of
the tournament hypothesis based on monthly fund returns disappears. Busse (2001) also
reports size corrected test results based on daily fund returns, finding again no evidence in
favor of the tournament hypothesis.

1Stated formally, the non-centrality parameter in the χ2-distribution arising from autocorrelation effects,
which is given by the squared bias over the sampling variance, is smaller if one uses monthly data.
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Clearly, the tests we discuss in this paper are based on fund returns only. Given the
limited power that these tests are found to have concerning the tournament hypothesis,
an obvious next step would be to check whether other sources of information may shed
more light on the empirical relevance of the tournament hypothesis. Besides mutual fund
holdings, flows into mutual funds might be interesting here as well. For instance, Berk
and Green (2002) discuss a model that relates flows to performance in rational markets
in an ingenious way. Based on such a model, it might be possible to extract information
from flows in and out mutual funds, that can be used to support or refute the tournament
hypothesis. This is outside the scope of the present paper.

The structure of the present paper is as follows. In Section 2, we present the analytical
results concerning the bias arising in volatility estimates based on daily and monthly data
and show that tests of the tournament hypothesis based on daily data are more severely
affected by autocorrelation effects than tests based on monthly data. Using these calcu-
lations, we also rationalize part of the results reported in Busse (2001) about the relation
between monthly volatility changes and changes in the autocorrelation pattern of fund re-
turns. Section 3 discusses the conditions under which the contingency table tests have the
appropriate size and gives an illustrative empirical example. Section 4 concludes and the
appendix gathers some proofs.

2 Effect of autocorrelated returns on SDR’s

Following Busse (2001), we consider first-order moving average (MA(1)) specifications for
daily fund returns. More precisely, using the same notation as Busse (2001), we have, for
fund p and day d,

rp1d = µp1 + θp1εp1,d−1 + εp1d, d = 1, . . . , D, (1)
rp2d = µp2 + θp2εp2,d−1 + εp2d, d = D + 1, . . . , Dy, (2)

where d = 1, . . . , D refers to the first part of the year (subindex “1”) and d = D+1, . . . , Dy

refers to the second half of the year (subindex “2”). In Appendix A, we calculate the
biases in the daily and monthly SDR’s as a function of the autocorrelation coefficients θp1

and θp2. These standard deviation ratios are crucial in the contingency table tests for the
tournament hypothesis that we shortly describe now. The daily SDR for fund p is given by

SDRp =

√√√√√
1

Dy−D−1

∑Dy

d=D+1 (rp2d − r̄p2)
2

1
D−1

∑D
d=1 (rp1d − r̄p1)

2 , (3)

where r̄p1 denotes the average return over the first part of the year and r̄p2 that over the
second part of the year. Let Med(r̄p1) denote the median average fund return over the first
part of the year and let Med(SDRp) denote the median SDR. The contingency table test
statistic for the tournament hypothesis given in Brown, Harlow, and Starks (1996) can now
be written as

Q =
(

number of funds with r̄p1 < Med(r̄p1) and SDRp > Med(SDRp)
total number of funds

− 0.25
)2

. (4)
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In the present section we assume that returns are independently distributed. The next
section focusses on the effect of cross-sectional dependence. Under the null hypothesis
that past returns and subsequent risk-taking are independent, and that returns are indeed
distributed independently over funds, Q follows asymptotically a χ2 distribution with one
degree of freedom. The corresponding critical values are routinely used in many empirical
studies. In Section 3 and Appendix B the distribution of the test statistic Q is derived
under more realistic assumptions.

From the results in the appendix, we find in first order approximation and under the
null of constant idiosyncratic volatility during the year (i.e., σεp1 = σεp2),

Monthly SDR bias ≈ θp2 − θp1, (5)
Daily SDR bias ≈ θ̄p(θp2 − θp1), (6)

where θ̄p denotes the average MA(1) coefficient for fund p over the year, i.e., θ̄p = (θp1 +
θp2)/2.

Busse (2001) claims that first-order autocorrelation in daily fund returns biases monthly
volatility estimates. The effect of the autocorrelation on the monthly SDR is apparent
from equation (5), and substantiates Busse’s (2001) claim. If, due to external reasons,
fund managers load more on less liquid stocks during the second part of the year, they
may increase first-order autocorrelation in daily fund returns and thereby influence the
monthly SDR. However, the daily SDR’s are also affected by the changing autocorrelation,
albeit to a lesser extent since θ̄ is (see Table 5 of Busse, 2001) at most 0.2. The relevant
question is what the effect of changing autocorrelation is on the contingency table tests.
This effect is measured by the non-centrality parameter in the χ2

1-distribution caused by the
daily autocorrelation. This non-centrality parameter is given by the squared bias over the
estimation variance (see, e.g., Godfrey, 1991, p. 18). This quantity can be calculated using
the relative efficiency of both SDR estimates as given in Busse (2001). Given the reported
daily MA(1) coefficients in Busse (2001) of about 0.172, the squared monthly SDR bias is
about (1/0.17)2 = 34.60 times that of the squared daily SDR bias. The relative efficiency
of daily SDR’s with respect to monthly SDR’s is given in Busse (2001) as about 47.33.
Comparing the squared biases to the relative efficiency of the volatility estimates, we see
that the contingency table test based on monthly data is more robust to changes in the first-
order autocorrelation of daily returns than tests based on daily data. The autocorrelation
effect alone can thus not account for the difference in empirical evidence concerning the
tournament hypothesis. If changes in the first-order autocorrelation of daily fund returns,
possibly generated by changes in the fund’s loading on small stocks, affect the contingency
table tests based on monthly fund returns, they will also affect the tests based on daily
fund returns and in the same direction. However, Table 2 in Busse (2001) shows that, for
some specifications, the monthly tests seem to confirm the tournament hypothesis, while
the daily tests do not. In all cases, the direction of the rejection of the monthly and daily
tests is opposite. We take this as evidence that changes in autocorrelation over the year

2This number is calculated as the MA(1) coefficient that induces a first-order autocorrelation which
equals the average autocorrelation reported in Panel B of Table 5 in Busse (2001).

3This number is reported by Busse at the end of Section III.B. It is calculated neglecting serial correlation
in daily fund returns.
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are not the driving factor of these empirical results. We argue that these results are more
due to ignored cross-sectional dependence which is also mentioned in Busse (2001). This is
the topic of further investigation in the next section.

Once more we want to emphasize that the analysis in this section refers to the marginal
effect of autocorrelation, not taking into account a possible interaction with the cross-
sectional dependence effect which is also mentioned in Busse (2001). In the next section, we
study the effect of cross-sectional dependence in more detail by providing explicit conditions
under which the tournament tests employed so far in the literature have the correct size.
Again, for expository reasons, we focus on the contingence table test of Brown, Harlow,
and Starks (1996), but the results readily extend to regression based tests.

3 Contingency table test and strict factor structure

In this section, we take a closer look at the conditions needed for the contingency table test
statistic (4) to have a χ2

1 limiting null distribution. Busse (2001) notes that cross-correlation
in fund returns violates the independence assumption used in deriving the χ2 tests for equal
cell frequencies. In the appendix, we show that actual independence of fund returns is not
necessary for the contingency table test statistic to have a χ2 limiting null distribution. As
long as fund returns are generated from a factor model in which the idiosyncratic returns
are uncorrelated across funds, χ2 critical values may be used to obtain a test with the
required size. Such a factor structure is what Chamberlain and Rothchild (1983) have
named a strict factor structure. It is important to note that the test statistic is still based
on the raw returns, not on estimated idiosyncratic returns.

Busse (2001) adopts a bootstrap technique to simulate p-values that are robust to pos-
sible cross-correlation of fund returns. He reports that, both for daily and monthly fund
returns and using these robust p-values, no evidence in favor of the tournament hypothesis is
found in the sample under consideration. If the cross-correlation is taken into account, nei-
ther daily nor monthly fund returns point in the direction of strategic risk taking by mutual
fund managers. To illustrate this point and to make the paper self-contained, we perform
the contingency table test for strategic risk-taking on monthly data for 26 annual tourna-
ments. Similar tables are given in Brown, Harlow, and Starks (1996) and Busse (2001). Our
sample of US growth funds comes from CRSP Survivor-Bias Free Mutual Fund Database4

(data as of the end of 2002). The sample includes all funds with ICDI “Aggressive Growth”
and “Growth and Income” objectives from 1976 to 20015. In line with Busse (2001), we
split years in two equal periods of six months when calculating monthly SDR’s.

Table 1 reports the results. Recall that the tournament hypothesis states that the
low-high frequency exceeds 25%. Using χ2

1-based p-values, we find apparently significant
results in almost half of the 26 annual tournaments. A joint test based on these p-values
would strongly support the tournament hypothesis. However, for about half of the years for
which the results appear significant, the results are opposite to the tournament hypothesis,

4Source: CRSP, Center for Research in Security Prices. Graduate School of Business, The University of
Chicago [2002]. Used with permission. All rights reserved. www.crsp.uchicago.edu.

5Our resuls remain qualitatively the same when we use alternative compositions of the growth fund
category, e.g., as defined by Morningstar. Results are in a previous version of this paper and available upon
request.
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i.e., the low-high frequency is less than 25% and losing funds are found to (relatively)
reduce risk-taking over the second part of the year. In order to accommodate possibly
cross-correlated idiosyncratic monthly mutual fund returns, we determine the distribution
of the tournament tests, under the null of no strategic risk-taking, using simulation. To
explain the procedure in more detail, for each month, we simulate independently a vector
of (correlated) fund returns from a multivariate normal distribution. The mean vector and
variance matrix of this distribution are estimated from the observed monthly fund returns.
In these simulated fund returns there is, by construction, no tournament effect. For each
null simulation, we calculate the realization of the contingency table test statistic (4). This
is replicated 10,000 times from which the simulated p-values are obtained.

This way of simulating robust p-values has a particularly nice invariance property. Sup-
pose that actual fund returns are generated from some factor model and one would want
to base the tournament hypothesis test on the variances of the idiosyncratic errors in this
factor model. Then we could still obtain valid simulated p-values for our test statistic as
above (i.e., without simulating from the factor model, but from a multivariate normal dis-
tribution). To see why this is true, suppose that a factor model had been estimated and
that fund returns were simulated using the estimated factor loadings, the observed factor
values, and the variance matrix of idiosyncratic fund returns. In the end, the simulated
fund returns would then again be normally distributed with exactly the same mean vector
and variance matrix as above. This follows immediately from the standard orthogonality
of the regression decomposition. Our zero-factor simulation hence generates fund returns
that are distributionally equal to those generated from any other factor model.

Our simulations assume normality of monthly fund returns. Clearly, this normality
assumption is innocuous, if sufficient regularity conditions are satisfied for a central limit
theorem to hold true. It is important that the simulation setup allows (idiosyncratic) fund
returns to be correlated across funds. Busse (2001) uses bootstrapped critical values. The
advantage of such an approach is that it does not rely on any normality assumptions, which
may be relevant when using daily data. The disadvantage is that it is computationally
somewhat more intensive. Moreover, as Busse (2001) reports, p-values based on a Monte
Carlo approach assuming normality do not produce materially different results from p-values
based on a bootstrap approach.

The last column of Table 1 reports the cross-correlation robust p-values. In line with
Busse (2001), all evidence in favor of the tournament hypothesis disappears once the cross-
correlation is accounted for. Thus, when using corrected p-values, monthly and daily fund
returns lead to the same conclusion, where, given the increased efficiency, tests based on
daily fund returns can be more powerful in detecting evidence in favor of the tournament
hypothesis.

4 Conclusion

The present paper confirms the conclusion in Busse (2001) that, for US equity funds over the
sample periods studied so far, there is little empirical evidence in favor of the tournament
hypothesis for mutual fund managers. We study the reasons for the difference in empirical
results of the tournament test based on daily and monthly returns. We take an analytical
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point of view and argue that the source of spurious evidence found in the past is not so
much a neglected temporal correlation in returns, but more a neglected cross-correlation
between idiosyncratic fund returns. As documented by Busse (2001), autocorrelation in
daily fund returns indeed biases both monthly and daily SDR’s, but we show that tests
based on monthly SDR’s are more robust to these effects than tests based on daily SDR’s.
Thus, spurious (due to possible autocorrelation effects) evidence in favor of the tourna-
ment hypothesis based on monthly returns, would, ceteris paribus, certainly show up in
tournament tests based on daily returns for the same sample period.

On the other hand, neglecting cross-correlation in fund returns may lead (as is also
noted in Busse, 2001) to spurious inference. We show that cross-correlated fund returns
do not necessarily invalidate the tournaments tests used so far in the literature, as long as
the idiosyncratic fund returns in some factor model are uncorrelated across funds. When
idiosyncratic return cross-correlation is accounted for, the empirical evidence (based on
returns and using the techniques applied so far) in favor of the tournament hypothesis
in the 1976-2001 sample of US funds we study, disappears. Clearly, the biases studied
in the present paper do not necessarily invalidate the empirical evidence concerning the
tournament hypothesis based on actual portfolio holdings of mutual funds.

A Appendix: Biases in daily and monthly SDR’s

We consider continuously compounded daily returns rpjd as given in (1)-(2). If Dm denotes
the number of days in a month, the monthly returns, for month m, are given as

rpjm =
Dm∑

d=1

rpjd, j = 1, 2.

It is well-known that the stationary variance of daily fund returns during the first half of
the year, for fund p, is (1 + θ2

p1)σ
2
εp1, where σεp1 denotes the idiosyncratic volatility of fund

p, i.e., σ2
εp1 = Var{εp1}. This immediately implies

Daily SDR =

√
Var{rp2d}
Var{rp1d} =

√√√√1 + θ2
p2

1 + θ2
p1

σεp2

σεp1
≈ 1 + 1

2θ2
p2

1 + 1
2θ2

p1

σεp2

σεp1
,

where the latter approximation is immediate from
√

1 + x2 ≈ 1 + 1
2x2, for small x. Note

that Busse (2001) reports MA(1) coefficients θ in the interval from 0.0 to 0.2, so that the
squared autocorrelation coefficient is at most 0.04.

It is somewhat more complicated to calculate the monthly SDR. From the autocorrela-
tion function of an MA(1) process, we obtain

Var{rp1m} = DmVar{rp1d}+ 2(Dm − 1)Cov{rp1d, rp1,d−1}
= Dm(1 + θ2

p1)σ
2
εp1 + 2(Dm − 1)θp1σ

2
εp1,

= Dm(1 + θp1)2σ2
εp1 − 2θp1σ

2
εp1,
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and a similar relation for the second half of the year. Therefore, the monthly SDR is given
by

Monthly SDR =

√
Var{rp2m}
Var{rp1m} =

√
Dm(1 + θp2)2 − 2θp2

Dm(1 + θp1)2 − 2θp1

σεp2

σεp1
≈ 1 + θp2

1 + θp1

σεp2

σεp1
,

an approximation based on the fact that Dm is much larger than the MA(1) coefficient.
Under the null of constant idiosyncratic volatility during the year (i.e., σεp1 = σεp2),

Monthly SDR bias = Monthly SDR− 1 ≈ θp2 − θp1,

Daily SDR bias = Daily SDR− 1 ≈ 1
2
(θ2

p2 − θ2
p1) =

1
2
(θp1 + θp2)(θp2 − θp1),

since for small x and y we have 1+x
1+y ≈ x− y.

B Appendix: Limiting distribution of the contingency table
test

In this appendix, we derive the limiting distribution of the contingency table test mentioned
in the main text assuming that monthly mutual fund returns are generated from a strict
factor model. Clearly, the same results would hold true for any other data frequency. We
assume for the moment that, for fund p in month m,

rpm = αp + βT
p Fm + εpm,

where Fm denotes the vector of factors and where the idiosyncratic errors εpm are indepen-
dently N(0, σ2

p) distributed6. Define the sample average and the sample volatility of fund
p’s returns over some period j consisting of k months as r̄pj and σ̂pj , respectively:

r̄pj =
1
k

kj∑

m=1+k(j−1)

rpm,

σ̂pj =

√√√√√1
k

kj∑

m=1+k(j−1)

(rpm − µ̂
(j)
p )2.

Let F denote the information in the factors over the complete observational period, i.e.
F = σ(F1, F2, . . .). Now, conditionally on F and under the null hypothesis, the statistics r̄p1,
r̄p2, σ̂p1, and σ̂p2 are independently distributed. The independence of the risk-adjustment-
ratio σ̂p2/σ̂p1 and the first semester average return r̄p1, implies that (conditionally on F and
under the null) the standard χ2-test statistic Q for independence of risk-adjustment-ratios
and first semester returns (4) follows, asymptotically, a χ2

1 distribution. Formally, under
the null hypothesis,

L(Q|F) → χ2
1.

6Clearly, normality is, asymptotically, irrelevant for the main results in this appendix as long as variances
exist since then one may resort to a central limit theorem argument.
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For regression tests, the independence of the idiosyncratic errors εpm across funds, would
guarantee the validity of the standard t-test by the same arguments.

In case the idiosyncratic errors εpm are correlated across funds, the arguments above
no longer hold, even asymptotically. In that case, the number of unbounded eigenvalues
of the variance of fund returns is generally infinite and limiting results can no longer be
established analytically in general.
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Year # funds Low-High χ2-statistic p-value p-value
frequency (χ2

1) (simulated)
1976 64 21.88 1.00 0.3173 0.5051
1977 64 17.19 6.25 0.0124 0.1164
1978 67 21.64 1.21 0.2715 0.4877
1979 66 27.27 0.55 0.4602 0.6328
1980 67 28.36 1.21 0.2715 0.6169
1981 65 20.77 1.86 0.1724 0.5312
1982 72 19.44 3.56 0.0593 0.2916
1983 76 14.47 13.47 0.0002 0.0368
1984 86 26.74 0.42 0.5176 0.7588
1985 92 21.74 1.57 0.2109 0.4384
1986 109 25.69 0.08 0.7738 0.8500
1987 133 23.68 0.37 0.5439 0.7600
1988 162 28.40 2.99 0.0839 0.4985
1989 159 30.50 7.70 0.0055 0.2600
1990 212 30.66 10.87 0.0010 0.2214
1991 217 27.19 1.66 0.1971 0.6337
1992 491 22.61 4.50 0.0339 0.7519
1993 510 21.27 11.33 0.0008 0.5584
1994 715 25.73 0.62 0.4322 0.9090
1995 915 25.25 0.09 0.7661 0.9626
1996 1134 35.63 204.87 0.0000 0.2344
1997 1412 14.02 272.24 0.0000 0.2135
1998 1693 18.96 98.81 0.0000 0.4150
1999 1983 21.58 37.04 0.0000 0.6746
2000 2269 25.39 0.54 0.4625 0.9663
2001 2708 11.19 826.45 0.0000 0.0468

Table 1: Results of the contingency table approach for the 26 annual tournaments. The Low-
High column gives the percentage of funds with both a total return over the first six months
below median and a risk adjustment ratio (SDR) above median. The χ2-statistic tests the
null hypothesis that population percentages are equal to 25%. Column five presents the
p-values of the χ2-statistic based on the χ2

1 distribution. The last column reports simulated
corrected p-values for the χ2-statistic. See main text for details.
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