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Abstract

The paper studies sequential auctions with potential entry between rounds. In

a simple model with two rounds, two initial bidders and one potential entrant, it is

shown that every symmetric equilibrium first round bidding function must feature

some degree of pooling. In one such equilibrium, the symmetric bidding function

is a step function, reflecting the desire of present bidders to hide information from

the potential entrant in order to deter entry. Extensions of the simple model which

accommodate uncertain entry prospects, multiple incumbents and multiple entrants

are discussed.

1 Introduction.

This paper studies sequential auctions with potential entry between rounds. Although

sequential auctions have been thoroughly studied, the common assumption in the existing

literature is that the set of bidders does not change from one round to the next. It is
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natural to extend the analysis to the case where new bidders may enter the auction in

future rounds, if they find it attractive, possibly at positive entry costs. The purpose

of the present paper is to show how potential entry threat changes standard equilibrium

predictions.

I consider a repeated English auction with two rounds and three bidders with inde-

pendent private valuations. Two identical items are for sale, one in each round. Each

bidder wants at most one item, so the winner of the first round gets the item and leaves

the auction. There are two bidders in the first round. The third bidder can not participate

in the first round but can decide to enter in the second round, at a positive entry cost.

The third bidder’s entry decision is based not only on his own valuation, but also on the

observed outcome of the first round (i.e., the final price). This opens the door for strategic

behavior in the first round: the decision of a bidder to drop out in the first round not only

means that she is not getting the item now but also sends a signal about her valuation to

the potential entrant, which may affect his entry decision. Since the entrant’s decision is

relevant for the payoff to the losing first-round bidder (because it affects competition in the

second round), first round bidders will take the entrant’s reaction into consideration when

deciding at what price to drop out. In particular, each first round bidder has an incentive

to pretend to have higher valuation than she actually does, in order to deter entry; the

costs of doing so are, however, that the first round bidder may end up winning in the first

round, at a price higher than she would be willing to pay. The main focus of the analysis

is on how these strategic considerations affect bidders’ behavior.

Sequential auctions with a constant number of bidders were first studied by Ortega-

Reichert ([18]). He developed a two-person two-stage model of competitive bidding and

recognized that the strategies of the bidders may respond not only to the fact that there

will be more rounds in the future, but also to the information about their rivals’s valuation

that has been revealed in previous rounds (such as their bids). He considered a common

value auction, where in stage two each bidder updates her estimate of her own valuation of

the good based on the first-period bid of her rival (this setup is further analyzed in [13]).

Milgrom and Weber ([17]) develop a general model of multistage auctions and compare
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different procedures for sequential auctions, as well as various information structures, i.e.,

what information about the bids in past auctions is revealed to the remaining bidders; in

their setup, too, all the bidders participate from the first round.1

One other area of research of relevance to the present study explores strategic motives

of bidding; the general idea is that not only does a bid represent a claim to win the object,

but it also conveys some information that the bidder possesses, which may be relevant

for other bidders. This idea builds on an auction design that allows for sequential moves;

traditional one-stage sealed bid auctions provide no opportunity for signaling. Avery ([1])

studies strategic bidding in English auctions when bidders’ valuations are correlated (and

thus bids reveal payoff relevant information to competitors). Daniel and Hirshleifer ([6])

build a two-bidder model of an ascending price auction, in which each bidder incurs positive

costs every time she submits a bid; jump bidding serves to signal a high valuation to the

opponent in order to force him to quit early.2 In none of this papers strategic motives for

bidding include entry deterrence, since all of them assume exogenous set of bidders.3

Another relevant study is von der Fehr ([9]). He also considers a two-round sequential

auction of identical items with independent valuations and positive participation costs,

but with a fundamentally different information structure: in his model, only bidders who

participate in the first round observe its outcome, which implies informational disadvantage

for entrants and effectively rules out entry in the second round.4 He finds a perfect Bayesian

1Other theoretical studies of sequential auctions with constant set of bidders include Gale and Stageman

[12], Kittsteiner et al [15].
2See also Fishman ([10]).
3There also are a few studies of bidding environments in which submitting or revising a bid is costly

and entry decisions are endogenous; this is not an unreasonable assumption, for instance in procurement

or construction auctions. These works too are relevant to the current study setup; however, in all of them

only single round auctions are considered. See, for example, Gal, Landsberger, Nemirovski ([11]) and

Landsberger, Tsirelson ([16]).
4Therefore, Fehr’s setup is relevant in settings where participation costs reflect costs of paying attention

and opportunity costs of time, whereas I view costs of entry as costs of preparing a qualified bid; in

particular, I do not assume that a bidder who loses in the first round has to incur participation costs in

the second round again.
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equilibrium in which first round bids fully reveal valuations of participants; in contrast, I

show in my setting such equilibrium can not exist.5

A paper that is perhaps the closest to mine is Jeitschko ([14]). He considers the same

independent value setup with three bidders and two identical items for sequential sale. In

his paper there are also intertemporal signaling motivations that affect bidders’ behavior in

the first round of the auction. The mechanism though is different: in his model, there in no

entry in the second round, so deterrence motives are absent; however, the first price sealed

bid format calls for strategic bidding in the second round, and that is where information

revealed in the first round is taken into account. In contrast, with english auction format

that I am working with there is no strategic bidding in the second round, but the entry

decision is nontrivial and driven by the information revealed in the first round, and that

is what calls for strategic behavior in the first round.

In this paper I find that the presence (even uncertain) of potential entrant induces

the first round bidders to bid strategically, and their equilibrium bidding functions are

radically different from bidding functions in an auction without strategic considerations. I

show first that, as long as entry costs are strictly positive, in no equilibrium are first round

bidding functions monotone in valuation.6 Next, I show that for any level of entry costs

there exists a subgame perfect equilibrium which involves step functions as first round

bidding functions, with the number of steps decreasing in entry costs. Therefore, strategic

concealment of information about their valuation is an important issue for first round

bidders.

The rest of the paper is organized as follows. Section 2 describes the model and shows

that every symmetric first-round equilibrium bidding function must feature some degree

of pooling. Section 3 studies the case of high entry costs and introduces step functions

as equilibrium bidding functions. Section 4 provides full characterization of a symmetric

equilibrium in which the (first-round) bidding functions are step functions. Section 5 looks

5Bernhardt, Scoones [2], Engelbrecht-Wiggans [7] and Engelbrecht-Wiggans, Menezes [8] study sequen-

tial auctions with non-identical objects.
6In particular, this implies that the two-stage auction is generally inefficient.
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at an extension with exogenous restrictions on entry, Section 6 describes the equilibrium

with multiple first round bidders and Section 7 discusses the case of multiple potential

entrants. Section 8 concludes.

2 The Model.

Two identical units of a good are offered for sale by means of an ascending price clock

auction; the two rounds of auction are conducted sequentially and the outcome of the first

round (the final price and the identity of the winner) is publicly observable before the

second round starts. In each round, in case of a draw (last active bidders dropping out at

the same price), the good is assigned to each of them with equal probability.

There are three risk-neutral bidders, each demanding at most one unit of the good. In

the first round only bidders 1 and 2 participate; the winner obtains the good and leaves

the auction, the loser passes on to the second round. Upon observing the outcome of the

first round, bidder 3 decides whether to enter in the second round. If he enters, he incurs

entry cost c > 0 and then bids against the remaining first round bidder. If he does not

enter, the remaining first round bidder obtains the item for free.7 The bidders’ valuations

of the good are their private information; they are independently drawn from the same

distribution on [0, 1] with twice continuously differentiable cdf F (x) and pdf f(x). Assume

also that f(x) > 0 for x > 0. Finally, assume strictly increasing hazard rate h(x) = f(x)
1−F (x)

,

in the following strong sense: there exists a constant m > 0 such that h′(x) > m for any

x ∈ [0, 1].

I am looking for a subgame perfect Bayesian symmetric equilibrium in weakly undom-

inated strategies of this game. Such an equilibrium consists of

• Drop out strategy b(v) that bidders 1 and 2 follow in the first round;

7According to this formulation, bidders are inherently asymmetric in that bidder 3 faces entry costs

while those for his rivals are assumed to be sunk. An alternative formulation in which all three bidders

have to incur costs to entry results in a similar solution.
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• Belief of bidder 3 about the type of his rival as a function of the outcome of the first

round;

• Entry decision of bidder 3 as a function of the outcome of the first round;

• Symmetric bidding strategies of bidder 3 and his rival in the second round.

As usual, belief of bidder 3 must be consistent with the prior distribution and strategies

played by bidders 1 and 2 in the first round, and his entry decision must be optimal given

his belief.

It is straightforward to conclude that if bidder 3 decides to enter, the only pair of weakly

undominated strategies for the bidders in the second round is to drop out at prices that are

equal to their valuations. Therefore the nontrivial part of the analysis is to characterize

first round bidding strategies and the third bidder’s entry decision.

2.1 Costless entry.

Assume first that the entry is costless for the third bidder, i.e., c = 0. I want to calculate

b(v) – the equilibrium strategy of each of the bidders in the first round as a function of her

valuation.

In this case the only weakly undominated strategy for bidder 3 is to enter and then

stay in until the price reaches his valuation; therefore, his strategy is trivial and the game

reduces to a two player game, which, as it turns out, has a solution in weakly dominant

strategies.

A bidder with valuation v will choose to drop out in the first round at price b(v), at

which she is indifferent between winning in the first round, thus receiving v − b(v), and

dropping out, with expected gain from winning the item in the second round equal to
v∫
0

[v− x]f(x)dx =
v∫
0

F (x)dx. Therefore, each bidder’s dominant strategy in the first round

is to drop out at b(v) = v −
v∫
0

F (x)dx.

This function is strictly monotone in the valuation, implying that the entrant will be

able to deduce the valuation of his opponent. If that valuation is higher than his own, he
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will be indifferent between entering and not, since he has no chance of winning anyway;

to stay out is a weakly dominated strategy and hence is excluded. However, facing any

positive entry cost he will strictly prefer not to enter if he knows that he will lose, so the

analysis above does not extend to the case of c > 0.

2.2 Costly entry: an impossibility result.

In this section we show that in no equilibrium can the first round bidding function be

monotone in valuation.

Lemma 1 For any positive level of entry costs c > 0 there exists no subgame perfect

symmetric equilibrium bidding function b(v) which is strictly monotone in valuation.

Proof: Assume the converse, and let b(v) be strictly monotone strategy of bidders 1 and

2 in the first round. Then the potential entrant will be able to correctly deduce valuation

v of his opponent from the price that he observes; he will, therefore, enter if and only if

his own valuation is at least v + c.

Consider the optimization decision of bidder 1 in the first round; suppose that she has

high valuation v > 1 − c. One particular deviation from b(v) that bidder 1 may consider

is playing b(ṽ) for some ṽ, i.e., to pretend that she is of type ṽ; consider small deviations,

such that ṽ > 1− c. Such a deviation will give her the payoff of

W (v, ṽ) =

ṽ∫
0

(v − b(x))f(x)dx + v(1− F (ṽ)).

The first term is bidder 1’s expected payoff in the first round, given that bidder 2

adheres to b(v). bidder 1 loses in the first round if bidder 2 has valuation higher than ṽ,

i.e., with probability 1− F (ṽ); in this case bidder 3 believes that bidder 1 has valuation ṽ

and does not enter, since his own valuation is less than ṽ + c > 1; bidder 1 wins the item

for free in the second round. Note that, since b(v) is assumed strictly monotone, W (v, ṽ) is

absolutely continuous in ṽ and has left and right derivatives with respect to ṽ everywhere.
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If b(v) is an equilibrium bidding function, then for any v function W (v, ṽ) must attain

its maximum in ṽ at ṽ = v. A first order condition for that its left derivative is nonnegative

at ṽ = v. We have

0 =
d

dṽ
W (v, ṽ)

∣∣∣∣
ṽ=v−0

= (v − b(v)− v)f(v) = −b(v)f(v). (1)

Clearly this can not be the case, since f(v) > 0 and b(v) is assumed monotone and hence

can not be identically zero. QED.

Remark 1. An analogue of Lemma 1 holds even if there is more then two incumbents

(or more than two potential entrants). There exists no separating equilibrium, that is,

no equilibrium drop out schedule such that the entrant (in case he observes the complete

outcome of the first round, i.e., who dropped out at what price) can deduce valuations of

all the bidders from the outcome of the first round. Indeed, if such an equilibrium existed

with multiple incumbents, then when all but two first-round bidders have zero valuations,

the other two would be in a situation covered by Lemma 1 and the same logic would rule

out the possibility of a separating equilibrium.

Remark 2. In the proof of lemma 1 I used the boundedness of the distribution; however,

it is straightforward to show that this impossibility result holds for unbounded distributions

too under very general regularity restrictions (for example, finite expectation and f(v) ↘ 0

as v →∞ are sufficient).

3 Step function as an equilibrium bidding function.

Now I turn to constructing a symmetric equilibrium strategies b(v) for bidders in the first

round.

Consider first the case of very high entry cost, c ≥ 1 − Ev. Suppose both bidder 1

and bidder 2 drop out immediately at price 0, irrespective of their valuations: b(0)(v) ≡ 0.

bidder 3 always observes price zero but can make no further inference about his opponent’s

valuation; he sticks to his prior v ∼ F (v) on [0, 1]. Even if bidder 3 has the highest possible

valuation of 1, his expected payoff if he enters, gross of entry costs, will equal 1−Ev, not
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Figure 1: Equilibrium step bidding function b(1)(v).

enough to cover entry costs, so he will not enter. Therefore, for c ≥ 1−Ev both first round

bidders bidding b(0)(v) and bidder 3 never entering is an equilibrium.

If entry costs are not so high (c < 1 − Ev), then playing b(0)(v) ≡ 0 is no longer an

equilibrium: each of the first two bidders expects bidder 3 to enter with positive probability,

so each of them finds winning the item in the first period more attractive and will prefer

to outbid their rival in the first round.

Instead of b(0)(v), consider the following b(1)(v) for some v1 < c:

b(1)(v) =

 0, 0 ≤ v ≤ v1,

b1, v1 < v ≤ 1.

To complete the description of the suggested equilibrium strategies, I must specify entry

decision of bidder 3 based on the price p he observes. The entry strategy for bidder 3 is:

• if p ≥ b1, do not enter ;

• if p = 0, enter if v > v̄ = c + v1 −
v1∫
0

F (x)
F (v1)

dx;

• if 0 < p < b1, enter if v ≥ c.

The last provision implies specification of bidder 3’s beliefs off the equilibrium path:

he believes that if a bidder who bids above 0 but below b1 is of lowest possible type, zero.8

8This specification of beliefs is consistent with Cho-Kreps intuitive criterion as in [4].
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Proposition 1 The suggested entry strategy is a best reply of the entrant to strategy b1(v),

as long as v1 ≤ c and E(v|v ≥ v1) ≥ 1− c.

Proof: If the entrant believes that both first-round bidders adhere to b(1)(v), he will

conclude, upon observing p = 0, that his rival has valuation less than or equal to v1. This

gives conditional density f(x|x < v1) = f(x)
F (v1)

on [0, v1] and zero elsewhere. It will only

make sense for bidder 3 to enter if his own valuation v is at least c, which immediately

means that he will win with probability one in the second round since v1 ≤ c. Suppose

now that bidder 3 enters and his valuation is v ≥ v1. His expected payoff is then∫ v1

0

[v − x]
f(x)

F (v1)
dx = v − v1 +

∫ v1

0

F (x)

F (v1)
dx.

He will choose to enter only if his expected payoff is at least c, which is the case when

v ≥ v̄.

Assume now that the entrant observes p = b1. He concludes that his rival is of type

higher than v1, with conditional density f(x) = 1
1−F (v1)

on [v1, 1] and zero elsewhere. Even

if his own valuation is 1, his expected payoff is only

1∫
v1

[1− x]
f(x)

1− F (v1)
dx = 1− E(v|v ≥ v1),

which by assumption is not enough to cover his entry costs c, so he will not enter, QED.

Now pick b1 to make an incumbent with valuation v1 indifferent between bidding zero

and b1. Assume that bidder 1 adheres to b(1)(v) and consider bidder 2 who values the

object at some v>̄v. When bidder 2 bids zero, with probability F (v1) bidder 1 will bid

zero, in which case with probability 1
2

bidder 2 gets the object for free and with probability

1
2

(or for sure if bidder 1 has valuation v > v1) bidder 2 passes on to the second round

in which bidder 3 of type v̄ or below does not enter and bidder 2 gets the object for free;

bidder 3 of type above v̄ enters and wins since by assumption v ≤ v̄. Payoff from bidding

0 to bidder 2 with valuation above v̄ is also readily calculated. bidder 2’s total expected
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payoff from bidding zero is equal to

π0(v) =


F (v1)

2
v +

(
1− F (v1)

2

)
v̄v, v ≤ v̄,

F (v1)
2

v +
(
1− F (v1)

2

) (
v̄F (v̄) +

v∫̄
v

F (x)dx

)
, v ≥ v̄.

If instead she bids b1, her payoff is

πb1(v) = F (v1)v +
1− F (v1)

2
(v − b1) +

1− F (v1)

2
v.

Equating πb1(v1) to π0(v1) determines b1.

Note that the slope of π0(v) is always lower than that of πb1(v). This single crossing

property, together with πb1(v1) = π0(v1) implies that a first round bidder will strictly prefer

to bid zero rather than b1 if her valuation is below v1 and to bid b1 rather than zero if her

valuation is above v1.

To complete the description of b(v) I now have to specify the value of v1. I do it by

considering a particular deviation from b(v) (namely, bidding above zero but below b1)

which must not be profitable for any valuation v.

If bidder 2 (of a particular type v) bids above zero but below b1, then with probability

F (v1) bidder 1 will bid zero and bidder 2 will win the object for free; however with prob-

ability 1− F (v1) bidder 1 will bid b1 in which case not only will bidder 2 lose in the first

round, but also bidder 3 will believe that bidder 2 is of type zero and will enter whenever

bidder 3’s own valuation is above c. Hence if valuation v of bidder 2 is below c, she will

on average get F (c)v in the second round, while if her valuation is above c, she will get on

average

F (c)v +

v∫
c

[v − x]f(x)dx = F (c)c +

v∫
c

F (x)dx.

Her total payoff is therefore equal to

π<b1(v) =


F (v1)v + (1− F (v1))F (c)v, v ≤ c

F (v1)v + (1− F (v1))

(
F (c)c +

v∫
c

F (x)dx

)
, v ≥ c.
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Note that the actual bid does not matter, provided that it is above zero but below b1.
9

Proposition 2 ∂v̄
∂v1

∣∣∣
v1=0

= 1
2
.

Proof: By inspection.

Proposition 3 The slope of π<b1(v) is below that of π0(v) at v = 0 for small enough v1.

Proof: Both π0(v) and π<b1(v) are linear in v = 0 for v < c. Their slopes equal

π′
0 =

F (v1)

2
+

(
1− F (v1)

2

)
F (v̄),

and

π′
<b1

= F (v1) + (1− F (v1))F (c).

Both these slopes tend to F (c) as v1 → 0. Therefore it suffices to show that

dπ′
0

dv1

∣∣∣∣
v1=0

>
dπ′

<b1

dv1

∣∣∣∣
v1=0

(2)

In view of Proposition 2 inequality (2) is equivalent to

f(0)

2
− f(0)

2
F (c) +

f(c)

2
> f(0)− f(0)F (c),

which follows immediately from h(0) < h(c), QED.

Pick v1 such that proposition 3 holds. Bidding above zero (and below b1) is then not a

profitable deviation for v < v1 < c. Neither is such deviation profitable for v > v1. To see

this, note that πb1(v1) = π0(v1) > π<b1(v1) and that

π′
b1

(v) = 1 > F (v1) + (1− F (v1))F (v) = π′
<b1

(v),

so bidding below b1 for v > v1 is always inferior to bidding b1.

Finally, I have to show that bidding above b1 is not a profitable deviation either. This

follows immediately from the following argument: both bidding b1 and bidding above b1

9Note that πb(1)(v)(v)− π<b1(v) reaches its minimum at v = 0, so a bidder of type zero loses the least

by deviating from b(1)(v). This is an explanation for assuming that an entrant who observes a deviation

from b(1) believes that the deviant to has valuation zero.
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result in getting the object with probability one, either in the first or in the second round

(since bidder 3 never enters). However, if a bidder bids above b1, she will end up paying b1

whenever the valuation of her opponent is above v1, while if she bids b1 she will only have

to pay b1 in half of those cases. Therefore, it is always better to bid b1 than to bid above

b1. Note also that once both bidders bid b1 and the winner is determined at random, both

bidders prefer to lose in the first round.

Therefore, as long as there exists v1 < c small enough for Proposition 3 to hold but

large enough to satisfy 1−E(v|v ≥ v1) < c, there exists a step function equilibrium with a

single step; such equilibrium requires substantial entry costs c. Note that there is a degree

of freedom in choosing breakpoint v1, so that a step function equilibrium is typically not

unique; rather, there is a whole family of equilibria parametrized by their breakpoints.

I finish this section with an example; in the next section I construct a step function

equilibrium for arbitrary positive c.

Example. Consider uniform distribution of valuations: F (x) = x for x ∈ [0, 1]. Let

c = 1
3

and pick v1 = c = 1
3
. Then πb1(v) = v− 1

3
b1 and π0(v) = 1

6
v + (1− 1

6
)1

2
v, which gives

b1 = 5
12

. Payoff from deviation is

π<b1(v) =

 5
9
v, v ≤ 1

3

1
27

+ 1
3
v + 1

3
v2, v ≥ 1

3
.

It is readily checked that π<b1(v) < πb1(v) both at v = 1 and v = 1
3
, and, consequently,

b(v) =

 0, 0 ≤ v ≤ 1
3
,

5
12

, 1
3

< v ≤ 1,

is a symmetric equilibrium for c = 1
3
.

4 Small entry costs equilibrium.

In this section I finish up construction of equilibrium by showing that for any entry costs

c > 0 there exists a step function which is an equilibrium first round bidding function. In
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particular, I will show how to construct points 0 = v0 < v1 < · · · < vn+1 = 1 and values

0 = b0 < b1 < · · · < bn in such a way that

b(n)(v) =

{
bk, vk ≤ v < vk+1, k = 0, . . . , n

is an equilibrium first round bidding function. I will choose breakpoints vk in such a way

that vk+1 − vk ≤ c.

I specify bidder 3’s off equilibrium beliefs as follows: if bidder 3 observes a bid between

bi and bi+1 he believes that his rival is of type vi and enters whenever his valuation is above

vi + c.

Suppose that bidder 1 has valuation v and bidder 2 adheres to the above strategy.

bidder 1 may choose any of the following strategies: bid bk, or bid above bk but below bk+1

(I use subscript < bk+1 to denote this latter strategy). Her expected payoffs from following

these strategies are, respectively,

πbk
(v) =

8>>><>>>:
k−1P
i=0

(F (vi+1)− F (vi))(v − bi) +
F (vk+1)−F (vk)

2 (v − bk) +

„
1−

F (vk+1)+F (vk)
2

«
F (v̄k)v, v ≤ v̄k,

k−1P
i=0

(F (vi+1)− F (vi))(v − bi) +
F (vk+1)−F (vk)

2 (v − bk) +

„
1−

F (vk+1)+F (vk)
2

« 
F (v̄k)v̄k +

vR̄
vk

F (x)dx

!
v > v̄k

and

π<bk+1
(v) =

8>>>><>>>>:
k−1P
i=0

(F (vi+1)− F (vi))(v − bi) + (F (vk+1)− F (vk))(v − bk) + (1− F (vk+1))F (vk + c)v, v ≤ vk + c,

k−1P
i=0

(F (vi+1)− F (vi))(v − bi) + (F (vk+1)− F (vk))(v − bk) + (1− F (vk+1))

0@F (vk + c)(vk + c) +
vR

vk+c
F (x)dx

1A v > vk + c

where

v̄k = c + E[x|vk < x < vk+1] = c +
1

F (vk+1)− F (vk)

vk+1∫
vk

xf(x)dx (3)

is the minimum valuation of bidder 3 which induces him to enter, conditional on him

observing the price of bk in the first round. Note that in equilibrium whenever bidder 3

enters he wins with probability one; this follows from the assumption that vk+1 − vk ≤ c.

To make b(n)(v) symmetric equilibrium, I must ensure that it is optimal for a first round

bidder to play b(n)(v) if she expects the other first round bidder to do so. I do it by choosing

vk and bk appropriately in the iterative manner: choose v1, then v2 and so on to vn; then

choose bk, k = 1, . . . , n.
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Figure 2: Equilibrium step bidding function b(3)(v).

Suppose that for all i = 0, . . . , k breakpoints vi are already chosen in such a way that

bidding bi at valuation v ∈ [vi, vi+1] is better than bidding bj for j 6= i and bidding anything

between b0 and b1, between b1 and b2 and so on to between bk−1 and bk.

If 1 − E[x|vk−1 < x ≤ vk] ≥ c, the construction is over: pick n = k. Clearly bidding

above bk is inferior to bidding bk: both strategies imply winning the item for sure (bidder

3 does not enter) but the first implies higher expected price.

If 1−E[x|vk−1 < x ≤ vk] < c proceed to choosing vk+1 > vk in such a way that bidding

bk is superior to bidding slightly above bk for v ∈ [vk, vk+1].

To show that it is always possible to choose vk+1 in this way, note that as vk+1 → vk and

v ∈ [vk, vk+1] both πbk
(v) and π<bk+1

(v) have the same limit. Note also that for v ∈ [vk, vk+1]

both πbk
(v) and π<bk+1

(v) are linear in v. Therefore, to complete the proof it suffices to

show that for small enough vk+1 − vk two inequalities are satisfied: πbk
(vk) > π<bk+1

(vk)

and π′
bk

(vk) > π′
<bk+1

(vk). This is done in the following series of propositions.

Proposition 4 ∂v̄k

∂vk+1

∣∣∣
vk+1=vk

= 1
2
.

Proof: By inspection.

Proposition 5 If k > 0, then πbk
(vk) > π<bk+1

(vk) if vk+1 is sufficiently close to vk.

Proof: Note that

πbk
(vk)− π<bk+1

(vk) = −F (vk+1)− F (vk)

2
(vk − bk)+

15



(
1− F (vk+1) + F (vk)

2

)
F (v̄k)vk − (1− F (vk+1))F (vk + c)vk.

This expression equals zero at vk+1 = vk. Hence, to prove that it is positive at vk+1

close enough to vk it suffices to show that its derivative with respect to vk+1 is positive at

vk+1 = vk. In view of Proposition 4 this derivative equals

∂

∂vk+1

(
πbk

(vk)− π<bk+1
(vk)

)∣∣∣∣
vk+1=vk

= −f(vk)

2
(vk − bk)+

(1− F (vk))vk
f(vk + c)

2
− f(vk)

2
F (vk + c)vk + f(vk)F (vk + c)vk ≥

vk

2
[−f(vk) + (1− F (vk))f(vk + c) + F (vk + c)f(vk)] =

vk(1− F (vk))(1− F (vk + c))

2
[h(vk + c)− h(vk)] > 0, (4)

QED.

Proposition 6 The slope of πbk
(v) is higher than that of π<bk+1

(vk) at v = vk if vk+1 is

sufficiently close to vk.

Proof is similar to that of Proposition 3 and is omitted. As in the proof of Proposition

5, the key assumption is that hazard rate h(x) is increasing in x.

Therefore, it is always possible to choose vk+1 in such a way that bidding above bk is

inferior to bidding bk for v ∈ [vk; vk+1]. Moreover, the following proposition shows that the

iterative process of choosing breakpoints vk will stop after finitely many steps:

Proposition 7 For any c > 0 there exists ε > 0 for which vk can be chosen in such a way

that vk+1 − vk > ε, k = 1, . . . , n

Proof builds on that of Proposition 5. Note that, since by assumption there exists a

constant m > 0 such that h′(x) > m for any x ∈ [0, 1], the righthandside of expression (4)

is uniformly bounded away from zero. The assertion then follows immediately from the

assumption that F (x) is twice continuously differentiable on compact set [0, 1], QED.

Once breakpoints vk are chosen, equilibrium bids bk are determined by equations

πbk+1
(vk+1) = πbk

(vk+1). These equations, together with the observation that the slope

16



of πbk+1
(v) is higher than that of πbk

(v), prove that bidding bk is superior to bidding bk+1

at v < vk+1 and bidding bk+1 is superior to bidding bk at v > vk+1; in particular, this

implies that bk+1 > bk. Finally, note that the slope of π<bk+1
(v) is lower than that of

πbk+1
(v) for v > vk+1 and is higher than that of πbk

(v) for v < vk+1. Therefore, since

π<bk+1
(vk+1) < πbk

(vk+1) = πbk+1
(vk+1), deviating from b(n)(v) is never optimal. The con-

struction is complete.

5 Uncertain entry.

In this section I extend the analysis to the case of uncertain entry. I now introduce a

probability q that bidder 3 is present and able to compete (if he chooses to). With the

complementary probability 1 − q entry is impossible for exogenous reasons, regardless of

the first round bidders’ strategies. I assume, however, that bidders 1 and 2 only know q

but not whether bidder 3 is actually present.

The following lemma characterizes equilibria in this game.

Lemma 2 Consider a step function

b(n)(v) =

{
bk, vk ≤ v < vk+1, k = 0, . . . , n

that is an equilibrium bidding function for q = 1 (i.e., when the potential entrant is present

for sure). Then function

b(n)(q, v) =

{
q · bk, vk ≤ v < vk+1, k = 0, . . . , n

is an equilibrium bidding function for a given q ∈ [0, 1].

Proof: It is straightforward to compute the profit functions for both equilibrium bidding

b(n)(q, v) and any deviation from it. The only term that changes in the expressions, com-

pared to the case of q = 1 studied above, is the expected payoff in round two, which is now

a weighted average of what it was before and the valuation of the incumbent (corresponding

to the case when the entry does not happen for exogenous reasons). We have
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πq·bk
(v) =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

k−1X
i=0

(F (vi+1)− F (vi))(v − qbi) +
F (vk+1)− F (vk)

2
(v − qbk)

+

„
1−

F (vk+1) + F (vk)

2

«
((1− q)v + qvF (v̄k)) , v ≤ v̄k,

k−1X
i=0

(F (vi+1)− F (vi))(v − qbi) +
F (vk+1)− F (vk)

2
(v − qbk)

+

„
1−

F (vk+1) + F (vk)

2

«0B@(1− q)v + q

0B@v̄kF (v̄k) +

vZ
v̄k

F (x)dx

1CA
1CA v < v̄k,

and

π<q·bk+1
(v) =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

k−1X
i=0

(F (vi+1)− F (vi))(v − qbi) + (F (vk+1)− F (vk))(v − qbk)

+ (1− F (vk+1)) ((1− q) + qvc) , v ≤ vk + c,
k−1X
i=0

(F (vi+1)− F (vi))(v − qbi) + (F (vk+1)− F (vk))(v − qbk)

+ (1− F (vk+1))

0B@(1− q) + q

0B@vk + c)F (vk + c) +

vZ
vk+c

F (x)dx

1CA
1CA , v > vk + c.

By observation, all inequalities that support b(n)(q, v) as an equilibrium follow from re-

spective inequalities for b(n)(v), QED.

Lemma 2 shows that even if the entry is uncertain, the equilibrium as a step function

still exists. Moreover, there is a simple characterization of its parameters: the break points

vi are the same, while the equilibrium bids are proportional to the probability that entry is

possible. The intuition is that if the entry is less probable, the incumbents will be reluctant

to take risk of winning the item in the first round by bidding high, since their hope is now

stronger that the entrant will not be around and they will get the item for free in the

second round. That is why the equilibrium bids are decreasing when the probability of no

entry (equal to (1 − q)) increases. In particular, if q = 0 equilibrium bids are identically

equal to zero – if there is no entry threat, the first-round bidders can get one unit each at

zero price.

6 Multiple first round bidders.

In this section I extend the analysis to the case of more than two bidders in the first round

(and no exogenous barriers to entry). Assume that there are two rounds of ascending price

auction with identical items for sale one in each round and n + 1 bidders, first n of which
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are present for both rounds and the (n + 1)th one can only enter to the second round, if

he chooses to do so, at costs c. Each bidder wants at most one item and the winner of

the first round leaves as she gets it. All bidders’ valuations are independently drawn from

the same distribution on [0, 1]. I am looking for a perfect Bayesian equilibrium in this new

game.

For this scenario it is important to know what exactly the entrant observes. Note that

in the case of two first-round bidders, all the available information relevant for the entry

decision is contained in the final price of the first round; it fully reflects the strategy of the

only entrant’s opponent. Moreover, in the case of two first round bidders the ascending

price auction is isomorphic to the second price sealed bid auction. Here I assume that

bidder n + 1 observes the entire outcome of the first round, i.e., who dropped out at what

price.

In case of multiple first round bidders, a bidding strategy in the first round not only

specifies the price at which to drop out if nobody else dropped out before, but also how

to react to the other bidders dropping out (and that is where the ascending price auction

is different from the second price auction). The final price (at which the last bidder drops

out) does not convey all available information about the strategy of the first round bidders,

because it does not show who dropped out at what price before. Therefore, I assume that

the entrant not only observes the outcome (the final price and the identity of the winner)

of the first round of the auction, but also the bidding process (who dropped out at what

price).

A symmetric perfect Bayesian equilibrium in weakly undominated strategies that I am

looking for will therefore consist of:

• A ‘first drop out’ function d1(v) specifying the price at which a first round bidder of

type v drops out, provided that nobody dropped out before;

• A ‘second drop out’ function d2(v, d1) that specifies the price at which a first round

bidder drops out if the only other bidder who dropped out before did it at price d1;

and so on, to
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• A ‘last drop out’ function dn−1(v, d1, d2, . . . , dn−2) that specifies the price at which a

first round bidder drops out if there is only one other bidder left;

• Beliefs of bidder n+1 about valuations of the other bidders as a function of v, d1, . . . , dn−1;

• An entry decision of bidder n + 1 as a function of his beliefs.

As before, once the entry decision is made and the game proceeds to the second round,

the only weakly undominated strategies that remain to the bidders are to drop out at their

valuations.

Lemma 3 A symmetric perfect Bayesian equilibrium in weakly undominated strategies

exists, in which

• d1(v) = v,

• d2(v, d1) = v and so on to dn−2(v, d1, . . . , dn−3) = v,

• dn−1(v, d1, d2, . . . , dn−2) is a step function with its breakpoints and step bids being

functions of dn−2.

In the equilibrium described by Lemma 3 all first round bidders except for two last

ones drop out at their true valuations and the two who remain play strategies similar to

those of the model with two first round bidders.

Proof: Clearly none of the first n− 2 bidders can gain by deviating from the suggested

strategies – none of them can win either of the two items except at price that exceeds

their valuations. Suppose now that the price reached dn−2 in the first round and there

are two bidders left. Each of them believes that the other is following the strategies

suggested above, so she updates the distribution of his rival to the same distribution with

cdf F (v)/F (dn−2) with support [dn−2, 1]. With probability F (dn−2) the valuation of bidder

n + 1 will not exceed dn−2 and he will not enter. With the complementary probability

1− F (dn−2) his valuation will be at least dn−2, in which case the game will be equivalent

to the one with two first round, for which a step function equilibrium was constructed
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above. Therefore, the entire game, once all but two first round bidders have dropped out,

is equivalent to the game with two incumbents and uncertain entry discussed in previous

section, so Lemma 2 applies. This completes the proof.

7 Multiple Entrants.

Another natural generalization of the model involves multiple potential entrants. Assume

again that there are only two bidders in the first round but now there are N ≥ 2 entrants

with valuations independent from each others and from those of the first round bidders

who may choose to enter. I want to study whether step equilibrium bidding functions exist

for the first round bidders.

Assume that entrants infer, upon observation of the first round price, that the remaining

bidder’s valuation is confined between vk and vk+1. I calculate (uniform) entry threshold

value v̄k ≥ vk+1. As long as all but one potential entrants enter if and only if their

valuations are above v̄k the expected payoff to the last remaining entrant with valuation

v ≤ v̄k equals FN−1(v̄k)(v−E[u|vk ≤ u < vk+1]). He will choose to enter if and only if this

expected payoff is at least c. Symmetric equilibrium value of v̄k is thus determined from

equation

FN−1(v̄k)(v̄k − E[u|vk ≤ u < vk+1]) = c.

Likewise, if an incumbent deviates and bids above bk but below bk+1 and thus, by assump-

tion, signals type vk, the entry threshold v̂k is determined from equation

FN−1(v̂k)(v̂k − vk) = c.

To determine whether a step function equilibrium of the type constructed in Section

4 exists, one must take the derivatives with respect to vk+1 of the slopes of πbk
(v) and

π<bk+1
(v) at vk+1 = vk. It is easy to verify that inequality

∂π′
bk

(v)

∂vk+1

∣∣∣∣
vk+1=vk

≥
∂π′

<bk+1
(v)

∂vk+1

∣∣∣∣∣
vk+1=vk

(5)
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is equivalent to
h(vk)

h(v̂k)
≤ NFN−1(v̂k)

1 + F (v̂k) + · · ·+ FN−1(v̂k)
,

which clearly can not hold, at least for small c. Therefore, the equilibrium construction of

Section 4 does not work for multiple potential entrants.

However, there are two ways to construct a step function equilibrium for the case of

multiple potential entrants. The first is to alter off-equilibrium beliefs of the entrants.

Note that so far I assumed that a first round bidder who bids strictly between bk and bk+1

is believed to have valuation vk; and alternative assumption may be that any deviant is

believed to have valuation zero. It is easy to see that this alternative specification will make

deviation strictly less attractive for an first round bidder, except if her valuation equals

zero. It can be shown that under this specification of beliefs and an additional assumption

f(0) = 0 a step function equilibrium exists (even without monotonicity assumption on

hazard rate h(x)).

Another way to restore a step function equilibrium in the case of multiple entrants,

maintaining the same assumptions on beliefs as in Section 4, is to assume stochastic number

of potential entrants, unknown to each of them (and to first round bidders). Assume for

example that the number of potential entrants that are around is distributed geometrically

with parameter p,10 so that the probability that there are exactly l potential entrants

equals pl = p(1− p)l. Denoting by v̄′k the derivative of the equilibrium threshold level

∂v̄k

∂vk+1

∣∣∣∣
vk+1=vk

=
1

2

p

p− c(1− p)f(v̂k)
,

one can rewrite inequality (5) as

f(vk)
2

(
1− p

1− (1− p)F (v̂k)

)
+

p(1− p)f(v̂k)v̄′k
[1− (1− p)F (v̂k)]2

(1− F (vk)) ≥ f(vk)
(

1− p

1− (1− p)F (v̂k)

)
,

or, equivalently,
1

2
h(vk)[1− (1− p)F (v̂k)] ≤ pv̄′kh(v̂k),

10Geometric distribution is chosen for convenience, as its conditional probability of having i+1 entrants

given that there is at least one entrant (the probability that each potential entrant takes into considera-

tion) equals unconditional probability of having i entrants. A step function equilibrium can be similarly

constructed for Poisson distribution with sufficiently high parameter λ.
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which holds as long as p is large enough. Applying construction similar to that in Section 4,

it is easy to verify that for any positive c there exists p < 1 such that a step function

equilibrium exists when the number of potential entrants is distributed exponentially with

parameter p.

Therefore, a step function equilibrium construction can be expanded to the case of

multiple potential entrants in two cases: to the case when f(0) = 0 and entrants have

most optimistic beliefs about an incumbent who deviates and to the case when the number

of entrants is stochastic with sufficiently low expected value.

8 Conclusion.

This paper studies how the entry deterrence motives affects bidding behavior in a sequen-

tial ascending price auction. The equilibrium that I construct – with bidding strategies

being step-functions – suggests that bidders would be conscious about the potential for

future entry and that they will want to at least partially conceal information about their

private valuations in an effort to deter entry. As a result, the outcome of the auction

is generally not efficient: the two items do not necessarily go to the bidders who value

them the most. There are two sources of inefficiency, both caused by the coarseness of the

information communicated through the step-function strategies. One source is that the

potential entrant may not enter even though he has a higher valuation than the bidder

that dropped out in the first round. The other source of inefficiency is that both first-

round bidders may drop out at the same time in which case the item may be assigned to

the first-round bidder who values it the lower.

These conclusions resemble in some respects those in Bhattacharyya [3]. Bhattacharyya

studies a two-person, two-stage auction in which entry is endogenous in the first stage: first

one bidder bids and then the other bidder decides whether to enter. If the other bidder

enters, the auction proceeds to the second stage, which is an ascending auction, else the

first bidder gets the item at the price he bid. Assuming that the second bidder doesn’t

enter if he is indifferent (which is a crucial assumption), there exists a non-trivial first-round
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bid (equal to half the true valuation of the first bidder when the distribution is uniform).

This result is similar to mine in that the first bidder behaves strategically to deter entry.

However, the setting is strategically very different from mine, since in an ascending auction

the winning bidder only pays the price at which her opponent drops out, not the price at

which she is prepared to drop out herself. This opens the door for bluffing, which indeed

occurs in the equilibrium of my game, but not in that of Bhattacharyya’s.

It is interesting to contrast my findings with those of von der Fehr [9]. Although his

setting is remarkably similar to mine, it differs in two respect: whether bidders who do

not participate in the first round can observe its outcome and whether bidders have to

incur entry costs only once as they prepare the bid or every time they participate in an

auction. While these differences appear minor, they change the results dramatically: in

his model there exists an equilibrium first round bidding strategy that is strictly monotone

in valuation, whereas I show that such strategy can not exist in my model. Furthermore,

he shows that in his setup bidding strategies can not be constant over an interval, while I

derive equilibrium bidding functions which are step functions.

The resulting family of step function equilibria also resemble partition equilibria in

Crawford and Sobel [5]. In their paper they consider a wide class of games where an

informed party (sender) sends as signal to an uniformed party (receiver) about sender’s

type which is of relevance to the payoffs of both. They find that under some assumptions

on the structure of the payoffs the optimal signal for the sender consists of a subset of

the range of types to which his type belongs. However, they assume away any uncertainty

about the receiver’s own type, which precludes their result from being at least directly

applicable to the context of private value auctions. In their model equilibria are also

multiple; they can, however, rank them in terms of coarseness of the signal. In my model

equilibria typically can not be ranked in a similar way, since not only there typically exist

equilibria with different number of steps in the bidding function, but also there is some

leeway in the way that break points are chosen.

Many questions remain to be studied in sequential auctions with potential entry in later

rounds. First, I do not know whether the family of step function equilibria that I have
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identified exhaust the class of all equilibria. Second, it would be of interest to analyze the

optimal entry cost that an seller should charge (and whether later entry should be more or

less expensive than early entry). More generally, the question of an optimal auction design,

including optimal information transmission (what should potential entrants be allowed to

know), remains open.
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