Growth

64877 1 6

120

121

Modern economic growth

- Economic growth is a relatively recent phenomenon
- Maddison:
 - World income per capita same in 500 and 1500 AD
 - In 1500-1820 cumulative growth of 15% (0.04% p.a.)
 - Since then growth at 1.2% a year (doubles every 58 years)

Growth in this course

Aggregate growth models
 Harrod-Domar

Solow =	Harrod-Domar + endogenous capital-output ratio
Ramsey =	Solow +
	endogenous savings
Endogenous growth =	Ramsey + endogenous human capital / R&D

- Cross-country evidence
- Micro evidence
- New growth paradigm: disaggregated growth model

Harrod-Domar

GDP is proportional to physical capital Y=AK (neither labor nor human capital matter, motivated by Great Depression)

Capital accumulation: $\Delta K = -\delta K + I$ (δ - depreciation rate)

Hence growth is a linear function of investment

 $\Delta Y/Y = \Delta K/K = -\delta + I/K = -\delta + AI/Y$

Investment immediately brings growth

Numerical example

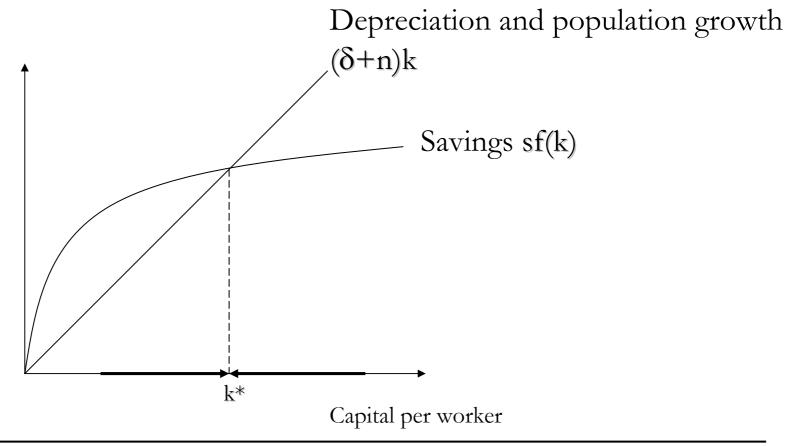
- Productivity of capital A =Y/K=0.25 p.a.
- Depreciation 0.05 p.a.
- Want to achieve 6% p.a. growth
- Hence 0.06=-0.05+0.25*I/Y
- Targeted investment rate I/Y=(0.06+0.05)/0.25=0.44
- What if savings are just 14% GDP? Then 'Financing gap'=S/Y-I/Y= - 30% GDP

Implications

- Raise investment whatever it takes
- If savings<targeted investment rate, then bridge the financing gap
- Hence: Aid for investment
- BUT: capital flight and misplaced investment

– Aid is channeled back through offshore

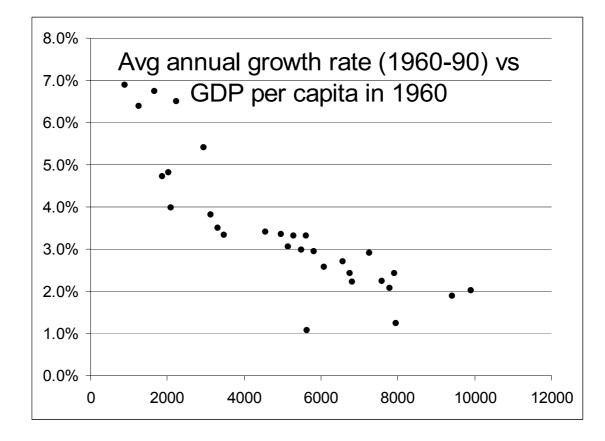
Soviet industrialization

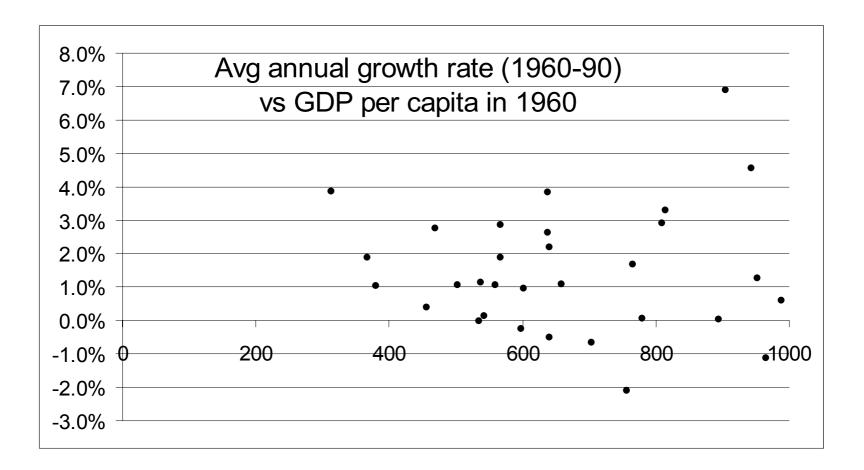

- Implementation of Harrod-Domar
 - Domar refers to Soviet 1920s economists
- Industrialization within three 'five-year plans'
 - Impressed many development economists and developing countries
- 'Perspiration not inspiration'
 - High investment
 - At the expense of consumption
 - Increase in industrial labor force
 - At the expense of agriculture
 - Low (if positive) wages

Solow model

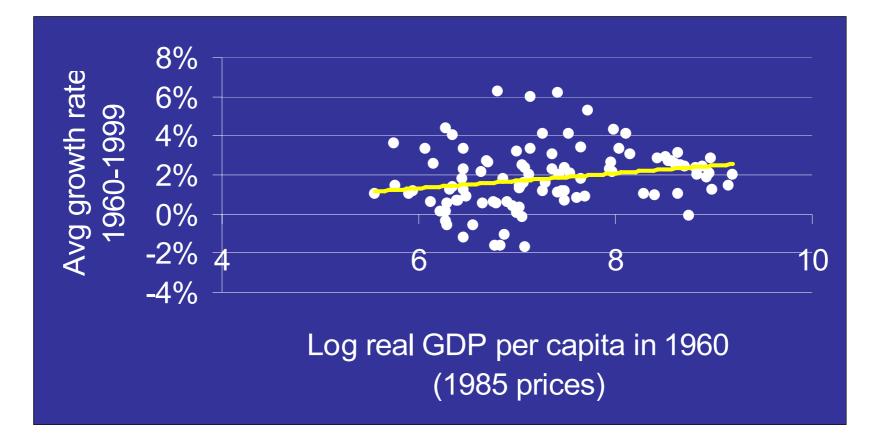
- Substitution between capital and labor
 - Production function Y=F(K,L)
 - Constant returns to scale: Y=LF(K/L,1) or y=f(k)
 - Diminishing returns to each factor: f'>0, f'' <0
 - Harrod-Domar is a particular case with Y=AK, or Y=min{AK,BL}
 - More general case: substitution,
 e.g. Cobb-Douglas Y=K^α L^{1- α}
- Labor grows at an exogenous rate n
- Savings rate s=S/Y is fixed

Steady state


$dk/dt=sf(k)-(\delta+n)k$

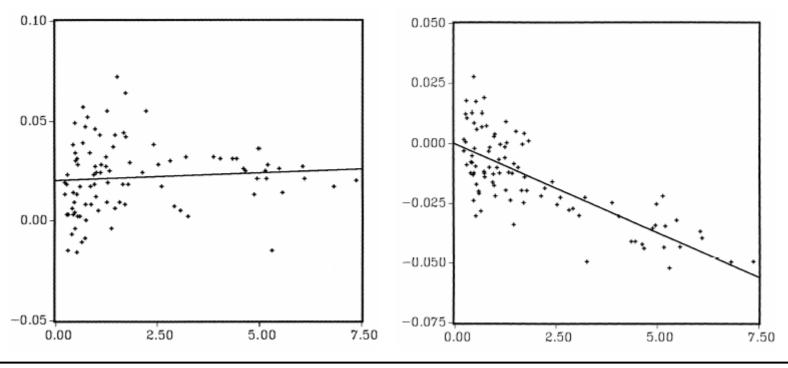

Solow: Implications

- Long-term: no per capita growth
 - Need models with technological progress to explain growth
 - Savings and population growth only affect
- Short-term: transition path, convergence to the same per capita capital k^{*} and per capita income f(k^{*})
 - All countries have access to frontier technology
 - Backward countries grow faster
 - The lower initial income, the higher the growth rate


Evidence (rich countries)...

But not for the poor

Whole sample, 1960-1999

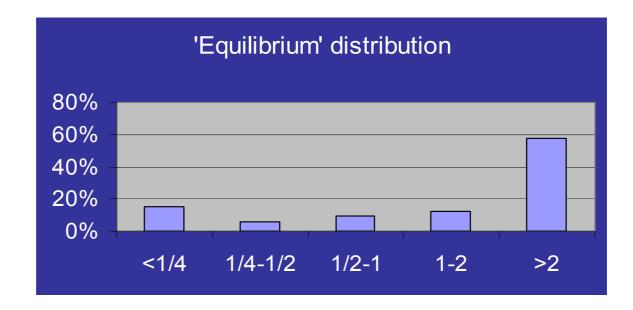


No absolute convergence

- Neither in the postwar period
- Nor in modern growth era (since 1820, Maddison)
- So all countries grow at the same rate? (could use Harrod-Domar?)
 - Need careful empirical analysis
 - There is *conditional* convergence
 - Countries differ in s and n
 - Hence may converge to different steady states

Conditional convergence

 Barro (1991): growth rate as a function of initial conditions (pairwise, left, and controlling for other factors, right)



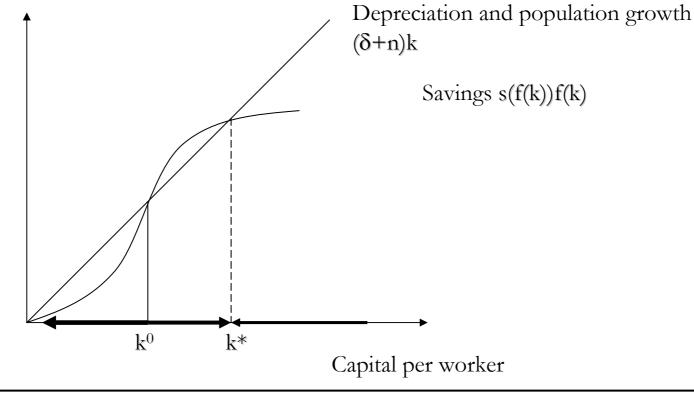
Mobility matrix (Quah, 1993)

1984	<1/4	1/4-1/2	¹ /2 -1	1-2	>2
1962					
<1/4	0.76	0.12	0.12	0	0
1/4=1/2	0.52	0.31	0.10	0.07	0
¹ / ₂ -1	0.09	0.20	0.46	0.26	0
1-2	0	0	0.24	0.53	0.24
>2	0	0	0	0.05	0.95

Implications

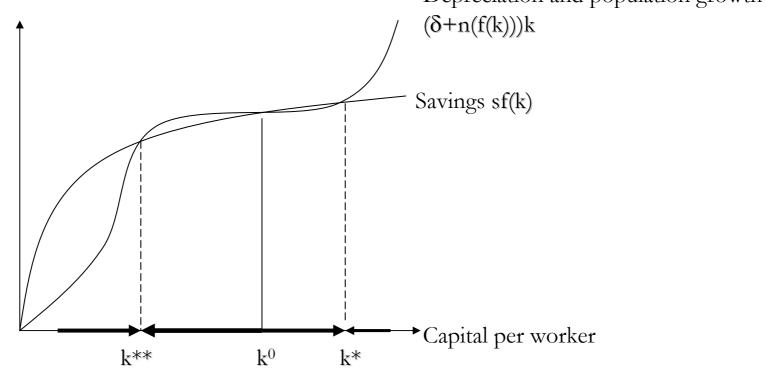
- Substantial mobility (both upward and downward) especially in middle-income range
- No convergence: converges to 'bimodal' distribution
 - Word of caution (recent results): standard errors are too large to make any prediction

'Convergence clubs'

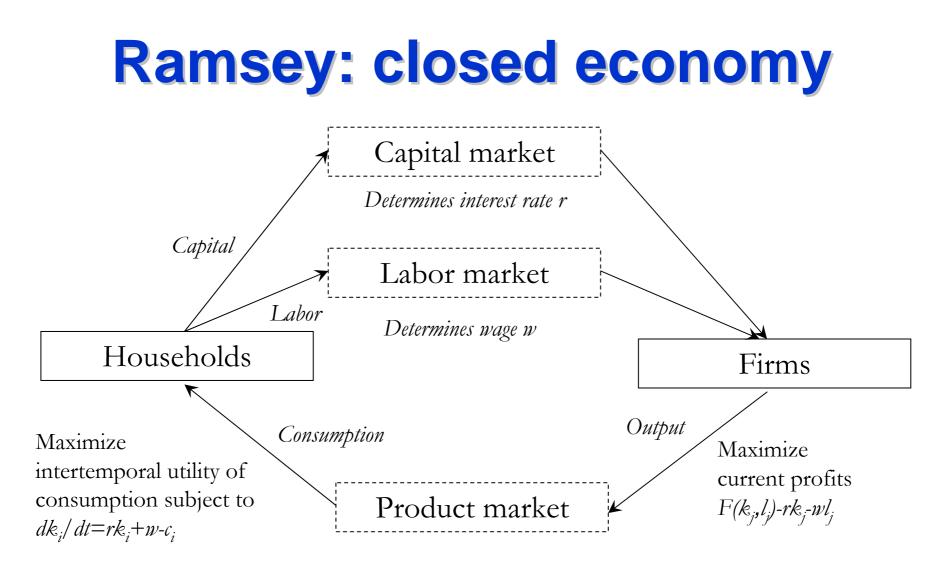

- Several clusters of countries converging to different steady states
 - Some middle income countries 'converge downward'
- Can be explained with underdevelopment traps / multiple equilibria

Underdevelopment traps in Solow model

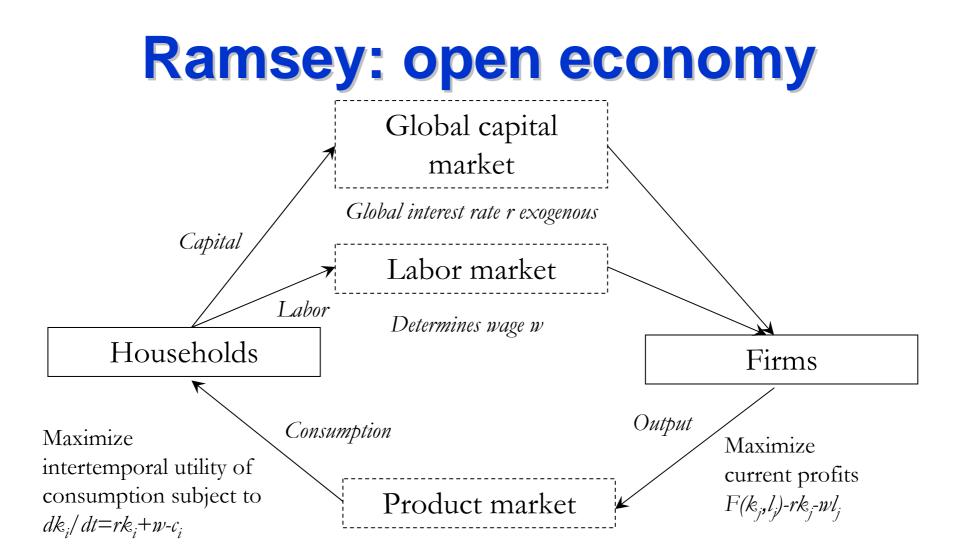
- Modified Solow model
 - Subsistence constraint:
 - Savings rate lower at low incomes
 - Population growth
 - Population growth higher at low incomes


Subsistence constraint

s(y)=s(f(k)) increasing function of income


Endogenous population

n(y)=s(f(k)) increases and then falls with income Depreciation and population growth


Ramsey model

- General equilibrium model with infinitely lived consumers
- Consumers maximize intertemporal utility subject to budget constraint (wages+capital income=consumption+savings)
 - endogenous savings rate
- Firms maximize profits
- Same results for a closed economy as Solow:
 - Steady state savings rate s=(n+ δ)/(n+ δ + ρ) where ρ is representative consumer's discount rate

Ramsey: open economy

- Assumptions:
 - Mobile capital
 - Interest rate should be the same in all economies
 - Immobile labor
 - Countries may differ in terms of wage, capital/worker, income/worker
- Equilibrium
 - Marginal productivity of capital should be higher in poor countries
 - Capital should move from rich to poor countries
- Evidence:
 - US is the largest recipient of FDI
 - OECD receive >90% FDI

Exogenous technical progress:

- To explain growth, add exogenous technical progress
 - Y = F(K, HL)
 - Human capital *H* grows at an exogenous rate γ
- Same, except replacing labor *L* with 'effective labor' *HL*
 - Steady state:
 - Capital per unit of effective labor K/(HL)=k^{*} constant
 - Higher H \Rightarrow Higher capital per worker K/L=Hk^{*}
 - No growth of output per unit of effective labor,
 - Hence growth per capita at γ per cent p.a.

Growth accounting and Solow residual

$Y=A K^{\alpha} L^{1-\alpha}$

[α is estimated using national accounts, share of capital and labor income in GDP,

L – labor force rather than population]

Hence

 $\begin{array}{l} \Delta Y/Y = \Delta A/A + \alpha \ \Delta K/K + (1-\alpha) \ \Delta L/L \\ A - \text{ is Total Factor Productivity (TFP)} \\ \Delta A/A - \text{ is growth in TFP} \\ (TFP \ \textit{level} \ \text{does not matter}) \end{array}$ In per capita terms $\begin{array}{l} \Delta y/y = \Delta A/A + \alpha \ \Delta k/k \end{array}$

Growth accounting, numerical example

- Capital's share in GDP is 0.3
- Capital per worker grows at 10% p.a.
- GDP grows at 5% p.a.
- Hence TFP grows at 5-0.3*10=2% p.a.
- Can also adjust for human capital etc.

Growth accounting and East Asian Miracle

- Korea, Taiwan, Singapore, and Hong Kong have been growing at astronomic rates since 1960
- Worldbank (1993): 'East Asian Miracle', 'productivity-based catching-up'
- Young, Krugman:
 - Mostly based on factor accumulation
 - Education: from 35 to 88%
 - Labor force participation rates: from 27 to 36%
 - Savings rate higher than in other developing economies by 10-20% GDP
 - Growth accounting gives <3% TFP growth
 - Not higher than in other economies

Factor accumulation is endogenous to technological progress

- Productivity increases incentives to accumulate
 - Human capital
 - Physical capital
- Klenow, Rodriquez-Clare:
 - If take into account the response of capital to TFP growth then TFP growth accounts for a substantial share of East Asian Miracle

Exogenous technical progress: implications

- Increase in productivity (e.g. education) ⇒ growth of GDP per capita
- Worldbank and others have achieved a dramatic improvement in education in recent 40 years
- No market for human capital ⇒ low quality, inefficient matching, and braindrain
- In most developing countries, modern technologies are accessible, but no incentives to use them

Education and GDP growth, 1965-85 [Easterly, 2001]

	Education growth, % p.a.	Growth of GDP per capita, % p.a.
Botswana	6	9
Lesotho	2	5
Senegal	7	-1
Madagascar	5	-1
Ghana	4	-1
Subsaharan Africa	4	0.5
East Asia	3	4

Endogenous growth and increasing returns

- Technology is non-excludable (leakages)
 - Constant returns at individual level but increasing returns at the economywide level
- Technology is non-rival
 - Once the technology is invented, marginal cost of dissemination is low
- Critical mass effect in R&D
- 'Standing on shoulders of giants': sequential innovation, threshold externalities
- Evidence: Kremer (1993)
 - Non-rivalry of technology, hence higher population \Rightarrow higher growth
 - Consistent with longest-term data
- Geographical concentration of innovative activity
- Increasing returns \Rightarrow Multiple equilibria

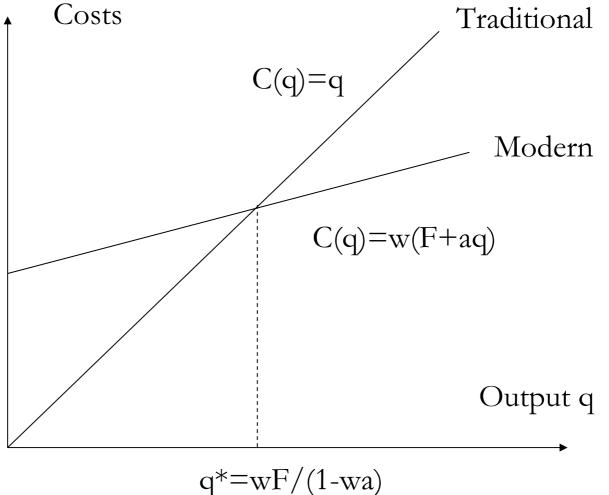
Endogenous growth theory

- Rational choice of R&D
- Technological progress is endogenous
- Schumpeterian growth:
 - Creative destruction
- Intellectual property rights and licensing:
 - Incentives to innovate vs dissemination of knowledge
- Imitation vs. innovation:
 - Different policies in early and later convergence

Increasing returns and Big Push

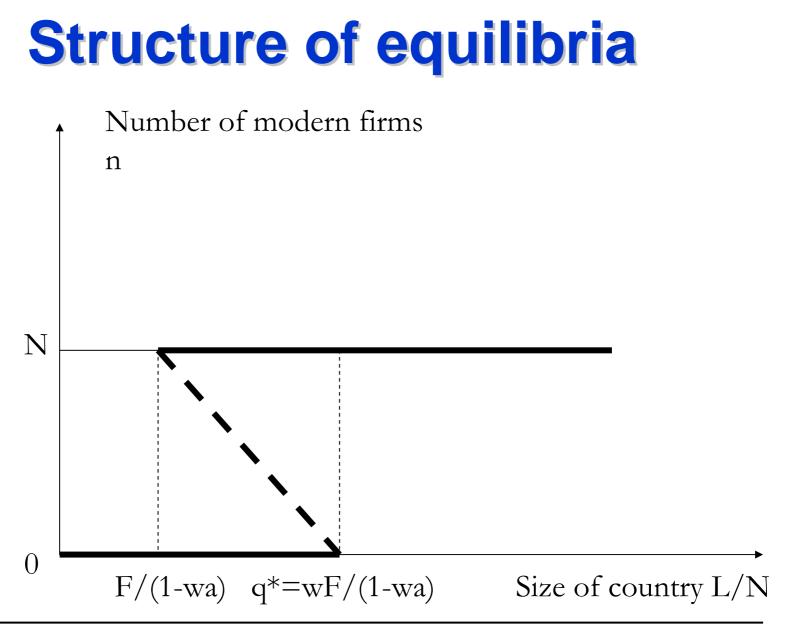
Big Push and market size externality

- Rosenstein-Rodan (1944) formalized by Murphy, Shleifer, Vishny (1989)
- Dual economy:
 - Traditional (subsistence production): constant returns $y_i = I_i$
 - Modern (industrial production): I_i=ay_i+F where a<1, F fixed cost of modernization
 - Efficiency wage: employees of modern firms must be paid v per cent more.
- Also describes introduction of new technologies/standards
 - QWERTY vs DVORAK
 - VHS vs BETACAM
 - Mobile phone standards


Market size externality

- Entrepreneur *i* modernizes ⇒ workers at firm *i* his workers are better paid ⇒ aggregate demand increases
- Demand for all products increases, including product *j*
- Makes easier for entrepreneur *j* to cover fixed costs
- Typical coordination game, multiple equilibria
 Big Push, government intervention may be beneficial
- Another solution: increase market size through opening up and entering global market

The choice of technology


- N sectors, in each entrepreneur compares
 - Traditional technology: I(q)=q,
 - Productivity=wage=1
 - No fixed costs, but high marginal costs
 - Modern technology: I(q)=F+aq
 - Large fixed costs F>0,
 - Low marginal costs a<1
 - Wage must be w>1, wa<1

Modern technology is better whenever demand is high

Macroeconomic equilibrium

- GDP: Y=Nq hence each firm's demand in equilibrium is q=Y/N
- Suppose that n firms choose modern technology
- Then labor market equilibrium: L=n(F+qa)+(N-n)q=n(F+aY/N)+(N-n)Y/N q=(L-nF)/(N-n(1-a))
- Compare q to q*
 - If q<q*, all firms remain traditional n=0
 - $L/N < q^* = wF/(1-wa)$
 - If q>q*, all firms choose modern technology n=N L/N > F/(1-wa)
 - If q=q*, some firms choose modern technology $0 \le n \le N$
 - F/(1-wa) < L/N < wF/(1-wa)

Recent literature on Schumpeterian growth

- Aghion et al.: "Distance to Frontier"
- The trade-off: imitate vs. innovate
 - Adopt technologies developed elsewhere vs
 - Develop new technologies
- If the country is far from frontier, imitation is optimal
 - Catching up growth: Korea and Japan until 1990s
 - Government intervention, larger vertical conglomerates etc.
- If the country is close to frontier, need to innovate
 - US, Western Europe
 - Decentralized, small firms, financial markets

Empirical research on growth

- Large sample of countries: data available only for postwar period
- Hence only cross-section analysis is feasible
- Vulnerable to omitted variable bias and endogeneity
 - Good instrumental variables are hard to find

Some cross-country datasets

Summer Preston Penn World Tables
 Barro-Lee

http://www.economics.harvard.edu/faculty/barro/data.html

- Barro-Sala-i-Martin www.columbia.edu/~xs23/
- World Bank

www.worldbank.org

Global Development Network
 <u>www.gdnet.org</u>

Meta-regressions

- Hundreds of cross-country regressions have been run producing different results
- Levine-Renelt AER 1992: extreme bounds test proves that no variables are robust
- Sala-i-Martin AER PP 1997 "I just ran 2 million regressions" uses a less extreme test
 - Select 62 variables
 - Add then in combination of fours with regression that already includes initial GDP per capita, life expectancy, primary school enrollment
 - Declare the variable "robust" if it is significant in 90% cases
 - Found 22 robust variables

Sala-i-Martin's 22 variables

Independent	(i)	(ii)
variable	β	SD
Equipment		
investment	0.2175	0.0408
Number of years		
open economy	0.0195	0.0042
Fraction		
Confucian	0.0676	0.0149
Rule of law	0.0190	0.0049
Fraction Muslim	0.0142	0.0035
Political rights	-0.0026	0.0009
Latin America		
dummy	-0.0115	0.0029
Sub-Saharan		
Africa dummy	-0.0121	0.0032
Civil liberties	-0.0029	0.0010
Revolutions and		
coups	-0.0118	0.0045

Fraction of GDP		
in mining	0.0353	0.0138
SD black-market		
premium	-0.0290	0.0118
Primary exports		
in 1970	-0.0140	0.0053
Degree of		
capitalism	0.0018	0.0008
War dummy	-0.0056	0.0023
Non-equipment		
investment	0.0562	0.0242
Absolute latitude	0.0002	0.0001
Exchange-rate		
distortions	-0.0590	0.0302
Fraction		
Protestant	-0.0129	0.0053
Fraction		
Buddhist	0.0148	0.0076
Fraction Catholic	-0.0089	0.0034
Spanish colony	-0.0065	0.0032
Buddhist Fraction Catholic	-0.0089	0.0034

Summary of cross-country growth regressions

- Conditional convergence:
 - Other things equal, poor countries grow faster
- Quantity and especially quality of human capital increases growth
- Quality rather than size of government
 - Inflation, corruption, exchange rate regulation negatively affect growth
- Economic institutions are good for TFP growth ...
 - Property rights,
 - Rule of law
 - Financial development
- ... as well as the determinants of economic institutions
 - Economic geography and natural resource endowments
 - Colonial legacies, legal origin, religion
 - Ethnolinguistic fractionalization

New Paradigm: Banerjee-Duflo / Rodrik

- Aggregate models miss the main issue (raised in Lucas, 1990):
 - The returns to investment in physical and human capital are different within poor countries
 - In aggregate models, there is no place for different rates of return
- The different rates of return are driven by poor institutions (property rights protection and contract enforcement), government predation, market failures, monopoly etc.
- Need disaggregated models that would describe this
 - And microeconomic evidence to test their predictions