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Abstract

We study tournaments where winning a rank-dependent prize requires passing a
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modal performance, and the optimal prize scheme is winner-take-all. In contrast,
for log-convex noise distributions the optimal reserve is at the lower bound of the
distribution of performance, which is passed with probability one in equilibrium,
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are optimal in a general class of symmetric monotone contracts that may depend
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1 Introduction

In many tournaments, simply performing better than others is not sufficient to win.

There is often a minimum standard of performance to be passed, or a fixed challenge

to be completed, in order to secure a prize. The Bréant Prize was offered in 1858 by

the French Academy of Sciences for a cure for cholera (Crosland and Gálvez, 1989). In

1919, Raymond Orteig offered a prize to the first person who could fly nonstop from New

York to Paris or the other way around (Bak, 2011). While these challenges are fixed and

indivisible, in other settings the tournament organizer can be more flexible in choosing the

level of difficulty. The Netflix Prize was set up in 2006 for the best algorithm predicting

user ratings of films, under the condition that it had to be at least 10% more accurate

than Netflix’s existing algorithm at the time.1 The 2004 DARPA Grand Challenge was a

competition for the fastest driverless car to complete a 142-mile course (Hooper, 2004).

In this paper, we study how a minimum performance standard, which we call reserve

performance, or simply a reserve, should be set by a tournament organizer. We utilize a

rank-order tournament model à la Lazear and Rosen (1981) where players’ performance

is their effort distorted by idiosyncratic additive noise, and focus on risk-neutral, homo-

geneous players. While reserve price is a standard design tool in private value auctions,

where its role is to filter out low valuation bidders (Myerson, 1981; Riley and Samuelson,

1981), it is not clear why a reserve may be useful in a symmetric tournament setting

where players’ types are the same and publicly known, and winning in equilibrium is

determined entirely by luck. Yet, we show that by carefully choosing a reserve, it is possi-

ble to boost players’ performance. Moreover, by combining reserve with prize allocation,

rank-order tournaments achieve optimality in a much wider class of monotone, symmetric

pay schemes that can be based on cardinal performance.

We find that the optimal tournament design depends critically on the properties of

noise. When the distribution of noise is log-concave, as is the case for most popular

distributions such as normal or logistic, it is optimal to set the reserve performance at the

equilibrium effort plus the mode of the noise distribution, and to award a single prize. In

this case, the optimal reserve mimics the modal competitor. Intuitively, in a winner-take-

all (WTA) tournament, each player’s marginal incentives in the symmetric equilibrium

are determined by the likelihood that his noise realization coincides with the maximum

between (i) the largest realization of noise among all other players and (ii) the threshold

level of noise, defined as the reserve performance less the equilibrium effort. Therefore,

1See https://www.netflixprize.com/rules.html.
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setting the threshold level of noise at the mode maximizes marginal incentives. It is, of

course, possible that none of the players reaches the reserve performance, in which case

nobody receives the prize. The Bréant Prize was never awarded, and the best-performing

vehicle completed only 11 miles out of 142 in the 2004 DARPA Grand Challenge.

For a log-convex distribution of noise, e.g., the Pareto distribution, the optimal pay

scheme is quite different. The reserve still mimics the modal competitor; however, since

the density of noise is decreasing in this case, the mode is at the lower bound of the

support, and hence exerting the equilibrium effort alone guarantees passing the reserve.

Furthermore, it is optimal to share the prize equally among all the players who pass

the reserve.2 In equilibrium, there is effectively no competition among the players, and

the tournament can be replaced by individual bonuses which are paid to all who qualify.

Alternatively, this prize scheme can be implemented by randomly awarding one prize—the

entire budget—to one of the players who passed the reserve.

It has long been argued (see, e.g., the discussion in the original article by Lazear and

Rosen, 1981) that an important advantage of tournament pay schemes is that they only

rely on ordinal performance comparisons, as opposed to standard moral hazard contracts

that are based on cardinal information.3 Therefore, tournaments can be used in settings

where cardinal performance measurements are unreliable and cannot be contracted on,

but, generally speaking, the principal should be able to do better when cardinal informa-

tion is available. Surprisingly, we show that when noise is either log-concave or log-convex,

the principal cannot do better than using the corresponding optimal tournament with re-

serve. In other words, the optimal tournament-with-reserve contracts we identify are

optimal in a much larger class of pay schemes. This result is especially important in

the log-convex case because the optimal moral hazard contract even for a single agent

is unknown when the distribution of noise is not log-concave and hence the monotone

likelihood ratio property (MLRP) does not hold. The result that, in equilibrium, the op-

timal tournament contract for log-convex noise is an individual bonus scheme, effectively

provides a solution to this problem for our setting.4

2Even though all the players pass the reserve with probability one in equilibrium, the tournament prize
schedule that implements this equilibrium is conditional, in the sense that the prize budget is fully shared
only among the players who pass the reserve. More generally, in conditional prize schemes prizes can
depend on the number of players with performance above the reserve. The simpler case of unconditional
prizes is studied in Section 4.3.

3Strictly speaking, reserve performance is a cardinal benchmark. Yet, comparing performance to a
particular benchmark is akin to comparing performance across agents, and is still informationally less
demanding than measuring performance on a cardinal scale.

4Methodologically, we obtain our optimal pay scheme results without relying on the first-order ap-
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We extend our results in several dimensions. We show that in both the log-concave

and log-convex cases individual effort always decreases in the number of players—which

does not hold without a reserve—while aggregate effort always increases if the marginal

cost of effort is convex. We also consider arbitrary (unimodal) noise distributions that

are not necessarily log-concave or log-convex, and arbitrary prize schedules that are not

necessarily optimal. Under an additional monotonicity restriction on prize schedules, we

show that the optimal threshold level of noise is always at or to the right of the mode, i.e.,

the optimal reserve is weakly higher than the modal performance. We also show that the

equilibrium effort is decreasing in the number of players for a wide class of prize schedules

and reserves. Finally, we obtain a tighter characterization of optimal tournament design

when prizes are restricted to being unconditional, i.e., independent of the number of

players who pass the reserve (see fn. 2). In this case, the optimal threshold noise is

always at the mode, and optimal prizes are fully characterized for any (unimodal) noise

distribution.

Related literature Starting with Lazear and Rosen (1981), a number of authors inves-

tigated the problem of optimal prize allocation in rank-order tournaments. For symmetric,

unimodal noise distributions, Krishna and Morgan (1998) show the optimality of WTA

in small tournaments (up to four risk-neutral players or up to three risk-averse players).

Kalra and Shi (2001) and Terwiesch and Xu (2008) show that WTA is optimal for some

particular log-concave distributions of noise. Schweinzer and Segev (2012) show the op-

timality of WTA for Tullock contests.5 Akerlof and Holden (2012) and Ales, Cho and

Körpeoğlu (2017) make somewhat different modeling assumptions and do not state most

results in terms of the primitives; the latter paper, however, shows the crucial role of log-

concavity of the noise distribution for the optimality of the WTA prize scheme. Drugov

and Ryvkin (2020b) and Drugov and Ryvkin (2021) extend and generalize many of the

previous results for the risk-neutral and risk-averse case, respectively. Yet, while already

Lazear and Rosen (1981) mentioned competing against a “fixed standard,” i.e., a reserve

performance, as a way to obtain the first-best effort level, this literature has so far ignored

proach. Instead, we identify an upper bound on the symmetric equilibrium effort across all feasible pay
schemes (ordinal, and then also cardinal), and then show that the corresponding tournament with reserve
achieves that upper bound.

5The multi-prize nested Tullock contest can be equivalently represented as a rank-order tournament
with the Gumbel distribution of noise, which is log-concave (Jia, 2008; Fu and Lu, 2012; Ryvkin and
Drugov, 2020).
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the analysis of optimal reserve performance and associated prize schemes.6

Kirkegaard (2021) considers the optimal tournament design problem using the stan-

dard moral hazard approach. He allows for general performance functions and asymmetric

players but—as is common in the literature—imposes the monotone likelihood ratio prop-

erty (MLRP) and the convexity of the distribution function condition (CDFC). The focus

of his paper is on the design of biased contests when players are asymmetric. In contrast,

we do not rely on the first-order approach in the construction of optimal contracts, which

allows us to go beyond MLRP (log-concave noise distributions in our setup). We demon-

strate that the optimal structure of tournament pay schemes is dramatically different

for log-concave versus log-convex noise distributions. In addition, we assume symmetric

players, and thus unbiased tournaments.

Reserve prices have been studied extensively in the auction literature starting at least

with Myerson (1981) and Riley and Samuelson (1981), but the role of a reserve price in

auctions is different. In a standard independent private value auction setting, types are

privately observed before bidding. The optimal reserve price excludes low types as long as

the effect of the FOSD shift in the distribution of types outweighs the loss of competition

due to a reduced number of bidders. In a (symmetric) tournament, we can think of

noise realizations as “types,” except they are determined after bidding, i.e., a reserve

performance excludes low types ex post. Therefore, there is no reduction in competition

due to a reduction in the number of bidders, but rather there is some loss in marginal

incentives because a player may not get a prize even when he is highly ranked if he cannot

pass the reserve.

Finally, this paper is related to the literature on contracting under moral hazard.

Since the classical papers of Rogerson (1985) and Jewitt (1988), the monotone likelihood

ratio property (MLRP)—which is equivalent to log-concavity of the noise distribution in

our setting—has been identified as necessary for the first-order approach. There has been

some progress recently in analyzing settings where MLRP does not hold (e.g. Poblete and

Spulber, 2012; Kadan and Swinkels, 2013; Kirkegaard, 2017). Still, the optimal contract

when the noise is not log-concave is still unknown—even in the single agent case.

The rest of the paper is organized as follows. Section 2 sets up the model, and Section

6In the logit random utility model, which is formally related to the Tullock contest, the outside
option—effectively, a reserve—has been introduced a long time ago (see, e.g. Anderson, De Palma and
Thisse, 1992). Yet, its optimality has not been studied because it is treated as a parameter. Also, log-
concavity (or a slightly weaker condition of −1/(n+ 1)-concavity, see Caplin and Nalebuff, 1991) has to
be assumed for technical reasons in that model.
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3 presents our main results. Extensions are considered in Section 4. Section 5 concludes.

All missing proofs are collected in the Appendix.

2 Model setup

2.1 Preliminaries

There are n ≥ 2 symmetric, risk-neutral players (we refer to a player individually as

“he”), indexed by i = 1, . . . , n, who simultaneously and independently choose effort levels

ei ∈ R+. Player i’s performance is stochastic and given by Yi = ei +Xi, where shocks Xi

are i.i.d. across players, with an absolutely continuous cumulative density function (cdf)

F (·) and probability density function (pdf) f(·) defined on an interval support X = [x, x]

(where x < x can be finite or infinite). We assume that f is unimodal with a mode

xm, continuous, piece-wise differentiable, and satisfies f(x) = 0.7 The cost of effort ei to

player i is c(ei), where c(·) is C1, strictly increasing and strictly convex on [0, ē], C3 on

(0, ē], and satisfies c(0) = c′(0) = 0. Here, ē = c−1(1) is the maximum undominated effort

in a contest with unit prize.

A principal (“she”) sets a reserve ρ ∈ R and commits to a family of prize schedules

v = (v1, . . . ,vn), where vs = (vs1, . . . , v
s
s) is a vector of prizes in the event s players pass

the reserve, s = 1, . . . , n. Vectors vs are nonnegative, monotone, and satisfy a budget

constraint with total prize money normalized to one: vs1 ≥ . . . ≥ vss ≥ 0,
∑s

r=1 v
s
r ≤ 1,

s = 1, . . . , n. We will refer to prize schedules v satisfying these conditions as feasible and

use V to denote the set of such prize schedules. Combinations of a reserve and a prize

schedule, (ρ,v), will be referred to as (tournament-with-reserve) pay schemes.

The principal observes whether or not each player’s performance passes the reserve,8

as well as the ranking of performance above the reserve. If none of the players passes

the reserve, no prizes are awarded; otherwise, prize vsr is awarded to the player with

performance ranked r among the s players above the reserve. That is, the player with the

highest performance gets vs1, with the second highest—vs2, etc.9

7The last condition holds automatically when x = +∞. For a finite x, it is adopted mainly for the
ease of exposition, and is not required for many of our results when f is log-concave. In particular, our
results hold when f is uniform. Note, however, that we do not assume f(x) = 0, which would exclude
many important cases, e.g., log-convex distributions.

8We use the terms “pass” or “above” in the weak sense. Meeting the reserve is considered passing,
but happens with probability zero for an atomless F .

9Ties are broken randomly, but occur with probability zero for an atomless F (·).
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Note that the prize schemes we consider are conditional, in the sense that the allo-

cation of prizes may depend on the number of qualifying players, s. This is the most

flexible approach, and it makes sense because the principal observes s and can commit to

all possible scenarios. However, in some situations, due to institutional constraints, prize

schedules have to be unconditional, i.e., such that vsr is independent of s for all s ≥ r.

The restriction to unconditional prizes simplifies the analysis substantially and allows for

a more universal characterization of the optimal reserve. We consider unconditional prize

schedules in detail in Section 4.3.

2.2 The principal’s problem

The principal’s objective is to maximize total effort,
∑n

i=1 ei, which in our setting is

equivalent to maximizing total expected performance, E(
∑n

i=1 Yi). Furthermore, we re-

strict attention to the implementation of a symmetric, pure strategy equilibrium where

all players i = 1, . . . , n choose the same effort ei = e∗. For a fixed number of players, the

principal’s objective is then also equivalent to maximizing individual effort, e∗, as well as

the highest expected performance, E(max{Y1, . . . , Yn}).10

Suppose all players other than one indicative player choose effort e∗, and the indicative

player chooses some deviation effort e. The probability that s− 1 players, not including

the indicative player, pass the reserve is γs−1(ρ− e∗), where

γs−1(a) =

(
n− 1

s− 1

)
F (a)n−s[1− F (a)]s−1, a ∈ X .

Note that, in equilibrium, any reserve ρ < e∗+x is passed with probability one, while any

reserve ρ > e∗ + x is never passed. Therefore, without loss we can restrict attention to

reserves such that ρ−e∗ ∈ X . Variable a = ρ−e∗ can be interpreted as the threshold level

of noise that a player would need in order to pass the reserve in a symmetric equilibrium.

10Such objectives are relevant in situations where the principal values the prize money little, or not at
all, relative to effort or output. In organizations, budgets are often allocated to divisions to be spent for a
specific purpose, and any residual funds are swept away at the end of the budgeting period. Suppose, for
example, that a division manager receives an allocation that can only be spent on year-end bonuses; yet,
the manager’s own performance evaluation is determined by the total output of her subordinates. In this
case, the division manager would only be interested in motivating employees, and would not benefit at
all if none of them receives a bonus. Similarly, a research funding agency may be interested in boosting
research output and innovation regardless of whether grants are eventually awarded or prizes are paid
out. In an educational setting, instructors value students’ effort regardless of the grades they eventually
assign, and those grades are costless.
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The expected payoff of the indicative player can be written as

π(e, e∗) =
n∑
s=1

γs−1(ρ− e∗)
s∑
r=1

p(r,s)(e, e∗)vsr − c(e), (1)

where

p(r,s)(e, e∗) =

(
s− 1

r − 1

)∫
[ρ−e,∞)∩X

F̃ (e− e∗ + x)s−r[1− F̃ (e− e∗ + x)]r−1dF (x) (2)

is the probability that the indicative player is ranked r among s players above the reserve,

conditional on there being s − 1 ≥ r − 1 other players above the reserve. Here, F̃ (x) =
F (x)−F (a)

1−F (a)
1{x≥a}∩X is the updated cdf of noise for those players.

We look for a candidate symmetric equilibrium as a solution to the symmetrized

first-order condition (FOC), πe(e
∗, e∗) = 0. Notice that γs−1(ρ− e∗) is independent of e;

therefore, the symmetric FOC takes the form

g(ρ− e∗; v) = c′(e∗), g(a; v) =
n∑
s=1

γs−1(a)
s∑
r=1

β̃r,s(a)vsr , (3)

where β̃r,s(a) = p
(r,s)
e (e∗, e∗) is

β̃r,s(a) =

(
s− 1

r − 1

)∫ x

a

F̃ (x)s−r−1[1− F̃ (x)]r−2[s− r − (s− 1)F̃ (x)]f̃(x)dF (x) + f(a)1r=s.

(4)

In deriving this expression, we assumed that the lower limit of integration in (2) is ρ−e ≥
x, which holds in equilibrium.

Coefficient β̃r,s(a) represents the marginal effect of effort, in equilibrium, on the prob-

ability of being ranked r and passing the reserve ρ = e∗ + a, conditional on s − 1 other

players passing it as well. It can be shown that for any s,
∑s

r=1 β̃r,s(a) = f(a). Indeed,

the sum of these coefficients is the marginal effect of effort on the probability of being

ranked s or better, i.e., effectively, on the probability of simply passing the reserve, which

is ∂
∂e

[1− F (ρ− e)]e=e∗ = f(a).

It is clear that (3) is a necessary condition for a pure strategy symmetric equilibrium

but it is, in general, not sufficient. However, we can postpone the discussion of the equilib-

rium existence. The approach we take instead is, first, to consider the principal’s problem

as if Eq. (3) determines the equilibrium, and then impose additional restrictions on the
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primitives and verify that the optimal payment scheme indeed induces the equilibrium.11

Formally, we consider the problem

max
(ρ,v)

e∗ s.t. g(ρ− e∗; v) = c′(e∗), (5)

where the maximization is over all feasible tournament-with-reserve pay schemes.

3 Optimal pay schemes

3.1 Optimal tournaments with reserve

In general, problem (5) is rather complex because it requires joint optimization over the

reserve and prize schedules. However, as we show in this section, in two prominent special

cases optimal prizes are independent of the reserve and can be identified separately. The

result relies on the following lemma.

Lemma 1 For any a ∈ X , s ∈ {1, . . . , n},
(i) If f is log-concave, then β̃r,s(a) is decreasing in r;

(ii) If f is log-convex, then β̃r,s(a) is increasing in r.

Lemma 1 is based on the following representation of coefficients β̃r,s(a), obtained from

(4) via integration by parts (for details, see Appendix A):

β̃r,s(a) = −1− F (a)

s
E(λ(X̃(s−r+1:s))).

Here, λ(x) = f ′(x)
f(x)

is the log-derivative of the pdf and X̃(s−r+1:s) is the order statistic of

the updated distribution of noise. The latter is decreasing in r in the sense of first-order

stochastic dominance (FOSD). The result then follows because λ(x) is decreasing (resp.

increasing) in x for f log-concave (resp. log-convex).

Recall that c′(·) is a strictly increasing function. The constraint in problem (5), there-

fore, implies that the highest effort e∗ that can possibly be reached is given by c′−1(gm),

where gm = maxa∈X ,v∈V g(a; v) if the maximum exists. The following proposition—our

11Thus, effectively, we consider a relaxed problem and then formulate conditions under which its
solution also solves the original problem of interest, see Lemmas A1 and A2 in the Appendix.
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first main result—shows that in each of the two cases of Lemma 1 this maximum is

well-defined and induced by a particular combination of prizes and reserve.12

Proposition 1 (i) If f is log-concave, then the winner-take-all prize schedule, vsr =

1r=1, and reserve ρ∗ = c′−1(gWTA(xm)) + xm, are optimal. The resulting effort, e∗ =

c′−1(gWTA(xm)), is the unique symmetric equilibrium in the tournament. Here,

gWTA(a) = (n− 1)

∫ x

a

F (x)n−2f(x)dF (x) + F (a)n−1f(a). (6)

(ii) If f is log-convex, then equal prize sharing among all players who pass the reserve,

vsr = 1
s
, and reserve ρ∗ = c′−1(f(x)

n
) + x, are optimal. The resulting effort, e∗ = c′−1(f(x)

n
),

is the unique symmetric equilibrium in the tournament.

The intuition for Proposition 1 is as follows. The introduction of a reserve creates

two effects. First, the reserve acts as an additional artificial competitor with deterministic

performance. In order to maximize its impact, the additional player’s performance should

be set at the most likely level—the equilibrium effort plus the mode of the noise distribu-

tion. The second effect is due to ex post prize sharing, which arises because, in general,

prize schedules are conditional, i.e., prizes may depend on the number of players who pass

the reserve. Depending on a prize schedule, a player who passes the reserve may prefer

that either fewer or more other players pass it along with him. For example, consider a

contest of three players and prize schedule v = ((1), (1, 0), (1
3
, 1

3
, 1

3
)). That is, if one or two

players pass the reserve, the winner gets the entire prize, but if three players pass, the

prize is divided equally among all of them. In this case, conditional on being ranked first

and passing the reserve, a player would prefer a higher reserve so that fewer others could

pass; but conditional on being ranked second or third and passing the reserve, a player

would prefer a lower reserve so that all three players pass. The overall effect combines all

these incentives and, depending on a prize schedule, can go in either direction.

For part (i) of the proposition, when the distribution of noise is log-concave, Lemma

1 implies that the winner-take-all (WTA) schedule is optimal for any reserve. By con-

struction, WTA is an unconditional schedule; therefore, the ex post prize sharing effect

12The proof of Proposition 1 contains Lemmas A1 and A2 which provide technical conditions that
ensure that the proposed symmetric equilibrium exists and is unique in each case. In essence, we require
that the distribution of noise be sufficiently dispersed, but do not restrict its shape beyond mild regularity.
For that reason, and not to distract the reader, we do not include these conditions in the statements of
the propositions in this section. For more details, see the discussions at the end of Section 3.2 and after
the proof of Lemma A2 in Appendix A.
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is absent, and the optimal reserve is at the modal performance.13 For part (ii), when the

distribution of noise is log-convex, Lemma 1 implies equal prize sharing is optimal for any

reserve. The ex post prize sharing effect then calls for a higher optimal reserve because

more passing players means a smaller prize to each of them—as in the example above.

However, log-convex densities are decreasing fast, and, when the reserve is increased be-

yond the modal performance, the loss of incentives from shifting the artificial competitor

is not compensated by the positive effect of a higher expected prize due to ex post prize

sharing.14

Proposition 1 is illustrated in Figure 1. We consider tournaments of four players with

noise distributed as Gumbel(0,1), fGumbel(0,1)(x) = exp(−x − exp(−x)) (the top panel),

and Pareto(1,1), fPareto(1,1)(x) = 1
x2
1x≥1 (the bottom panel). Each panel shows function

g(a; v), which determines the equilibrium effort with reserve ρ = e∗ + a, for all possible

prize schemes of the form [k1, k2, k3, k4], where ks is the number of equal prizes awarded if

s players pass the reserve.15 The cases of WTA, [1, 1, 1, 1], and maximum prize sharing,

[1, 2, 3, 4], are highlighted. The Gumbel distribution is log-concave, with a mode at zero;

hence Proposition 1(i) states that the optimal pay scheme is WTA with the threshold

level of noise a∗ = 0. As seen from the top panel in Figure 1, this is indeed the case.

Moreover, consistent with Lemma 1, the WTA scheme is optimal for any value of a, not

just the optimal one, whereas maximum prize sharing is the worst scheme for any a. In

contrast, the Pareto distribution is log-convex, and Proposition 1(ii) implies maximum

prize sharing and reserve at the lower bound are optimal. Consistent with Lemma 1, this

scheme is optimal for all a, and the WTA scheme yields the lowest effort for all a. At

low reserves (a approaching x), the curves are grouped into “bunches” converging to four

distinct levels of g(a; v). From top to bottom, these correspond to the values of k4 = 1

through 4 for Gumbel, and k4 = 4 through 1 for Pareto. Indeed, for a → x, all players

pass the reserve with probability one in equilibrium; therefore, k4 is the only relevant

prize allocation rule. For Gumbel, WTA is optimal and prize sharing is detrimental for

effort, and the opposite holds for Pareto. As expected, effort converges to zero under full

prize sharing (k4 = 4) for Gumbel.

As noted above, Figure 1 shows that, depending on the distribution of noise, the WTA

13This result generalizes to any unconditional prize schedule, see Proposition 7 in Section 4.3.
14Importantly, log-convex densities cannot have an interior mode. In order to fully illustrate the

interplay between the two effects, one has to consider more general noise distributions that are neither
log-concave nor log-convex. In Section 4.2, we consider such distributions and provide further examples.

15Proposition 5 in Section 4.2 shows that the optimal prize scheme has this form for any noise distri-
bution.
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Figure 1: g(a;v) for Gumbel(0,1) (top) and Pareto(1,1) (bottom) distributions, n = 4 and
various prize schemes. The curves show g(a;v) for all possible prize schemes of the form
[k1, k2, k3, k4], where ks ≤ s represents the number of equal prizes awarded when s players
pass the reserve.
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and maximum prize sharing can be both the best or the worst possible prize schemes.

Hence, having at least some idea about the shape of the distribution of performance shocks

is critical. Using, say, the WTA scheme and hoping that it will do fine even when it is not

optimal may have dramatic consequences for performance. Another interesting feature of

Figure 1 is that some g(a; v) curves are not unimodal in a. Those curves correspond to

prize schedules (vsr) with nonmonotonicities in ks; that is, cases such as [1, 2, 2, 1] where

a smaller number of prizes are awarded when more players pass the reserve.

3.2 Optimal cardinal pay schemes

The tournament-with-reserve pay schemes identified in Proposition 1 are optimal in a

much wider class of pay schemes where compensation can be conditioned on agents’

cardinal outputs. To see this, let w : Rn → Rn
+ denote a general cardinal pay scheme

in which wi(y)—player i’s compensation—may depend on the entire vector of outputs

y = (y1, . . . , yn). We consider pay schemes satisfying the following properties for all

y ∈ Rn and i ∈ {1, . . . , n}.

Assumption 1 (a) Symmetry: wi(y1, . . . , yn) = wτ(i)(yτ(1), . . . , yτ(n)) for any permuta-

tion τ of indices {1, . . . , n};
(b) Monotonicity: wi(y) is increasing in yi;

(c) Budget constraint:
∑n

i=1 wi(y) ≤ 1.

Proposition 2 The optimal tournaments with reserve—WTA and fully equitable prize

sharing for f log-concave and log-convex, respectively—are optimal in the class of pay

schemes satisfying Assumption 1.

Proposition 2 is our second main result. It shows that the restriction to tournaments

with reserve is without loss of generality if one considers arbitrary pay schemes based

on fully observable cardinal outputs, including individual contracts as well as arbitrarily

complex relative performance schemes. An obvious advantage of tournament schemes is

in that they rely only on ordinal output comparisons.16

The equilibrium existence conditions underlying Propositions 1 and 2 are stated and

discussed as part of the proof of Proposition 1 in the Appendix. They ensure that, in

16It may be argued that in the presence of a cardinal reserve a tournament pay scheme ceases to be
fully ordinal. However, it is still ordinal in the sense that the only additional assessment the principal
needs to make is whether or not output passes the reserve—a qualitative assessment, which is arguably
not more demanding than deciding whether one player’s output is higher than another player’s output.
This argument fits the interpretation of reserve as an additional, virtual “player” in the tournament.
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each of the two cases, (i) the FOC (3) has a unique solution, e∗ > 0; (ii) this solution is

incentive-compatible, i.e., it yields a global maximum to π(e, e∗) over e; and (iii) that it

is individually rational, i.e., π(e∗, e∗) ≥ 0. Ultimately, the conditions amount to requiring

that the distribution of noise be sufficiently dispersed and the cost of effort be uniformly

strictly convex. Such conditions are typical for (pure) equilibrium existence in noisy

tournament models.17 Importantly, they do not restrict the shape of the distribution of

noise as do the MLRP or CDFC conditions in the contract literature.

4 Applications and extensions

4.1 The effect of the number of players

It is of interest to explore how the optimal reserve and the resulting equilibrium effort

change with the number of players. The result is given by the following proposition.

Proposition 3 Suppose f(·) is log-concave or log-convex. Then the optimal equilibrium

effort, e∗, and optimal reserve, ρ∗, are decreasing in n.

Recall that for both log-concave and log-convex noise distributions, we can write the

optimal reserve as ρ∗ = e∗ + xm, where xm = x in the latter case. Thus, the dependence

of ρ∗ on n follows that of the equilibrium effort. The optimal choice of reserve is such that

the relevant part of the pdf of noise is decreasing. Indeed, players whose noise realizations

fall in the range where the pdf is increasing do not pass the reserve in equilibrium. In

WTA tournaments without reserve, the dependence of e∗ on n follows the shape of the

pdf (Ryvkin and Drugov, 2020); therefore, e∗ and ρ∗ are decreasing in n. When f is

log-convex, the optimal pay scheme is equal prize sharing, which in equilibrium turns into

an individual bonus with prize 1
n
; hence, e∗ and ρ∗ decrease with n as well.

It is intuitive that the optimal reserve decreases with the number of players since

boosting competition becomes less important. Yet, interestingly, the optimal threshold

level of noise, a∗ = ρ∗ − e∗, is independent of n; that is, even though the reserve becomes

more forgiving in larger tournaments, the equilibrium probability of passing the reserve

remains the same. Therefore, if the noise distribution is symmetric and log-concave then

17In Tullock contests where the probability of player i winning as a function of the vector of players’

efforts is modeled as as
eζi∑n
j=1 eζj

, the corresponding condition is an upper bound on the discriminatory

power ζ, whose inverse is a measure of dispersion of the Gumbel distribution in the additive noise
representation.
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in equilibrium each player passes the optimal reserve with probability 1
2

for any number

of players.

For aggregate effort, E∗ = ne∗, the dependence on n is determined by two effects: The

direct linear effect, which is always positive, and the indirect effect through the adjustment

of e∗, which is always negative due to Proposition 3. Yet, a general characterization can

be obtained under additional restrictions on the cost function.

Proposition 4 (i) If f is log-concave and c′′′ ≥ 0, then E∗ increases in n.

(ii) If f is log-convex, then E∗ increases in n when c′′′ ≥ 0 and decreases in n when

c′′′ ≤ 0.

For WTA tournaments without reserve, Ryvkin and Drugov (2020) show that the

dependence of aggregate effort on n follows the shape of the hazard (or failure) rate of noise

when the cost of effort is quadratic. Log-concave distributions have an increasing hazard

rate; therefore, E∗ increases in n when costs are quadratic, i.e., when E∗ is proportional

to ngWTA(xm). Then, for c′′′ ≥ 0, E∗ = nc′−1(gWTA(xm)) also increases in n because c′−1

is concave. This result holds for any reserve, not just the optimal one.

When f is log-convex, the result follows directly from the representation of aggregate

effort as E∗ = nc′−1(f(x)
n

). The dependence on n is determined by whether c′−1 is concave

or convex.

4.2 Optimal prize schemes in the general case

The analysis so far has been restricted to log-concave and log-convex noise distributions,

for which we showed that the optimal reserve corresponds to modal performance, a∗ = xm,

and the optimal allocation of prizes awards some number ks of equal prizes for each number

of qualified players s. In the log-concave case ks = 1 and is independent of s, and in the

log-convex case ks = s.

In this section, we extend the analysis to more general unimodal noise distributions

that are neither log-concave nor log-convex. We show that optimal pay schemes have

a similar structure: There exists an optimal threshold level of noise, a∗ ∈ X , such that

reserve ρ∗ = e∗+a∗ is optimal, and the optimal allocation of prizes involves ks equal prizes

awarded for each s. However, in general, a∗ is not necessarily at the mode of f , and ks

can be anywhere between 1 and s, depending on the details of the distribution of noise.

As seen from the analysis in Section 3.1, the optimal combination of threshold noise

a and prize schedule v is a solution to maxa∈X ,v∈V g(a; v). Function g(a; v), defined by
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(3), is continuous on X × V , and the domain X × V is compact if we treat X as a subset

of extended reals. Therefore, by the Extreme Value Theorem there exists a pair (a∗; v∗)

(where a∗ = x = −∞ is possible) solving this problem.18

Function g(a; v) is linear in prizes; therefore, for a given a∗, the optimal allocation of

prizes solves a linear programming problem. Moreover, g(a; v) is additive separable in s,

and hence, for each s, vs solves

max
vs

s∑
r=1

β̃r,s(a
∗)vsr s.t. vs1 ≥ . . . ≥ vss ≥ 0,

s∑
r=1

vsr ≤ 1. (7)

Using the approach developed by Drugov and Ryvkin (2020b), we obtain the following

result.

Proposition 5 Suppose a∗ ∈ X is optimal and the equilibrium existence conditions

are satisfied. The optimal allocation of prizes for each s is a two-prize schedule vs =

( 1
ks
, . . . , 1

ks
, 0, . . . , 0) awarding equal prizes to the top ks players above the reserve, where

ks ∈ arg max
k=1,...,s

1

k

k∑
r=1

β̃r,s(a
∗), s = 1, . . . , n. (8)

Proposition 5 shows that optimal prize schedules generically have the structure [k1, . . . , kn]

introduced in the discussion of Figure 1 in Section 3.1.19 Figure 2 provides an illustration

with noise distributed as Burr(3,1), fBurr(3,1)(x) = 3x
(x3+1)2

1x≥0, which has a unimodal

hazard rate and is neither log-concave nor log-convex. Similar to Figure 1, we consider

tournaments of four players and all possible prize schemes of the form [k1, k2, k3, k4]. In

this case, the optimal prize scheme is [1, 1, 2, 2], that is, one prize is given when one or

two players pass the reserve and two prizes are given when three or four players pass.

We now turn to the analysis of the location of a∗. As discussed after Proposition

1, the reserve has two effects on players’ incentives. The first effect is the introduction

of an artificial extra player, whose impact is maximized when the reserve is set at the

modal performance. The second effect—ex post prize sharing—is based on the fact that

under any conditional prize schedule the prize of each player who passed the reserve

depends on the number of others passing along with him. This effect can go in either

direction depending on the prize schedule. However, the player who is ranked first (and

18It is easy to see that a∗ = x is impossible because f(x) = 0 and hence β̃k,s(x) = 0 and g(x;v) = 0
for any v.

19The same structure is optimal for any reserve, not necessarily the optimal one.
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Figure 2: g(a;v) for Burr(3,1) distribution with fBurr(3,1)(x) = 3x
(x3+1)2

1x≥0, n = 4, and various

prize schemes. The curves show g(a;v) for all possible prize schemes of the form [k1, k2, k3, k4],
where ks ≤ s represents the number of equal prizes awarded when s players pass the reserve.

is above the reserve) always prefers no other players to pass—unless the prize schedule

is WTA, in which case he is indifferent—meaning he prefers the reserve to be higher in

general. Hence, the effect pushing the optimal reserve higher is always present when a

prize schedule is truly conditional, i.e., when different numbers of prizes are awarded at

least for some values of s. In order to exclude the opposite effect, i.e., the possibility that

a player prefers more players to pass, which would drive the optimal reserve down, it is

sufficient to assume that prizes vsr are decreasing in s. The result is given by the following

lemma.

Lemma 2 For any feasible prize schedule v such that vsr is decreasing in s, g(a; v) is

maximized at a ≥ xm. Moreover, if there exist r and s′ > s such that vs
′
r < vsr and

f ′(xm) = 0, the inequality is strict.

Optimal prize schemes of the form [k1, . . . , kn], as specified in Proposition 5, and with

vsr decreasing in s, form the class of K-max schedules that assign up to K equal prizes
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for each s. Formally, schedule v is a K-max schedule if there is a K ∈ {1, . . . , n} such

that vsr = 1
min{K,s}1r≤min{K,s}. For example, v = ((1), (1

2
, 1

2
), (1

2
, 1

2
, 0)) is the 2-max prize

schedule for n = 3.20 Note that in Figure 2 a∗ ≈ 0.82, which is above the mode of the

Burr(3,1) distribution xm = 2−
1
3 ≈ 0.79. Yet, the optimal scheme [1, 1, 2, 2] is not a

K-max schedule. This shows that the requirement of vsr decreasing in s is only sufficient

but not necessary.

It can also be of interest how the equilibrium effort, e∗, changes with the number of

players, n, for more general noise distributions and prize schedules. For some n′ > n,

consider prize schedules v = (v1, . . . ,vn) and v′ = (v1, . . . ,vn
′
). Note that v assigns the

same prizes as v′ for up to n players passing the reserve. We will refer to v as a truncated

version of v′. Alternatively, we can think of v′ as an expansion of v.

Proposition 6 Suppose v′ satisfies the condition of Lemma 2 and v is a truncated version

of v′. Suppose further that reserves are chosen optimally, and let e∗ and e∗′ denote the

corresponding equilibrium efforts. Then e∗′ ≤ e∗.

The proof of Proposition 6 relies on a more general result, proved in the Appendix,

that g(a; v′) ≤ g(a; v) for any fixed a ≥ xm. The result then follows if the reserve (and

hence a) is chosen optimally in each case, with the help of Lemma 2.

4.3 Unconditional prizes

In Section 3 we consider fully flexible pay schemes where prizes can be conditioned on the

number of agents who pass the reserve. However, sometimes the designer cannot commit

to a pay scheme so complex, or is institutionally restricted to a single prize schedule. For

example, in college admissions, “prizes,” i.e., whether someone is admitted or not, as well

as scholarships, are fixed and do not depend on the size of the entering class. The same

holds for hiring and promotion tournaments in organizations. Innovation tournaments in

crowdsourcing platforms such as TopCoder or the XPRIZE Foundation, typically fix a

prize schedule in advance and do not award more money to winners if fewer high-quality

projects are submitted.21

20The set of feasible prize schemes v with vsr decreasing in s is much larger—when non-
optimal prize schemes are allowed—and includes schedules with unequal prizes, for example, v =
((1), (0.6, 0.4), (0.5, 0.3, 0.2)) for n = 3.

21Another factor to consider is the possibility of collusion. When the prize budget is fully shared among
agents who pass the reserve, a collusion scheme where all but one agent drop out of competition, and
the single remaining agent then shares the prize with everyone, can be profitable for the agents. A fixed
prize schedule would eliminate incentives to collude.
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In this section, we consider such a scenario, where the principal has to commit to a

single, unconditional prize schedule v = ((v1), (v1, v2), . . . , (v1, . . . , vn)) where prizes do

not depend on the number of agents who pass the reserve. That is, an agent ranked r

receives prize vr if he passes the bar regardless of how many others also pass. As before,

feasible prizes are monotone, nonnegative, and satisfy a budget constraint: v1 ≥ . . . ≥
vn ≥ 0,

∑n
r=1 vr ≤ 1. The following lemma provides a sharp characterization of the

optimal reserve that holds for any unimodal noise distribution.

Lemma 3 For any feasible unconditional prize schedule v, g(a; v) is maximized at a =

xm.

As shown in the proof of Lemma 3, for unconditional prizes function g(a; v) in the

FOC (3) simplifies to g(a; v) =
∑n

r=1 βr,n(a)vr, where

βr,n(a) = −
(
n− 1

r − 1

)∫ x

a

F (x)n−r[1− F (x)]r−1f ′(x)dx (9)

is maximized at a = xm. This implies the optimal reserve is ρ∗ = e∗ + xm as in the

log-concave case in Section 3, although here f(·) is not necessarily log-concave and WTA

is not necessarily optimal. Let β̂r,n = βr,n(xm) and B̂r,n =
∑r

k=1 β̂k,n. The following

proposition, whose proof is identical to that of Proposition 5, characterizes the optimal

allocation of prizes given the optimal reserve.

Proposition 7 Suppose f is unimodal. The optimal unconditional allocation of prizes is

a two-prize schedule with v1 = . . . = vr∗ = 1
r∗

and vr∗+1 = . . . = vn = 0, where

r∗ ∈ arg max
r=1,...,n

B̂r,n

r
. (10)

The optimal reserve is ρ∗ = e∗ + xm, where the symmetric equilibrium effort is e∗ =

c′−1(g(
B̂r∗,n
r∗

; v∗).

As seen from (9), all coefficients β̂r,n are positive. Moreover,

β̂r,n = − 1

n

∫ x

xm

λ(x)dF(n+1−r:n)(x).

When f(·) is log-concave for x ≥ xm, λ(x) is decreasing; therefore, β̂r,n is decreasing in r,

and WTA is optimal. When f(·) is log-convex for x ≥ xm, λ(x) is increasing; therefore,
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β̂r,n is increasing in r. In this case, everyone who passes the reserve gets the same prize 1
n
,

including the player ranked n if all of them pass. These results are consistent with those

in Section 3.

However, since for unconditional prizes the optimal reserve and equilibrium effort are

related as ρ∗ = e∗ + xm for any feasible prize schedule, we have a full characterization of

optimal prizes for noise distributions going beyond log-concave and log-convex. Generi-

cally, it is optimal to promise up to r∗ equal prizes of size 1
r∗

each, with r∗ given by (10).

These prizes are awarded to min{r∗, s} top players, where s is the number of players who

pass the reserve.

This prize structure is similar to the one obtained by Drugov and Ryvkin (2020b) for

tournaments without a reserve. The crucial difference from Drugov and Ryvkin (2020b)

is that r∗ = n—everyone, including the player ranked n, receiving a prize—may be op-

timal, due to the presence of a reserve, which provides incentives beyond competition.

In this case, which holds, e.g., when the distribution of noise is log-convex, the optimal

tournament effectively becomes an individual bonus scheme.

We can also explore how aggregate effort E∗ = ne∗ depends on n in this case. The

result is given by the following proposition.

Proposition 8 Suppose c′′′ ≥ 0 and unconditional prizes are chosen optimally. Then

aggregate effort E∗ = ne∗ increases in n for any reserve.

5 Conclusion

Reserve performance plays an important role in tournament design. In various settings

with competitive incentives, such as innovation contests, promotions, or university admis-

sions, it is in the principal’s interest to not only reward the best performer(s) but also to

ensure that the performance of those selected exceeds a minimum performance standard.

This paper is the first to study the role of reserve performance in rank-order tour-

naments. We show that such a reserve can significantly boost effort. More importantly,

together with prize allocation, reserves achieve optimality in a much wider class of mono-

tone, symmetric pay schemes that can be based on cardinal performance.

The optimal combination of reserve and prize allocation is determined by the prop-

erties of noise. For light-tailed noise (log-concave distributions), the optimal tournament

scheme is highly competitive: The entire prize is awarded to the top player who also has

to surpass the modal performance. In contrast, for extremely heavy-tailed noise (log-
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convex distributions) it is optimal to essentially shut down the competition and award

a prize with probability one to everyone who exerts the equilibrium effort. The result-

ing individual bonus scheme represents an optimal contract in the absence of the MLRP

condition.

Our finding that both reserve and prize allocation are important tournament design

instruments is consistent with stylized facts. Indeed, there is significant variation in the

number of prizes awarded and threshold performance requirements in various contest

settings. For example, in the challenges mentioned in the opening paragraph of the

Introduction the prize structure is winner-take-all, but the 2007 DARPA Grand Challenge

had three prizes, and the French Academy of Sciences had been giving multiple subsidiary

prizes “around” the area of the main prize. Multiple prizes are naturally awarded in other

contexts such as grant applications, university admissions, bonuses, and promotions in

organizations.

Settings with light-tailed and heavy-tailed shocks can be broadly characterized as

those where luck plays a relatively smaller and larger role, respectively, in tournament

outcomes. Our results imply that it is not a good idea to use tournaments under heavy-

tailed shocks, at least if the goal is to motivate effort. A better approach is to impose a

mild performance requirement and use individual bonuses. One can also consider a setting

with heterogeneous agents where the principal’s goal is to select the best employee. Heavy-

tailed shocks make performance-based selection inefficient because winning, especially in

large tournaments, is entirely due to luck and is not informative about ability.
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A Proofs

Proof of Lemma 1

Note that (4) can be written as

β̃r,s(a) =

(
s− 1

r − 1

)∫ x

a

∂

∂x

[
F̃ (x)s−r[1− F̃ (x)]r−1

]
f(x)dx+ f(a)1r=s.
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Integrating by parts, obtain:

β̃r,s(a) =

(
s− 1

r − 1

)[
F̃ (x)s−r[1− F̃ (x)]r−1f(x)

∣∣x
a
−
∫ x

a

F̃ (x)s−r[1− F̃ (x)]r−1f ′(x)dx

]
+ f(a)1r=s = −

(
s− 1

r − 1

)∫ x

a

F̃ (x)s−r[1− F̃ (x)]r−1f ′(x)dx (11)

= −(1− F (a))

(
s− 1

r − 1

)∫ x

a

F̃ (x)s−r[1− F̃ (x)]r−1f̃(x)
f ′(x)

f(x)
dx

= −1− F (a)

s

∫ x

a

λ(x)f̃(s−r+1:s)(x)dx.

Here, λ(x) = f ′(x)
f(x)

, and f̃(s−r+1:s) is the pdf of the (s − r + 1)-th order statistic among s

i.i.d. draws from F̃ . We used that f(x) = 0. The factor 1 − F (a) emerges because the

updated pdf of noise for players who pass the reserve is f̃(x) = f(x)
1−F (a)

.

The results for both parts follow immediately because f log-concave (resp. log-convex)

implies λ(x) decreasing (resp. increasing), and the (s−r+1)-th order statistics are FOSD-

decreasing in r.

Proof of Proposition 1

Part (i): Suppose f is log-concave and hence, by Lemma 1(i), β̃k,s(a) is decreasing in k.

In this case, for any given a, the optimal prize schedule is winner-take-all (WTA), with

vsk = 1k=1 for each s. This gives g(a; v) = gWTA(a), where

gWTA(a) =
n∑
s=1

γs−1(a)β̃1,s(a)

=
n∑
s=1

(
n− 1

s− 1

)
F (a)n−s[1− F (a)]s−1

[
(s− 1)

∫ x

a

F̃ (x)s−2f̃(x)dF (x) + f(a)1s=1

]
=

n∑
s=1

(n− 1)!

(n− s)!(s− 2)!
F (a)n−s

∫ x

a

[F (x)− F (a)]s−2f(x)dF (x) + F (a)n−1f(a)

= (n− 1)

∫ x

a

F (x)n−2f(x)dF (x) + F (a)n−1f(a).

Differentiating with respect to a, we obtain

g′WTA(a) = −(n− 1)F (a)n−2f(a)2 + (n− 1)F (a)n−2f(a)2 + F (a)n−1f ′(a) = F (a)n−1f ′(a).

Therefore, if f is unimodal so is gWTA(a), with the same mode, a = xm, and maximum
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gm = gWTA(xm). The corresponding solution to (5) is e∗ = c′−1(gWTA(xm)), and it satisfies

the equation with reserve ρ∗ = e∗ + xm.

We will now identify sufficient conditions for this solution to implement a unique

symmetric, pure strategy equilibrium for the players. The result is summarized in the

following lemma.

Lemma A1 Suppose

(a) f(x) is uniformly bounded: fm = supx∈X f(x) <∞;

(b) f ′(x) is uniformly bounded above and below: f ′max = supx∈X f
′(x) < ∞, f ′min =

infx∈X f
′(x) > −∞;

(c) c′′(e) is bounded away from zero: c0 = infe∈[0,ē] c
′′(e) > 0, ē = c−1(1);

(d) −f ′min < c0, c′−1(gWTA(xm)) + xm < x, and fm < c′(ē);

(e) fm[(n− 1)fm + max{0, f ′max}] < c0;

(f) 1−F (xm)n

n
≥ c(c′−1(fm)).

Then e∗ is the unique symmetric equilibrium under the optimal pay scheme in the log-

concave case.

Proof of Lemma A1 The proof proceeds in three steps: (1) We show that condition

(d) implies that (3) has exactly one solution e∗. (2) We show that condition (e) implies

that π(e, e∗) is globally strictly concave in e, and hence e = e∗ is incentive-compatible.

Finally, (3) we show that condition (f) implies π(e∗, e∗) ≥ 0.

(1) Letting S(e) = gWTA(ρ− e)− c′(e), obtain

S ′(e) = −g′WTA(ρ− e)− c′′(e) = −F (ρ− e)n−1f ′(ρ− e)− c′′(e).

Recall that f is interior unimodal and hence f ′min < 0. This implies S ′(e) ≤ −f ′min−c0 < 0

from the first part of (d). Thus, (3) has at most one solution. To ensure that a solution

in (0, ē) exists for ρ = ρ∗, note that S(0) = gWTA(ρ∗) > 0 due to the second condition in

(d), whereas S(ē) = gWTA(ρ∗ − ē)− c′(ē) ≤ gm − c′(ē) < 0 because

gm =

∫ x

xm

f(x)dF (x)n−1 + F (xm)n−1fm ≤ fm[1− F (xm)n−1] + F (xm)n−1fm = fm < c′(ē),

where the last inequality is the third part of (d).
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(2) For the WTA prize schedule with reserve ρ∗ = e∗ + xm, payoff (1) takes the form

π(e, e∗) =
n∑
s=1

(
n− 1

s− 1

)
F (xm)n−s

∫ x

xm

[F (e− e∗ + x)− F (xm)]s−1dF (x)− c(e)

=
n−1∑
s=0

(
n− 1

s

)
F (xm)n−1−s

∫ x

xm

[F (e− e∗ + x)− F (xm)]sdF (x)− c(e)

=

∫ x

xm

F (e− e∗ + x)n−1dF (x)− c(e). (12)

This gives

πe(e, e
∗) = (n− 1)

∫ x

xm

F (e− e∗ + x)n−2f(e− e∗ + x)dF (x)− c′(e)

and

πee(e, e
∗) = (n− 1)(n− 2)

∫ x

xm

F (e− e∗ + x)n−3f(e− e∗ + x)2f(x)dx

+ (n− 1)

∫ x

xm

F (e− e∗ + x)n−2f ′(e− e∗ + x)f(x)dx− c′′(e)

= (n− 1)

∫ x

xm

f(e− e∗ + x)f(x)dF (e− e∗ + x)n−2

+

∫ x

xm

f ′(e− e∗ + x)f(x)dF (e− e∗ + x)n−1 − c′′(e)

≤ (n− 1)f 2
m[F (e− e∗ + x)n−2 − F (e− e∗ + xm)n−2]

+ max{f ′max, 0}fm[F (e− e∗ + x)n−1 − F (e− e∗ + xm)n−1]− c0

≤ (n− 1)f 2
m + max{f ′max, 0}fm − c0 < 0,

where the last inequality is due to (e).

(3) From (12), the symmetric equilibrium payoff can be written as

π(e∗, e∗) =

∫ x

xm

F (x)n−1dF (x)− c(e∗) =
1− F (xm)n

n
− c(e∗).

Recall that c′(e∗) = gm ≤ fm, implying e∗ ≤ c′−1(fm) and hence

π(e∗, e∗) ≥ 1− F (xm)n

n
− c(c′−1(fm)) ≥ 0,
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where the last inequality is due to (f).

Part (ii): Suppose now that f is log-convex and f(x) = 0. It follows that f is decreasing,

and hence its mode is at xm = x. From Lemma 1(ii), β̃k,s(a) is increasing in k; therefore,

for each s the optimal (feasible) pay scheme shares the prize equally among all players

above the reserve, vsk = 1
s
. This gives g(a; v) = gES(a), where, using representation (11),

gES(a) =
n∑
s=1

γs−1(a)
1

s

s∑
k=1

β̃k,s(a)

= −
n∑
s=1

γs−1(a)
1

s

s∑
k=1

(
s− 1

k − 1

)∫ x

a

F̃ (x)s−k[1− F̃ (x)]k−1f ′(x)dx

=
n∑
s=1

(
n− 1

s− 1

)
F (a)n−s[1− F (a)]s−1f(a)

1

s
= f(a)

n∑
s=1

(n− 1)!

s!(n− s)!
F (a)n−s[1− F (a)]s−1

=
f(a)

n[1− F (a)]

n∑
s=1

(
n

s

)
F (a)n−s[1− F (a)]s =

f(a)[1− F (a)n]

n[1− F (a)]
.

When f is log-convex, it also has a decreasing failure (or hazard) rate h(x) = f(x)
1−F (x)

,

which implies gES(a) is decreasing and a = x is optimal. Thus, the maximum of gES(a)

is gm = f(x)
n

. The corresponding optimal effort e∗ and reserve ρ∗ are as in part (ii) of the

proposition. Similar to the proof of part (i), we will now formulate sufficient conditions

for the equilibrium existence.

Lemma A2 Suppose conditions (a)-(c) from Lemma A1 are satisfied and

(d’) −f ′min + f(x)2 < c0, c′−1(f(x)
n

) + x < x, and f(x) < nc′(ē);

(f ’) 1
n
≥ c(c′−1(f(x)

n
)).

Then e∗ is the unique symmetric equilibrium under the optimal pay scheme in the log-

convex case.

Proof of Lemma A2 The proof follows the same three steps as the proof for part (i).

(1) Let S(e) = gES(ρ− e)− c(e). Then

S ′(e) = −f
′(ρ− e)[1− F (ρ− e)n]

n[1− F (ρ− e)]
+
f(ρ− e)2F (ρ− e)n−1

1− F (ρ− e)

− f(ρ− e)2[1− F (ρ− e)n]

n[1− F (ρ− e)]2
− c′′(e) ≤ −f ′min + f(x)2 − c0 < 0.
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The last inequality follows from the first condition in (d’). To obtain the upper bound

for the first term in S ′(e), we used that, for any x ∈ X , F (x) ≤ 1 and hence

1− F (x)n

n[1− F (x)]
=

1

n
[1 + F (x) + . . .+ F (x)n−1] ≤ 1.

For the second term, note that h(x) = f(x)
1−F (x)

is a decreasing function; therefore,

f(x)2F (x)n−1

1− F (x)
= h(x)f(x)F (x)n−1 ≤ h(x)f(x) = f(x)2.

The third term in S ′(e) is negative and can be dropped.

Thus, the FOC gES(ρ − e) = c′(e) can have at most one solution. To ensure that a

solution exists for ρ = ρ∗, note that S(0) = gES(ρ∗) > 0 due to the second condition in

(d’), whereas S(ē) = gES(ρ∗ − ē) − c′(ē) ≤ f(x)
n
− c′(ē) < 0 due to the third condition in

(d’).

(2) For the pay scheme with equal prize sharing and reserve ρ∗ = e∗ + x, payoff (1) is

simply

π(e, e∗) =
1

n
F (e− e∗ + x)− c(e).

Indeed, if n − 1 players choose effort e∗, the indicative player will pass the reserve with

probability F (e − e∗ + x) and receive the prize 1
n

if he does. This gives πe(e, e
∗) =

1
n
f(e− e∗ + x)− c′(e) and

πee(e, e
∗) =

1

n
f ′(e− e∗ + x)− c′′(e) ≤ −f

′
min

n
− c0 < 0,

where the last inequality follows from the first condition in (d’).

(3) The symmetric equilibrium payoff is

π(e∗, e∗) =
1

n
− c(e∗) =

1

n
− c

(
c′−1

(
f(x)

n

))
≥ 0

due to (f’).

Regularity conditions Conditions (a) and (b) in Lemma A1 are relatively mild regu-

larity conditions for the pdf of noise f(·). Condition (c) is somewhat restrictive in that it

requires the second derivative of the cost function to be bounded away from zero.22 It is

22For a similar restriction, see, e.g., Schöttner (2008).
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satisfied by the widely used quadratic function as well as, more generally, by all functions

of the form c(e) = c0e2

2
+ κ(e), where κ(·) is convex. It is also satisfied by functions

c(e) = c0e
κ for κ ∈ (1, 2]. It is, however, not satisfied by the same functions with κ > 2.

Dispersion Conditions (d)-(f) of Lemma A1, and parallel conditions (d’) and (f’) of

Lemma A2, can be written explicitly in terms of the dispersion of the distribution of noise.

To this end, consider a parameterized family of distributions with cdf F (x;σ) = F (x
σ
; 1)

and pdf f(x;σ) = 1
σ
f(x

σ
; 1), where σ > 0 is a scale parameter. Let fm1, f ′min 1 and f ′max 1

denote the bounds for the “unit scale” version of the distribution. Then for any σ > 0 the

bounds in conditions (d)-(f), (d’) and (f’) can be written as fm = 1
σ
fm1, f ′min = 1

σ2f
′
min 1

and f ′max = 1
σ2f

′
max 1. It is then clear that for any combination of other parameters fixed,

a sufficiently large σ > 0 can be found such that all the conditions are satisfied. The

scale parameter σ is a measure of the dispersion of the distribution.23 In most standard

cases (although not in general; see Drugov and Ryvkin (2020a)), such as the uniform,

normal, Gumbel or Pareto distribution, it is proportional to the standard deviation and

also orders distributions in terms of variance and second-order stochastic dominance.

Proof of Proposition 2

In any symmetric pure strategy equilibrium where all players exert the same effort e > 0,

a symmetric FOC is satisfied. Without loss, consider player 1 and assume that all players

other than 1 choose effort e. Player 1’s payoff from effort e1 can be written as24

π1(e1, e) =

∫
dF (x1) . . .

∫
dF (xn)w1(e1 + x1, e+ x2, . . . , e+ xn)− c(e1)

=

∫ x+e1

x+e1

dq1

∫
dF (x2) . . .

∫
dF (xn)w1(q1, e+ x2, . . . , e+ xn)f(q1 − e1)− c(e1).

Next, we differentiate π1 with respect to e1, set e1 = e, and change the first variable of

integration back to x1. The result is∫
dF (x2) . . .

∫
dF (xn) [w1(e+ x, e+ x2, . . . , e+ xn)f(x)− w1(e+ x, e+ x2, . . . , e+ xn)f(x)]

−
∫
dx1

∫
dF (x2) . . .

∫
dF (xn)w1(e+ x1, . . . , e+ xn)f ′(x1) = c′(e). (13)

23More precisely, F (x;σ′) dominates F (x;σ) in the dispersive order for σ′ < σ.
24The change of variable x1 � q1 = x1 + e1 is needed in order to shift the dependence on e1 to the

distribution of noise because w1 may be discontinuous.
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The left-hand side of (13) can be increased by dropping the negative term with f(x)

and shifting the lower limit of integration over x1 to xm. Using the assumption that

f(x) = 0, we obtain

c′(e) ≤ R(e; w) ≡ −
∫ x

xm

dF (x1)

∫
dF (x2) . . .

∫
dF (xn)w1(e+ x1, . . . , e+ xn)λ(x1). (14)

Here, λ(x) = f ′(x)
f(x)

. The following lemma shows that function R(e; w) can be uniformly

bounded above by the already familiar bounds in the two cases of Proposition 1.

Lemma A3 For any pay scheme w satisfying Assumption 1,

(i) If f is log-concave, then R(e; w) ≤ gWTA(xm);

(ii) If f is log-convex, then R(e; w) ≤ f(x)
n

.

Proof of Lemma A3

Part (i) Let D1 = {x ∈ X n : x1 > xm > x2, . . . , xn} be the set of noise realizations such

that agent 1 is the only one above the bar. Then we can write

R(e; w) =

∫
D1

w1λ(x1)dF (x1) . . . dF (xn) +

∫
Xn\D1

w1λ(x1)dF (x1) . . . dF (xn), (15)

where for brevity we omit the arguments of w1. In the first term in (15), setting w1 = 1

will produce an upper bound

−
∫
D1

f ′(x1)dx1dF (x2) . . . dF (xn) = −
∫ x

xm

df(x1)

∫ xm

x

dF (x2) . . .

∫ xm

x

dF (xn)

= f(xm)F (xm)n−1.

Next, we show that the second term in (15) is weakly increased by replacing w1 with 1

for x1 > max{x2, . . . , xn} and zero otherwise.

Suppose x2 = max{x2, . . . , xn}. Then we can split the domain of integration into

(X n \ D1) ∩ {x1 > x2} and (X n \ D1) ∩ {x1 < x2}. In the latter integral, we relabel

variables x1 and x2 so that w1(q1, q2, q3 . . . , qn) turns into w1(q2, q1, q3 . . . , qn), which, by

the symmetry property (a), is equal to w2(q1, q2, q3 . . . , qn). Additionally, f ′(x1)f(x2) turns

into f ′(x2)f(x1), keeping everything else intact. Further, we use the budget constraint

property (c) to replace w2 with 1 − w1, which increases the sum. The resulting upper
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bound is∫
x1>x2>xm

w1λ(x1)dF (x1) . . . dF (xn) +

∫
x1>x2>xm

(1− w1)λ(x2)dF (x1) . . . dF (xn)

=

∫
x1>x2>xm

λ(x2)dF (x1) . . . dF (xn) +

∫
x1>x2>xm

w1[λ(x1)− λ(x2)]dF (x1) . . . dF (xn).

Here, for brevity we omitted the remaining characterization of the integration domains

and the arguments of w1. Since f is log-concave, λ(x) is increasing, and hence replacing

w1 with 1 in the second term will increase the expression further. Using integration by

parts, we can transform the result as∫
x1>x2>xm

λ(x1)dF (x1) . . . dF (xn) = −
∫
x1>x2>max{xm,x3,...,xn}

f ′(x1)f(x2) . . . f(xn)dx1 . . . dxn

= −
∫ x

xm

df(x1)

∫ x1

xm

dF (x2)

∫ x2

x

dF (x3) . . .

∫ x2

x

dF (xn) = −
∫ x

xm

df(x1)

∫ x1

xm

dF (x2)F (x2)n−2

= −f(x1)

∫ x1

xm

dF (x2)F (x2)n−2

∣∣∣∣x
xm

+

∫ x

xm

f(x1)2F (x1)n−2dx1 =

∫
x>xm

F (x)n−2f(x)2dx.

Recall that we arbitrarily chose x2 to be the maximum in {x2, . . . , xn}. There are

n − 1 elements in this set, all of which are equally likely to be the maximum, and all of

these cases are equivalent from player 1’s perspective. Thus, the expression above must

be multiplied by n− 1, which gives

R(e; w) ≤ f(xm)F (xm)n−1 + (n− 1)

∫
x>xm

F (x)n−2f(x)2dx = gWTA(xm).

Part (ii) When f is log-convex, it is also convex. In conjunction with the assumption

that f(x) = 0 this implies f is decreasing and xm = x. Assuming x2 = max{x2, . . . , xn}
and following the same sequence of steps as in the proof of part (i), we obtain the bound∫

x1>x2

λ(x2)dF (x1) . . . dF (xn) +

∫
x1>x2

w1[λ(x1)− λ(x2)]dF (x1) . . . dF (xn)

The log-convexity of f implies that λ(x) is decreasing, and the second term is maximized

by setting w1 = 1
n
—the lowest value of w1 that preserves symmetry and monotonicity of
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the pay scheme. Then (14) gives

R(e; w) ≤ − 1

n

∫
f ′(x1)f(x2) . . . f(xn)dx1 . . . dxn =

1

n
f(x).

Since the bounds on R(e; w) in Lemma A3 are reached by the corresponding optimal

tournaments with reserve, the result follows.

Proof of Proposition 3

Suppose first that f is log-concave. Equation (6) can be written in the form

gWTA(a) =

∫
f̂(x; a)dF (x)n−1, f̂(x; a) =

{
f(a), x ≤ a

f(x), x > a
(16)

By construction, f̂(x;xm) is decreasing in x. It then follows from (16) that gWTA(xm) is

decreasing in n, and hence so are e∗ and ρ∗.

For f log-convex, the result follows directly from part (ii) of Proposition 1.

Proof of Proposition 4

Part (i): For f log-concave, we have E∗ = nc′−1(gWTA(xm)). Suppose first that c(e)

is quadratic, in which case c′−1 is linear and E∗ is proportional to ngWTA(xm). Using

representation (16) from the proof of Proposition 3, we can write

ngWTA(xm) = n(n− 1)

∫
f̂(x;xm)F (x)n−2f(x)dx =

∫
f̂(x;xm)

1− F (x)
f(n−1:n)(x)dx,

where f(n−1:n)(x) = n(n − 1)F (x)n−2[1 − F (x)]f(x) is the pdf of X(n−1:n)—the second

highest order statistic among n i.i.d. draws of X.

Since f is log-concave, the distribution of noise has an increasing hazard rate h(x) =
f(x)

1−F (x)
. This implies function f̂(x;xm)

1−F (x)
is also increasing. The result then follows because

X(n−1:n) is FOSD-increasing in n.

For a more general cost function with c′′′ ≥ 0, c′ is convex and hence c′−1 is concave.

Therefore, if E∗ is increasing in n when c′−1 is linear, it will be increasing in n in this case

as well.

Part (ii): For f log-convex, E∗ = nc′−1(f(x)
n

), and hence the effect of n depends on

whether c′−1 is concave or convex, or, equivalently, on whether c′ is convex or concave,

which produces the result.
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Proof of Proposition 5

Fix an s ∈ {1, . . . , n} and consider problem (7). Using a technique similar to Drugov and

Ryvkin (2020b), introduce B̃r,s =
∑r

k=1 β̃k,s(a
∗) and let dsr = vsr − vsr+1 (r ≤ s), where for

convenience we define vss+1 = 0. In the new variables ds = (ds1, . . . , d
s
s) the optimization

problem becomes

max
ds

s∑
r=1

B̃r,sd
s
r s.t. ds1, . . . , d

s
s ≥ 0,

s∑
r=1

rdsr = 1.

This problem, generically, has a corner solution with rdsr = 1 for some r = ks and dsr = 0

for all r 6= ks. Such solutions correspond to two-prize schedules with vs1 = . . . = vsks = 1
ks

and vks+1 = . . . = vs = 0, where ks is given by (8).

Proof of Lemma 2

Using (11) from the proof of Lemma 1, obtain

g(a; v) =
n∑
s=1

γs−1(a)
s∑

k=1

β̃k,s(a)vsk

= −
n∑
s=1

(
n− 1

s− 1

)
F (a)n−s[1− F (a)]s−1

s∑
k=1

vsk

(
s− 1

k − 1

)∫ x

a

F̃ (x)s−k[1− F̃ (x)]k−1f ′(x)dx

= −
n∑
s=1

(
n− 1

s− 1

)
F (a)n−s

s∑
k=1

vsk

(
s− 1

k − 1

)∫ x

a

[F (x)− F (a)]s−k[1− F (x)]k−1f ′(x)dx.

(17)

Changing the order of summation,
∑n

s=1

∑s
k=1 →

∑n
k=1

∑n
s=k, using the identity

(
n−1
s−1

)(
s−1
k−1

)
=(

n−1
k−1

)(
n−k
s−k

)
, and changing the second variable of summation to l = s−k, we further rewrite

g(a; v) as

g(a; v) = −
n∑
k=1

(
n− 1

k − 1

) n−k∑
l=0

(
n− k
l

)
vk+l
k F (a)n−k−l

∫ x

a

[F (x)− F (a)]l[1− F (x)]k−1f ′(x)dx

= −
n∑
k=1

(
n− 1

k − 1

)∫ x

a

F (x)n−k[1− F (x)]k−1Nk(x, a)f ′(x)dx, (18)

where

Nk(x, a) =
n−k∑
l=0

(
n− k
l

)(
F (a)

F (x)

)n−k−l(
1− F (a)

F (x)

)l
vk+l
k .
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We will now show that Nk(x, a) is increasing in a. For brevity, let ξ = 1 − F (a)
F (x)

and

consider

M(ξ) =
n−k∑
l=0

(
n− k
l

)
ξl(1− ξ)n−k−lvk+l

k .

Assuming ξ ∈ (0, 1) and differentiating with respect to ξ, obtain

M ′(ξ) =
n−k∑
l=0

(
n− k
l

)
ξl−1(1− ξ)n−k−1−l[l(1− ξ)− (n− k − l)ξ]vk+l

k

=
1

ξ(1− ξ)

n−k∑
l=0

(
n− k
l

)
ξl(1− ξ)n−k−l[l − (n− k)ξ]vk+l

k

=
1

ξ(1− ξ)
[
E(LvL+k

k )− E(L)E(vL+k
k )

]
=

1

ξ(1− ξ)
Cov(L, vk+L

k ) ≤ 0,

where L ∼ Binomial(n − k, ξ), and the inequality follows from vsk decreasing in s. Since

ξ is decreasing in a, the result follows.

Then, for any a ≤ xm, we can split the integral in (18) to obtain

g(a; v) =
n∑
k=1

(
n− 1

k − 1

)[
−
∫ xm

a

F (x)n−k[1− F (x)]k−1Nk(x, a)f ′(x)dx

+

∫ x

xm

F (x)n−k[1− F (x)]k−1Nk(x, a)|f ′(x)|dx
]
≤ g(xm; v).

The inequality follows because the first term is negative and the second term is increasing

in a.

For the second part of the lemma, note that the condition that vs
′

k < vsk for some k and

s′ > s, means that the prize schedule is not unconditional. This implies Cov(L, vk+L
k ) < 0

in the expression for M ′(ξ) above and hence Nk(x, a) is strictly decreasing in a for a 6= x.

It is sufficient to show that ga(xm; v) > 0. Differentiating (18) and setting a = xm obtain

ga(xm; v) =
n∑
k=1

(
n− 1

k − 1

)[
F (xm)n−k[1− F (xm)]k−1vkkf

′(xm)

−
∫ x

xm

F (x)n−k[1− F (x)]k−1∂Nk(x, xm)

∂a
f ′(x)dx

]
> 0,

where the inequality follows because f ′(xm) = 0 and the second term is positive.

Proof of Proposition 6
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We start with the following lemma that provides the more general result mentioned after

the proposition.

Lemma A4 Suppose v′ satisfies the condition of Lemma 2 and v is a truncated version

of v′. Then for any a ≥ xm, g(a; v′) ≤ g(a; v).

Proof of Lemma A4

We use representation (18) of g(a; v) from the proof of Lemma 2. It is positive because

a ≥ xm, and can be written as an integral of E(NK+1(x, a)), with K ∼ Binomial(n−1, 1−
F (x)). Thus, in order to show that this term is decreasing in n, it is sufficient to show

that Nk(x, a) is decreasing in k and in n. The effect of n is clear immediately because we

can write Nk(x, a) = E(vk+L
k ), with L ∼ Binomial(n − k, ξ), and vk+l

k is decreasing in l.

To see the effect of k, let m = n− k and consider the difference Nk−1(x, a)−Nk(x, a), for

k ≥ 2, in the form

Nk−1(x, a)−Nk(x, a) = Nn−m−1(x, a)−Nn−m(x, a)

=
m+1∑
l=0

(
m+ 1

l

)
ξl(1− ξ)m+1−lvn−m−1+l

n−m−1 −
m∑
l=0

(
m

l

)
ξl(1− ξ)m−lvn−m+l

n−m .

Using the identity
(
m+1
l

)
=
(
m
l−1

)
+
(
m
l

)
, we rewrite the first term as

m+1∑
l=0

(
m

l − 1

)
ξl(1− ξ)m+1−lvn−m−1+l

n−m−1 +
m+1∑
l=0

(
m

l

)
ξl(1− ξ)m+1−lvn−m−1+l

n−m−1

=
m∑
l=0

(
m

l

)
ξl+1(1− ξ)m−lvn−m+l

n−m−1 +
m∑
l=0

(
m

l

)
ξl(1− ξ)m+1−lvn−m−1+l

n−m−1 ,

and obtain

Nk−1(x, a)−Nk(x, a)

=
m∑
l=0

(
m

l

)
ξl(1− ξ)m−l[ξvn−m+l

n−m−1 + (1− ξ)vn−m−1+l
n−m−1 − vn−m+l

n−m ] ≥ 0,

where the inequality follows because vn−m+l
n−m−1 ≥ vn−m+l

n−m and vn−m−1+l
n−m−1 ≥ vn−m+l

n−m .

To prove the proposition, let a∗ and a∗′ denote the corresponding optimal threshold

levels of noise. Then a∗, a∗′ ≥ xm from Lemma 2. Moreover, c′(e∗) = g(a∗; v) ≥ g(a∗′; v) ≥
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g(a∗′; v′) = c′(e∗′), where the first inequality is due to the optimality of a∗ under v and

the second one is due to Lemma A4.

Proof of Lemma 3

The result follows from representations (17) and (18) of g(a; v) in the proof of Lemma 2.

The expression simplifies because vsk = vk is independent of s, which gives Nk(x, a) = vk

and

g(a; v) = −
n∑
k=1

(
n− 1

k − 1

)
vk

∫ x

a

F (x)n−k[1− F (x)]k−1f ′(x)dx.

This is maximized at a = xm, and the result follows.

Proof of Proposition 8

For quadratic costs, aggregate effort is proportional to ng(xm; v∗) = n
B̂r∗,n
r∗

, where r∗ is

the optimal number of prizes. We have

B̂r,n(a) =
r∑

k=1

βr,n(a) = r

(
n− 1

r

)∫ x

a

F (x)n−r−1[1− F (x)]r−1f(x)dF (x) + f(a)1r=n,

which gives
B̂r,n(a)

r
=

1

n

∫ x

a

h(x)dFn−r:n(x) +
f(a)

n
1r=n,

and hence

ng(a; v∗) =

∫ x

a

h(x)dFn−r∗:n(x) + f(a)1r∗=n.

Here, h(x) = f(x)
1−F (x)

is the hazard rate of noise. We need to show that ng(a; v∗) is

increasing in n. It is sufficient to show that when n becomes n+ 1, the expression can be

increased by either keeping r∗ unchanged or replacing it with r∗+ 1. Thus, it is sufficient

to show that either∫ x

a

h(x)dFn+1−r∗:n+1(x) + f(a)1r∗=n+1 ≥
∫ x

a

h(x)dFn−r∗:n(x) + f(a)1r∗=n (19)

or ∫ x

a

h(x)dFn−r∗:n+1(x) + f(a)1r∗=n ≥
∫ x

a

h(x)dFn−r∗:n(x) + f(a)1r∗=n,

(or both). The latter inequality is equivalent to∫ x

a

h(x)dFn−r∗:n+1(x) ≥
∫ x

a

h(x)dFn−r∗:n(x).
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If it holds, we are done. Suppose it does not, i.e., assume that∫ x

a

h(x)dFn−r∗:n+1(x) <

∫ x

a

h(x)dFn−r∗:n(x).

We will now show that (19) holds. First, note that if r∗ = n then ng(a; v∗) = f(a),

i.e., aggregate effort is independent of n and we are done. Suppose r∗ < n. In this case

the terms with the indicator functions in (19) are zero. Subtracting
∫ x
a
h(x)dFn−r∗:n+1(x)

from both sides of (19), we obtain∫ x

a

h(x)[fn+1−r∗:n+1(x)− fn−r∗:n+1(x)]dx ≥
∫ x

a

h(x)[fn−r∗:n(x)− fn−r∗:n+1(x)]dx,

where

fn+1−r∗:n+1(x)− fn−r∗:n+1(x)

=
(n+ 1)!

(n− r∗)!r∗!
F (x)n−r

∗
[1− F (x)]r

∗
f(x)− (n+ 1)!

(n− r∗ − 1)!(r∗ + 1)!
F (x)n−r

∗−1[1− F (x)]r
∗+1f(x)

=
(n+ 1)!

(n− r∗)!(r∗ + 1)!
F (x)n−r

∗−1[1− F (x)]r
∗
[(r∗ + 1)F (x)− (n− r∗)(1− F (x))]f(x)

=
(n+ 1)!

(n− r∗)!(r∗ + 1)!
F (x)n−r

∗−1[1− F (x)]r
∗
[(n+ 1)F (x)− (n− r∗)]f(x),

and

fn−r∗:n(x)− fn−r∗:n+1(x)

=
n!

(n− r∗ − 1)!r∗!
F (x)n−r

∗−1[1− F (x)]r
∗
f(x)− (n+ 1)!

(n− r∗ − 1)!(r∗ + 1)!
F (x)n−r

∗−1[1− F (x)]r
∗+1f(x)

=
n!

(n− r∗ − 1)!(r∗ + 1)!
F (x)n−r

∗−1[1− F (x)]r
∗
[(r∗ + 1)F (x)− (n+ 1)(1− F (x))]f(x)

=
n!

(n− r∗ − 1)!(r∗ + 1)!
F (x)n−r

∗−1[1− F (x)]r
∗
[(n+ r∗ + 2)F (x)− (n+ 1)]f(x)

=
(n+ 1)!

(n− r∗)!(r∗ + 1)!
F (x)n−r

∗−1[1− F (x)]r
∗
[(
n− r∗ +

(r∗ + 1)(n− r∗)
n+ 1

)
F (x)− (n− r∗)

]
f(x).

It is, therefore, sufficient to show that

n+ 1 ≥ n− r∗ +
(r∗ + 1)(n− r∗)

n+ 1
,
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which holds because
(r∗ + 1)(n− r∗)

n+ 1
≤ r∗ + 1.

Thus, we showed that ng(a; v∗) is increasing in n for any a, which implies nc′−1(g(a; v∗))

is increasing in n for c′′′ ≥ 0, i.e., aggregate effort is increasing in n when (unconditional)

prizes are chosen optimally for any reserve, including the optimal reserve with a = xm.
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