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Abstract

The discrete ordinal outcomes, such as the survey responses or changes to the policy
interest rates, are often characterized by abundant observations in the middle of ordered
categories (indi¤erent attitude to the survey question, or no change to the rate). Such
excessive "zeros" can be generated by di¤erent decision-making processes. Besides, the
"positive" and "negative" outcomes can be driven by distinct factors. This paper devel-
ops a two-level cross-nested model for such type of ordinal responses and applies it to
the panel data on individual policymakers�preferences for the interest rate. The model
identi�es three types of zero observations and sheds additional light on the monetary
policy inertia. Both applications and simulations demonstrate superiority with respect
to conventional models.

JEL classi�cation: C3; E5

Keywords: ordinal responses; two-part model; cross-nested model; zero-in�ated out-
comes; policy interest rate

1 Introduction

The ordinal dependent variables, such as the ordered survey responses or discrete changes
to the policy interest rates, are often characterized by abundant observations in the mid-
dle of ordered categories (indi¤erent attitude to the survey question, or no change to the
rate). Such excessive "zeros" can be generated by di¤erent decision-making processes. For
example, some of the zeros may re�ect the "corner solution" outcomes and have driving
forces di¤erent from those in the process generating the non-zero observations. Besides, the
"positive" and "negative" outcomes can be also driven by distinct factors. In such situation,
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am also thankful to Jérôme Adda, Michael Beenstock, James D. Hamilton, Mark Harris, Peter R. Hansen,
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it would be a misspeci�cation to treat the zeros and non-zeros as coming from the same
data-generating process (dgp), and apply a standard ordered-response or count model based
on a single latent equation.

This paper introduces new econometric tools to model such ordinal data, making possible
to identify three types of zero observations and letting the probabilities of positive and
negative outcomes be driven by di¤erent sources. The performed Monte Carlo simulations
show the model performance in �nite samples and demonstrate superiority with respect
to the conventional and two-level models for ordinal responses. The proposed model is
then applied to explain the policy interest rate decisions of the National Bank of Poland
(NBP), using the "micro-type" panel of the individual votes of policymakers and real-time
macroeconomic data available at the dates of monetary policy decisions.

Almost all policy rate adjustments of most major central banks recently fall into �ve
categories (-0.50%, -0.25%, no change, 0.25% and 0.50%), and no-change decisions com-
monly constitute the majority. For an illustration, Figure 1 presents four di¤erent two-level
decision trees to model such discrete changes to the interest rate. The proposed middle�
category-in�ated ordered probit (MIOP) model can be brie�y described as a two-level cross-
nested ordered probit model (see Diagram B), an extension of a two-level nested ordered
probit (NOP) model with three nests (see Diagram A). At the upper level of the NOP
and MIOP models the policymakers decide whether to increase, or leave unchanged, or
decrease the rate. This trilemma is modelled by a trichotomous ordered probit model. In
the case of no-change decision no further policy actions are taken, and the rate remains
unchanged. If the policymakers are inclined to hike or cut the rate, they have to choose
by how much, including also a zero change in the case of MIOP model. This �ne-tuning
lower level, conditional on the decision to increase or decrease the rate at the upper level, is
modeled by two distinct ordered probit models with, in general, di¤erent sets of covariates.
Simultaneous estimation of three latent equations allows for three distinct dgp generating
zero observations. The probability of zero outcome is "in�ated" since in addition to a no-
change decision at the upper level the policymakers may also �nally opt to leave the rate
unchanged at the lower level, despite the easy or tight policy stance at the upper level.

The existence of di¤erent types of no-change decisions in interest rate setting is justi�ed
by the very nature of monetary policymaking that involves processing huge amount of data,
meeting di¤erent and often con�icting goals, and is mostly conducted by a committee with
heterogeneous members. One might think of a rationale behind the MIOP model applied to
the policy rate setting as follows. The �rst hurdle can be thought of as a "policy inclination"
decision, caused by the immediate policy response to the new economic information (such
as changes since the last policy meeting), whereas the second hurdle constitutes a �ne-
tuning "inertial" decision, driven by the institutional factors (such as the "policy bias" or
"balance of risks" statements and disagreement among the policymakers at the last policy
meeting) and reaction to accumulated economic information (such as the cumulative changes
to the economic indicators since the date of the last policy rate adjustment). Under this
interpretation, there are following three types of zeros: "neutral zeros", generated directly
by neutral policy reaction to the contemporary economic developments, and two kinds of
"inertial zeros", "loose or tight zeros", generated by loose or tight policy inclinations o¤set
by the inertia of policymaking process.

In case of unordered categorical data that is naturally clustered (e.g., schools within
districts, classes within schools, students within classes) the nested (or hierarchical, or
multilevel) multinomial logit model is used widely (see Greene 2012). Several kinds of
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Figure 1: Two-level decision trees of changes to the policy rate.

multinomial logit models with overlapping nests have been also proposed. Wen and Kop-
pelman (2001) introduced a generalized nested logit model that contains other cross-nested
logit models as special cases. The hierarchical ordinal data are usually analyzed in the
context of generalized linear models (proposed by Agresti 1977), based on the cumula-
tive logit, complementary log-log or probit link (for a survey, see Agresti and Natarajan
2001). The cross-nested models, speci�cally designed for clustered ordinal data, are not
so well-developed. Small (1987) proposed a model for ordered outcomes, called ordered
generalized extreme value model, that has overlapping nests, but each nest contains only
two alternatives.

On the other hand, the proposed MIOP model can be seen as a zero-in�ated three-
part mixture model. The mixture models, developed to deal with both the abundant zeros
and unobserved heterogeneity, include the zero-in�ated Poisson (Lambert 1992) and neg-
ative binomial (Greene 1994) models for count outcomes, the zero-in�ated ordered probit
(ZIOP) model (Harris and Zhao 2007) and zero-in�ated proportional odds model (Kelley
and Anderson 2008) for discrete ordinal variables. These zero-in�ated models are the nat-
ural extensions of the two-part (or hurdle, or split-population) models, �rst proposed by
Cragg (1971) for non-negative continuous data, and then developed for count data (Mullahy
1986), survival time data (Schmidt and Witte 1989) and discrete ordered time-series data
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such as the policy interest rate changes (autoregressive conditional hazard (ACH) model
of Hamilton and Jorda 2002). A two-part model is basically a two-level hierarchical model
with two nests. It combines a binary outcome model for the probability of crossing the
hurdle (the upper-level participation decision) with a truncated-at-zero model for outcomes
above the hurdle (the lower-level amount decision)1. The di¤erence between the two-part
ACH (see Diagram C in Figure 1) and ZIOP (see Diagram D in Figure 1) models is that
in the former the two parts are estimated separately, the zero observations are excluded
from the second part, and, hence, the discrimination among di¤erent kinds of zeros is not
accommodated, whereas the latter assumes two types of zeros and is able to identify their
di¤erent dgp2.

The proposed MIOP econometric framework (including the extended version of the
model, where the error terms of the three latent equations are correlated) is introduced
in Section 2. It is a natural generalization of the ZIOP model. The trichotomous partici-
pation decision (increase/no change/decrease) seems to be more realistic than binary one
(change/no change) if applied to such type of ordinal data: the policymakers, who are will-
ing to adjust the rate, naturally have already decided in which direction they want to move
it. Besides, the MIOP model lets the probabilities and magnitudes of positive changes to
the rate be a¤ected by di¤erent determinants than those of negative changes. Combining
these two distinct decisions at the upper hurdle into one category, as done in the ZIOP
model, may seriously distort the inference. The ZIOP model is better suitable if applied to
explain such decisions as levels of consumption, when the upper hurdle is naturally binary
(to consume or not to consume).

Section 3 reports the results of Monte Carlo simulations to assess and compare the
�nite sample performance of the standard ordered probit (OP), NOP and MIOP models.
In section 4 the four models (OP, NOP, ZIOP and MIOP) are applied to explain the policy
interest rate decisions of the Monetary Policy Council of the NBP, and contrasted. Section
5 concludes.

2 The econometric framework

2.1 The middle-in�ated ordered probit (MIOP) model

The proposed MIOP model allows for any number of ordered discrete categories of the de-
pendent variable greater than two. For the sake of illustration and without loss of generality,
the observed dependent variable is assumed to take one of the discrete values j coded as
f�J; :::;�1; 0; 1; :::; Jg, and the in�ated outcome is coded as zero3. The model includes two
levels and three latent variables.

At the upper level there is a continuous latent variable r�t representing underlying con-

1Thus, the two-part model is similar to a discrete version of the sample selection model (early contributions
are Gronau 1974 and Heckman 1976, 1979, among others). However, in the sample selection model the �rst
hurdle, the selection decision, determines whether the outcome variable is observed, rather than whether
the activity is undertaken, as in the zero-in�ated model, where all outcomes are actually observed. In many
applications, in the absence of sample selection problem, there is no need in modeling the latent potential,
as opposed to the observed actual outcomes (for a debate between the sample selection and two part-models
see Leung and Yu 1996, Jones 2000, Dow and Norton 2003, Madden 2008).

2On the other hand, the ZIOP model assumes no serial correlation among the latent residuals, whereas
the ACH model accounts for the serial dependence in discrete-valued time series.

3Of course, the in�ated outcome does not have to be in the very middle of ordered categories.
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tinuous rate adjustments that would have been observed had the policymakers been willing
to make the continuous (rather than discrete) changes to the rate at meeting t in response
to the observed data according to

r�t = x
0
t� + �t, (1)

where xt is the tth row of an observed N �K� data matrix X, N is the sample size, � is a
K� � 1 vector of unknown coe¢ cients, and �t is the iid error term.

The upper-level decision rt is coded as -1, 0, or 1 if the policymakers decide to decrease,
leave unchanged, or increase the rate, respectively. The correspondence between r�t and rt
is given by the matching rule

rt =

8<:
�1
0
1

if
if
if

r�t � �1,
�1 < r

�
t � �2,

�2 < r
�
t ,

where �1 < �1 � �2 <1 are the unknown threshold parameters to be estimated.
Under the assumption that the disturbance term �t is distributed with cdf F , the

probabilities of each possible outcome of rt are:

Pr(rt = �1jxt) = Pr(r�t � �1jxt) = F (�1 � x0t�),
Pr(rt = 0jxt) = Pr(�1 < r

�
t � �2jxt) = F (�2 � x0t�)� F (�1 � x0t�),

Pr(rt = 1jxt) = Pr(�2 < r
�
t jxt) = 1� F (�2 � x0t�).

(2)

At the lower level of the MIOP model there are three regimes.

� Regime rt = �1

Conditional on being in Regime rt = �1 the latent variable y��t is de�ned as

y��t = z�0t  + "
�
t , (3)

where  is a K�1 vector of unknown coe¢ cients, z�t is the tth row of an observed N �K
data matrix Z�, and "�t is the iid disturbance term with the cdf F�.

The discrete change to the rate y�t is determined according to the rule:

y�t j(rt = �1) = j if ��j�1 < y
��
t � ��j for j = �J to 0,

where �1 = ���J�1 � ���J � ::: � ���1 � ��0 = 1 are J unknown thresholds to be
estimated.

The probability of a particular outcome j, conditional on Regime rt = �1, is given by

Pr(y�t = jjz�t ; rt = �1) =

8>><>>:
F�(���J � z

�0
t ) for j = �J ,

F�(��j � z
�0
t )� F�(��j�1 � z

�0
t ) for �J < j < 0,

1� F�(���1 � z
�0
t ) for j = 0,

0 for 0 < j � J ,

which can be written more compactly, given that �1 = ���J�1 and �
�
0 =1, as
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Pr(y�t = jjz�t ; rt = �1) =
�
F�(��j � z

�0
t )� F�(��j�1 � z

�0
t ) for �J � j � 0,

0 for 0 < j � J . (4)

� Regime rt = 0

Conditional on being in Regime rt = 0 no further policy actions are taken - the rate
remains unchanged:

y0t j(rt = 0) = 0:

Therefore, the probability of a particular outcome j, conditional on Regime rt = 0, is
given by

Pr(y0t = jjrt = 0) =
�
0 for j 6= 0,
1 for j = 0.

(5)

� Regime rt = 1

Conditional on being in Regime rt = 1 the latent variable y+�t is de�ned as

y+�t = z+0t � + "
+
t , (6)

where � is a K� � 1 vector of unknown coe¢ cients, z+t is the tth row of an observed N �K�
data matrix Z+, and "+t is the iid disturbance term with the cdf F+.

The discrete change to the rate y+t is determined according to the rule:

y+t j(rt = 1) = j if �+j�1 < y
+�
t � �+j for j = 0 to J ,

where �1 = �+�1 � �
+
0 � ::: � �

+
J�1 � �

+
J =1 are J unknown thresholds to be estimated.

The probability of a particular outcome j, conditional on Regime rt = 1, is given by

Pr(y+t = jjz+t ; rt = 1) =
�
0 for �J � j < 0,
F+(�+j � z

+0
t �)� F+(�+j�1 � z

+0
t �) for 0 � j � J . (7)

Assuming that �t, "�t and "
+
t are independent, the full unconditional probabilities to

observe the outcome j are given by combining probabilities in Eqs. (2), (4), (5) and (7):

Pr(yt = jjz�t ; z+t ;xt) =
�
Ij=0 Pr(rt = 0jxt) + Ij�0 Pr(rt = 1jxt) Pr(y+t = jjz+t ; rt = 1)
+Ij�0 Pr(rt = �1jxt) Pr(y�t = jjz�t ; rt = �1)

=

8<:
Ij=0[F (�2 � x0t�)� F (�1 � x0t�)]
+Ij�0[1� F (�2 � x0t�)][F+(�+j � z

+0
t �)� F+(�+j�1 � z

+0
t �)]

+Ij�0F (�1 � x0t�)[F�(��j � z
�0
t �)� F�(��j�1 � z

�0
t �)],

(8)

where Ij�0 is an indicator function such that Ij�0 = 1 if j � 0 and Ij�0 = 0 otherwise
(analogously for Ij=0 and Ij�0).
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The proposed model, as any model with a latent variable, is not identi�ed without some
(arbitrary) assumptions. I assumed the same speci�c form of the error distributions F ,
F� and F+ (normal distribution with mean of 0 and variance of 1), and also that the
intercept components of �,  and � are all equal to zero. However, the above probabilities
are estimable functions, i.e. they are invariant to the identifying assumptions. They can
be estimated by maximizing the logarithm of likelihood function l(�) with respect to the
vector of parameters � = (�0;�0;��0; 0;�+0; �0)0:

ln l(�) =
TX
t=1

JX
j=�J

qtj ln[Pr(yt = jjxt; z�t ; z+t )], (9)

where qtj is an indicator function such that qtj = 1 if yt = j and 0 otherwise.
The model can be also estimated for panel data with N cross section units, using the

pooled maximum likelihood (ML) estimator of � that solves

max
�

NX
i=1

TX
t=1

JX
j=�J

qitj ln[Pr(yit = jjxit; z�it ; z
+
it ;�)]. (10)

With T �xed and N ! 1, this estimator is consistent and
p
N -asymptotically normal

without any assumptions other than above identi�cation, independence of �t, "�t and "
+
t

and standard regularity conditions. However, the usual asymptotic standard errors and test
statistics obtained from pooled estimation are valid only under the assumption of no serial
correlation (Wooldridge 2010).

2.2 The nested ordered probit (NOP) model

The only di¤erence between the NOP and MIOP models is that all three nests of the NOP
model do not overlap, i.e. Regimes rt = �1 and rt = 1 do not allow for �no change�response.
Therefore, in the NOP model the full unconditional probabilities to observe the outcome j
(again, assuming that the disturbance terms of three latent equations are independent) are
given by

Pr(yt = jjz�t ; z+t ;xt) =
�
Ij=0 Pr(rt = 0jxt) + Ij>0 Pr(rt = 1jxt) Pr(y+t = jjz+t ; rt = 1)
+Ij<0 Pr(rt = �1jxt) Pr(y�t = jjz�t ; rt = �1)

=

8<:
Ij=0[F (�2 � x0t�)� F (�1 � x0t�)]
+Ij>0[1� F (�2 � x0t�)][F+(�+j � z

+0
t �)� F+(�+j�1 � z

+0
t �)]

+Ij<0F (�1 � x0t�)[F�(��j � z
�0
t )� F�(��j�1 � z

�0
t )],

(11)

where now �1 = ���J�1 � �
�
�J � ::: � �

�
�1 = 1 and �1 = �+0 � ::: � �

+
J�1 � �

+
J = 1

are 2(J � 1) unknown thresholds to be estimated on the lower level (instead of 2J in the
MIOP model), and the other parameters and assumptions are analogous to those in the
MIOP model.

To estimate the NOP model by ML one has to maximize the logarithm of likelihood
function ln l(�) in Eq. (9), using the probabilities in Eq. (10). The loglikelihood function
of the NOP model, in contrast to that of the MIOP, is separable with respect to the para-
meters in the three latent equations. Thus, maximizing ln l(�) is equivalent to maximizing
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separately three OP models, corresponding to the above three latent equations (1), (3) and
(6), where the data matrices Z+ and Z� are truncated to contain only the rows with yt > 0
and yt < 0, respectively.

2.3 Relaxing assumption of independent disturbances

The NOP and MIOP models can be further extended by relaxing the assumption that the
error terms �, "� and "+ are uncorrelated, and introducing the correlated versions of the
models, NOP(c) and MIOP(c). I assume now that (�; "�) and (�; "+) follow a standard-
ized bivariate normal distribution with correlation coe¢ cients �� and �+; respectively. The
correlation between "� and "+ does not belong to the likelihood function. The full uncon-
ditional probabilities to observe the outcome j for the MIOP(c) model can be written now
as

Pr(yt = j) =

8<:
Ij=0[F (�2 � x0t�)� F (�1 � x0t�)]
+Ij�0[F2(x0t� � �2;�+j � z

+0
t �;��+)� F2(x0t� � �2;�+j�1 � z

+0
t �;��+)]

+Ij�0[F2(�1 � x0t�;��j � z
�0
t ;�

�)� F2(�1 � x0t�;��j�1 � z
�0
t ); �

�],

(12)

where F2(w1;w2;�) is the cdf of the standardized bivariate normal distribution with the
correlation coe¢ cient � between the two random variables w1 and w2.

The full unconditional probabilities to observe the outcome j for the NOP(c) model are
given by

Pr(yt = j) =

8<:
Ij=0[F (�2 � x0t�)� F (�1 � x0t�)]
+Ij>0[F2(x

0
t� � �2;�+j � z

+0
t �;��+)� F2(x0t� � �2;�+j�1 � z

+0
t �;��+)]

+Ij<0[F2(�1 � x0t�;��j � z
�0
t ;�

�)� F2(�1 � x0t�;��j�1 � z
�0
t ); �

�].

(13)

To estimate the NOP(c) and MIOP(c) models by ML one has to maximize loglike-
lihood function in Eq. (9), replacing the probabilities in Eqs. (8) and (10) with those
in Eqs. (11) and (12), respectively, and re-de�ning the vector of parameters � as � =
(�0;�0;��0; 0;�+0; �0; ��; �+)0.

2.4 Partial e¤ects

The partial e¤ect (PE ) of each continuous covariate on the probability of each discrete
choice is computed as the partial derivative with respect to this covariate, holding all the
others �xed. For the discrete-valued covariates the PE is computed as the change in the
probabilities, when this covariate changes by one increment and all the others are �xed. To
facilitate the derivation of the PE, the matrices of covariates and corresponding vectors of
parameters can be partitioned as follows:

X = (W;P;M; eX), Z+ = (W;P;V; eZ+), Z� = (W;M;V; eZ�),
� = (�0w;�

0
p;�

0
m;
e�0)0, � = (�0w; �

0
p; �

0
v;
e�0)0, = ( 0w;

0
m;

0
v; e 0)0,

where W includes only the variables common for X, Z+ and Z�; P includes only the
variables common for bothX and Z+, but which are not in Z�;M includes only the variables
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common for both X and Z�, but not in Z+; V includes only the variables common for both
Z� and Z+, but not in X; whereas eX, eZ+ and eZ� include only those unique variables that
appear only in one of the latent equations.

A matrix of covariates X� and the vectors of parameters for X� can be written down as

X� = (W;P;M; eX;V; eZ+; eZ�), �� = (�0w;�0p;�0m; e�0;00;00;00)0,
�� = (�0w; �

0
p;0

0;00; �0v; e�0;00)0, � = ( 0w;00; 0m;00; 0v;00; e 0)0.
The partial e¤ects of the row vector x�t on the overall probabilities in Eq. (11) can be

now computed for the MIOP(c) model as

ME
Pr(yt=j)

=

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

�Ij=0[f(�2 � x0t�)� f(�1 � x0t�)]��

+Ij�0

��
F

�
x0t���2+�+(�

+
j�1�z

+0
t �)p

1�(�+)2

�
f(�+j�1 � z

+0
t �)

�F
�
x0t���2+�+(�

+
j �z

+0
t �)p

1�(�+)2

�
f(�+j � z

+0
t �)

�
��

+

�
F

�
�+j �z

+0
t �+�

+(x0t���2)p
1�(�+)2

�
� F

�
�+j�1�z

+0
t �+�

+(x0t���2)p
1�(�+)2

��
f(x0t� � �2)��

�
+Ij�0

��
F

�
�1�x0t����(�

�
j�1�z

�0
t )p

1�(��)2

�
f(��j�1 � z

�0
t )

�F
�
�1�x0t����(�

�
j �z

�0
t )p

1�(��)2

�
f(��j � z

�0
t )

�
�

�
�
F

�
��j �z

�0
t ���(�1�x0t�)p
1�(��)2

�
� F

�
��j�1�z

�0
t ���(�1�x0t�)p
1�(��)2

��
f(�1 � x0t�)��

�
,

(14)

where f is the pdf of the standard normal distribution F . The PE for the NOP(c) model
are given by replacing Ij�0 with Ij>0 and Ij�0 with Ij<0. The PE for the NOP and MIOP
models are obtained as above by setting �� = �+ = 0. The asymptotic standard errors of
the PE can be computed using the Delta method.

2.5 Model comparison

The performance of competing models can be compared by using model selection tests and
informational criteria.

The NOP and MIOP models are nested in the NOP(c) and MIOP(c) models, respec-
tively, as their uncorrelated special cases. The NOP model is nested in the MIOP model.
The latter becomes a NOP model with the same value of likelihood function if ���1 ! 1
and �+0 ! �1, and hence, Pr(y+t = 0jz+t ; rt = 1) ! 0 and Pr(y�t = 0jz�t ; rt = �1) ! 0,
which can be implemented by letting ���1 and �

+
0 to be equal to the largest and smallest

numbers available for estimation software. Testing the NOP versus NOP(c), NOP versus
MIOP, NOP versus MIOP(c), NOP(c) versus MIOP(c), and MIOP versus MIOP(c) model
can be performed with the likelihood ratio (LR) test.

The OP models in not nested in either of the two-level models, and vice versa. However,
the OP model is not strictly non-nested with them. All �ve models overlap if all their slope
coe¢ cients are restricted to being zero (i.e. if � = 0; = 0; � = 0; and the vector of slope
parameters in the OP latent equation is also �xed to zero), and only the thresholds are
estimated. Therefore, testing the OP versus any of the two-level models, as well as NOP(c)
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versus MIOP model (which overlap if both reduce to the NOP model) can be conducted
with a test for non-nested overlapping models, such as the Vuong test (Vuong 1989) that
utilizes the statistical signi�cance between the di¤erence in log likelihoods. The testing
procedure is sequential. First, one needs to verify that the two models are not equivalent,
i.e. separately perform t- or F-tests to check whether the parameters of interest violate
the overlapping constraints. Second, if the overlapping restrictions can be rejected, one
has to conduct the Vuong test for strictly non-nested models. The null hypothesis of this
test is that both models are misspeci�ed, but equally close to the unknown true dgp. The
test statistic is very simple to compute: it equals to the average di¤erence of individual
likelihoods divided by the estimated standard error of those individual di¤erences. Under
the null hypothesis, the Vuong test statistic converges in distribution to a standard normal
one. If the absolute value of the test statistic is less than critical value, say 1.96, one cannot
discriminate between the two models given the data. If test statistic exceeds 1.96, one
rejects the equivalence in favor of one of the models; if test statistic smaller than -1.96, one
reject the equivalence in favor of the other.

The following model-selection information criteria were computed: AIC = �2l(�)+2k,
BIC = �2l(�)+ ln(N)k, cAIC = �2l(�)+ (1+ ln(N))k (consistent AIC), AICc = AIC +
2k(k + 1)=(N � k � 1) (corrected AIC), and HQIC = �2l(�) + 2ln(ln(N))k, where k is
the total number of estimated parameters. The adjusted McFadden pseudo-R2 measure of
�t (given by 1� (l(�)� k)=l0(�), where l0(�) is the value of restricted likelihood function,
maximized with all the slope parameters in � �xed to zero) can also be used for model
selection, but its selection results are equivalent to those of AIC, because the value of l0(�)
is identical in all above models. Another measure of �t, the Hit rate, was computed as
percentage of correct predictions, where the predicted discrete outcome is that with the
highest estimated probability.

3 Finite sample performance

In this section I report the results of some Monte Carlo simulations to assess the �nite sample
performance of pooled ML estimators, model selection tests and informational criteria. The
simulations and estimations were performed using GAUSS software (version 10) with CML
module (version 2) for constrained ML estimation.

3.1 Monte Carlo design

Five di¤erent dgp were simulated: OP, NOP, NOP(c), MIOP, and MIOP(c). For each dgp
3000 repeated samples with 250, 500 and 1000 observations were generated. Under each dgp
and for each sample size several competing models were estimated, always including the OP
and NOP models as the benchmarks. Besides, to assess the e¤ect of exclusion restrictions,
three di¤erent scenarios of the overlap among the covariates in the speci�cations of three
latent equations were simulated: "no overlap" (each covariate belongs only to one equation),
"partial overlap" (each covariate belongs to two equations) and "complete overlap" (all three
equations have the same set of covariates).

Three vectors of covariates v1, v2 and v3 were drawn once (and held �xed in all sim-

ulations) as v1
iid� Normal(0; 1) + 2, v2

iid� Normal(0; 1), and v3 = �1 if w � 0:3, 0 if
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0:3 < w � 0:7, or 1 if 0:7 < w, where w iid� Uniform[0; 1]4. The dependent variable was
generated with �ve outcome categories: -0.5, -0.25, 0, 0.25 and 0.50. The values of the para-
meters were calibrated to yield on average the following frequencies of the above outcomes :
7%, 14%, 58%, 14% and 7%, respectively, which are close to the empirical ones. The vectors
of disturbance terms in the latent equations were repeatedly generated as iid Normal(0; 1)
in the case of OP, NOP and MIOP dgp, whereas in the case of NOP(c) and MIOP(c) models
the errors � were generated as iid Normal(0; 1), but the errors "� and "+ were drawn so
that (�; "�) and (�; "+) are standardized bivariate normal iid with correlation coe¢ cients
�� and �+; respectively.

In case of the OP dgp the repeated samples were generated with the data matrix (v1;v2),
vector of slope coe¢ cients (0.4, 0.8)0 and vector of cutpoints (-1.83, -1.01, 1.01, 1.83)0. In
case of the NOP dgp the repeated samples were generated with X = v1, Z� = v2, Z+ = v3,
� = 0.6,  = 0.8, � = 0.9, � = (0.26, 2.14)0, �� = -0.54 and �+ = 0.54 under the "no
overlap" scenario; X = (v1;v2), Z� = (v1;v3), Z+ = (v2;v3), � = (0.6, 0.4)0,  = (0.2,
0.3)0, � = (0.3, 0.9)0, � = (0.21, 2.19)0, �� = -0.17 and �+ = 0.68 under the "partial
overlap" scenario; and X = Z� = Z+ = (v1;v2;v3), � = (0.6, 0.4, 0.8)0,  = (0.2, 0.8,
0.3)0, � = (0.4, 0.3, 0.9)0, � = (0.09, 2.32)0, �� = -0.72 and �+ = 2.12 under the "complete
overlap" scenario. In case of the MIOP dgp the values of X, Z�, Z+, �, , and � were
the same as under the NOP dgp, while the vectors of thresholds were di¤erent: � = (0.95,
1.45)0, �� = (-1.22, 0.03)0 and �+ = (-0.03, 1.18)0 with no overlap; � = (0.9, 1.5)0, ��

= (-0.67, 0.36)0 and �+ = (0.02, 1.28)0 with partial overlap; and � = (0.85, 1.55)0, �� =
(-1.2, 0.07)0 and �+ = (1.28, 2.5)0 with complete overlap. In case of the NOP(c) dgp the
repeated samples were generated with �� = 0.3, �+ = 0.6, and all the data matrices and
other parameters (except �� and �+) the same as under the NOP dgp; the values of �� and
�+ were set, respectively, to -0.9 and 1.2 with no overlap, -0.5 and 1.31 with partial overlap,
and -1 and 2.58 with complete overlap. In case of the MIOP(c) dgp the repeated samples
were generated with �� = 0.3, �+ = 0.6, and all the data matrices and other parameters
(except the thresholds) the same as under the MIOP dgp; the values of �, �� and �+ were
set, respectively, to (0.91, 1.49)0, (-1.43, -0.18)0 and (0.42, 1.58)0 with no overlap, (0.9, 1.5)0,
(-0.88, 0.12)0 and (.49, 1.67)0 with partial overlap, and (0.86, 1.55)0, (-1.35, -0.15)0 and (1.7,
2.72)0 with complete overlap.

All competing models were always estimated using the same set of covariates. Under the
OP dgp the three models were estimated: the OP model with data matrixX = (v1;v2), and
the NOP and MOP models with X = Z�= Z+ = (v1;v2). Under the NOP and NOP(c)
dgp the following three models were estimated: the OP model with X = (v1;v2;v3) for all
scenarios, and both the NOP and NOP(c) models with the same sets of covariates in each
latent equation as in the dgp. Finally, under the MIOP and MIOP(c) dgp the four models
were estimated: the OP model with X = (v1;v2;v3) for all scenarios, and the NOP, MIOP
and MIOP(c) models with the same sets of covariates in each latent equation as in the dgp.

The starting values for �, �, , ��, � and �+ were obtained using independent or-
dered probit estimations of each of the three latent equations. The starting values for each
independent ordered probit model were computed using the linear OLS estimations. The
starting values for �� and �+ were obtained by maximizing the loglikelihood functions of the

4Since the dependent variable represents the changes to the interest rate made once per month, the
covariates v1, v2 and v3 mimic such variables as the output growth rate, the monthly change to the
in�ation rate and an indicator variable for the central bank�s "policy bias" statement (-1 if it is easing, 0 if
neutral, 1 if tightening), respectively.
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correlated models holding the other parameters �xed at their estimates in the corresponding
uncorrelated model.

3.2 Monte Carlo results

3.2.1 Estimates of parameters, probabilities and PE

It is worthless to compare the estimated parameters of the OP model with those of the
two-level models not only because their structures and number of parameters are very
di¤erent, but also because in such discrete models the parameters per se are not uniquely
identi�ed and their values depend on the arbitrary identifying assumptions. Fortunately,
the probabilities of each discrete choice and PE of covariates on these probabilities are
absolutely estimable functions, i.e. they are invariant to the identifying assumptions, and
basically are of main interest in empirical research. Therefore, I compare only the precision
of parameters�estimates in the competing models, but not their values5.

Tables A1.1 - A1.5 of Online Appendix report the following measures of the accuracy
of parameters�estimates for all �ve simulated models: Bias - the di¤erence between the
estimated and true parameter value, averaged over all Monte Carlo runs and multiplied by
100; RMSE - the root mean square error of the estimated parameters relative to their true
values, averaged over all replications and multiplied by 10; CP - the empirical coverage
probability, computed as the percentage of times the estimated asymptotic 95% con�dence
intervals cover the true values; M-ratio and A-ratio - the ratios of the median and average
of estimated asymptotic standard errors of parameters�estimates to standard deviation of
parameters�estimates in all replications.

These results, which are subject to a particular experimental design, are concisely sum-
marized in Tables A2.1 - A2.3 of Online Appendix, where the above measures are averaged
for three groups of parameters (slope, threshold and correlation coe¢ cients) and contrasted
across the �ve models (the absolute values of the individual Bias are used). The results
suggest that (i) it requires two-three times more observations for the two-level models to
achieve the same accuracy of estimated parameters as that of the OP model; (ii) the bias
and dispersion of slope coe¢ cients� estimates are smaller than those for thresholds, and
those for thresholds are smaller than those for correlation coe¢ cients; (iii) the fewer exclu-
sion restrictions on the covariates in the three latent equations, the worse the accuracy of
all the parameters�estimates, though the estimated errors of the threshold and correlation
coe¢ cients are most severely a¤ected; (iv) in small samples the distribution of standard
errors�estimates (again, mostly for the threshold and correlation coe¢ cients) is skewed to
the right: there is a small fraction of huge estimated errors, while the rest of estimated
errors are downward biased; (v) the �nite-sample performance of the two-level models with
exclusions and with 40 or more observations per parameter are rather good: the M-ratio is
between 0.86 and 1.00, the RMSE is less than three times larger than in the OP model with
the same number of observations per parameter, the CP are between 92% and 96% for the
slope and thresholds parameters, and between 87% and 91% for the correlation coe¢ cients.

To give a taste of how the accuracy of estimates of PE of each covariate on the proba-
bility of each discrete choice di¤ers among the models, the above measures of accuracy are

5The precision of parametrs�estimates can be evaluated because each model was estimated assuming for
the identi�cation the same distribution of errors terms and the same value of the intercept parameter as
those in the true dgp. Therefore, the estimated parameters are directly comparable with their true values.
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computed with respect to the PE estimates and are reported in Table A3 of Online Appen-
dix for �ve models, estimated with 1000 observations and no overlap among the covariates.6

In such non-linear models the PE depend on the values of covariates; they are estimated at
covariates�population means (v1 = 2, v2 = v3 = 0).

OP NOP MIOP OP NOP NOPc OP NOP NOPc

250 41.7 25.0 20.8 35.7 35.7 27.8 35.7 35.7 27.8
500 83.3 50.0 41.7 71.4 71.4 55.6 71.4 71.4 55.6
1000 166.7 100.0 83.3 142.9 142.9 111.1 142.9 142.9 111.1

250 3.23 3.22 3.21 3.30 3.23 3.22 3.30 3.22 3.21
500 3.22 3.22 3.22 3.30 3.24 3.24 3.31 3.23 3.23
1000 3.24 3.24 3.23 3.31 3.25 3.25 3.32 3.24 3.24

250 0.25 0.45 1.48 22.31 0.30 0.36 26.03 3.10 0.55
500 0.22 0.31 0.99 22.14 0.11 0.19 25.75 2.69 0.30
1000 0.09 0.20 0.78 21.69 0.07 0.09 25.25 2.56 0.11

250 2.06 2.95 3.71 3.55 1.20 1.42 3.88 1.35 1.40
500 1.43 2.04 2.48 3.30 0.81 0.96 3.63 1.01 0.97
1000 1.01 1.44 1.73 3.13 0.57 0.66 3.47 0.80 0.67

250 93.2 92.0 90.4 59.7 92.7 92.0 56.0 88.7 91.6
500 94.2 93.4 92.2 50.1 93.9 93.3 47.1 86.0 93.0
1000 94.6 94.0 93.0 41.5 94.5 94.2 38.1 80.2 93.7

250 0.98 0.97 0.87 1.00 0.97 0.97 0.98 0.97 0.98
500 1.00 0.99 0.91 0.99 0.99 0.98 1.01 0.99 0.97
1000 1.00 0.99 0.94 1.00 1.00 0.99 1.00 0.99 0.98

250 0.99 0.97 0.91 1.01 0.98 1.00 1.00 0.98 1.01
500 1.00 0.99 0.93 1.00 0.99 1.00 1.01 1.00 1.00
1000 1.00 0.99 0.95 1.01 1.00 1.00 1.00 0.99 1.00

250 0.0 0.0 3.5 0.0 0.0 5.1 0.0 0.0 16.1
500 0.0 0.0 1.8 0.0 0.0 0.2 0.0 0.0 3.0
1000 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.1

Problems , %

Sample
size

True dgp :

RMSE

CP , %

Aratio

RMSEP

Bias

Mratio

NOP NOPc

Estimated model:

Number of
observations per
parameter

OP

Table 1. Summary of Monte Carlo results: OP, NOP and NOP(c) dgp.

To save the space I do not report here such detailed results for the other sample sizes
and overlap scenarios - they are qualitatively analogous and available upon request. In-
stead, to make the more general conclusions, the PE were estimated for the values of
covariates at each of the same 250 observations. The above accuracy measures were com-
puted for the PE, averaged over 250 observations. In addition, the root mean square
error of estimated probabilities for all outcomes and observations (RMSEP) was computed

as
q
1=fN(2J + 1)g

PN
i=1

P2J+1
j=0 fcPr(yi = j)� Pr(yi = j)g2 for each replication, averaged

over all runs and multiplied by 10. Problems gives the percentage of runs when there was a
problem with convergence or invertibility of the Hessian (this quantity should be interpreted
in relative terms, since it depends on the ML estimation algorithm and can be improved
by using di¤erent starting values for parameters and methods of numerical optimization;

6The only di¤erence is that RMSE is multiplied by 100.
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besides, there exists a trade-o¤ between Problems and A-ratio). Table 1 shows these Monte
Carlo results for the OP, NOP and NOP(c) dgp with no overlap among the covariates. The
results for the MIOP and MIOP(c) models are reported in Table 27.

The main conclusions from these experiments can be summarized as follows. First,
each of the �ve models under its own dgp, not surprisingly, estimates the PE better than
the other models. However, under their own dgp as the sample size grows, the relative
performance of the OP model slowly deteriorates, the relative performances of the NOP(c)
and MIOP(c) models considerably improve. The relative performance of the NOP model
with respect to simpler OP model and that of the MIOP model with respect to simpler OP
and NOP models considerably improve too, while the relative performances of the NOP
and MIOP models with respect to their correlated versions slowly decrease.

True dgp :

Estimated model: OP NOP MIOP MIOPc OP NOP MIOP MIOPc

250 35.7 35.7 27.8 22.7 35.7 35.7 27.8 22.7
500 71.4 71.4 55.6 45.5 71.4 71.4 55.6 45.5
1000 142.9 142.9 111.1 90.9 142.9 142.9 111.1 90.9

250 3.368 3.398 3.269 3.266 3.379 3.406 3.274 3.268
500 3.356 3.381 3.258 3.256 3.364 3.388 3.260 3.255
1000 3.350 3.373 3.256 3.256 3.357 3.379 3.256 3.253

250 34.63 32.81 0.62 0.82 36.84 33.20 2.88 1.02
500 34.75 32.93 0.25 0.40 36.97 32.64 3.28 0.34
1000 34.50 32.89 0.16 0.15 36.88 32.77 3.70 0.20

250 4.86 4.44 1.96 2.34 5.20 4.59 2.22 2.36
500 4.69 4.34 1.34 1.62 5.06 4.50 1.75 1.69
1000 4.59 4.27 0.96 1.11 4.97 4.44 1.42 1.17

250 36.0 45.9 91.0 90.3 28.6 45.7 87.7 89.9
500 20.5 35.3 93.0 92.4 15.3 33.5 82.7 91.2
1000 13.2 27.3 94.1 93.7 10.3 24.0 74.9 92.8

250 1.03 1.03 0.92 0.93 1.05 1.04 0.96 0.93
500 1.03 1.01 0.99 1.00 1.03 1.03 0.97 0.96
1000 1.03 1.03 0.99 0.99 1.03 1.02 0.97 0.95

250 1.03 1.04 0.96 0.98 1.05 1.05 0.98 0.99
500 1.04 1.02 0.99 1.00 1.04 1.03 0.97 0.96
1000 1.03 1.03 1.00 1.03 1.04 1.03 0.98 0.97

250 0.0 0.0 0.0 4.9 0.0 0.0 0.0 16.4
500 0.0 0.0 0.0 0.4 0.0 0.0 0.0 3.2
1000 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2

MIOPcSample
size

CP , %

Problems , %

MIOP

Number of
observations per
parameter

RMSE

Aratio

RMSEP

Bias

Mratio

Table 2. Summary of Monte Carlo results: MIOP and MIOP(c) dgp.

Moreover, the NOP and MIOP models under the true OP dgp perform much better than
the OP model under the NOP and MIOP dgp. As the sample size increases, the superiority
in the performance of the OP model over the NOP and MIOP models under the OP dgp
even slightly decreases, whereas under the NOP and MIOP dgp the superiority of the NOP

7The values of the Bias in Tables 1, 2 and 5 are multiplied by 1000.
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and MIOP models over the OP model increases drastically. The superiority of the NOP(c)
model over the OP model under both the NOP and NOP(c) dgp as well as the superiority
of the MIOP(c) model over the OP model under both the MIOP and MIOP(c) dgp also
increases sharply as the sample size grows. Under the NOP(c) and MIOP(c) dgp the NOP
model clearly outperforms the OP model, and this outperforming considerably improves as
the sample size increases. The same applies to the MIOP model relative to the OP and
NOP models under the MIOP(c) dgp.

Second, in terms of the M-ratio and A-ratio all the models perform almost ideally:
the A-ratio is between 0.97 and 1.05 under all dgp, except for the MIOP model under
OP dgp, where it is between 0.90 (for 250 observations) and 0.96 (for 1000 observations).
The distribution of the standard errors of the PE is slightly skewed to the right only for
the samples with 250 observations; for larger samples the M-ratio and A-ratio are almost
identical. Third, in terms of the RMSEP, under the OP dgp the MIOP model outperforms
the NOP model, and the latter is superior with respect to the OP model; under the NOP
and NOP(c) dgp the NOP(c) model outperforms the NOP model, and the latter does
better than the OP model; and under the MIOP and MIOP(c) dgp the MIOP(c) model
outperforms the MIOP model, and the latter does better than the OP model, and the
OP model outperforms the NOP model. In all cases these di¤erences deteriorate slowly as
the sample size grows. Finally, the problems with estimations were detected only for the
MIOP, NOP(c) and MIOP(c) models in small samples: with 250 observations (less than 28
observations per parameter) the NOP(c) and MIOP(c) models have problems in 4.9-16.4%
of runs, while with more than 45 observations per parameter they have problems in less
than 4% of replications; and the MIOP model with less than 21 observations per parameter
had problems in 3.5% of runs (basically, under the OP dgp only), while with more than
40 observations per parameter in less than 2% of replications. As the sample grows, the
problems with estimations disappear.

3.2.2 Hypothesis testing and model selection

The results of the Vuong and LR tests are reported in Table 3 as the percentage of times
when the test statistic is in favor of each model. All tests are performed with 95% nominal
level.

Under any two-level dgp the Vuong tests are in favor of the true model versus the OP
model in 90-99% of replications with 250 observations, and even more overwhelmingly in
99.8-100% of replications with 500 or more observations. The two-level models are correctly
favored more often as the sample size increases. However, under the OP dgp the Vuong
tests of the NOP and MIOP models versus the OP model fail to discriminate between the
two models, are never in favor of the true OP model but prefer the NOP and MIOP models
in 0.8-7.5% of cases. The test statistic decreases with the sample size in favor of the OP
model (since we are under the alternative hypothesis), but rather slow. Under the MIOP
and MIOP(c) dgp the Vuong tests again mostly fail to discriminate between the NOP and
OP models, but prefer the OP model, respectively, in 5.3-8.4% and 2.2-3.7% of runs, more
often than the NOP model; and the test statistic decreases with the sample size in favor of
the OP model.

The LR tests of the NOP versus NOP(c) and the MIOP versus MIOP(c) model, when
the former is the true dgp, both have the empirical size between 4.1% and 5.8%, very close
to the 5% nominal one. Under the alternative hypothesis, that is when the true dgp is
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the NOP(c) or MIOP(c) model, the Vuong tests are in favor of the true models in 15-76%
of cases; and the test statistics grow fast with the sample size in favor of the true model.
The LR tests of the NOP versus MIOP model under the OP dgp have the empirical sizes
ranging from 7.2% to 9% under the standard critical values, which are not valid because
now both models are misspeci�ed; hence, the LR test statistics converges in distribution to
the weighted sum of �2 distributions.

True dgp:
Sample:

Model

OP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.3 5.5 8.4 2.2 2.7 3.7
NOP 2.8 1.2 0.8 90.6 99.9 100 97.8 100 100 0.7 0.8 0.7 1.4 1.3 1.2

OP 0.0 0.0 0.0 0.0 0.0 0.0
NOPc 95.3 100 100 98.4 100 100

OP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MIOP 7.5 3.6 3.1 94.2 99.9 100 97.5 100 100

OP 0.0 0.0 0.0 0.0 0.0 0.0
MIOPc 95.7 100 100 98.1 100 100

NOP 95.9 94.2 94.9 83.2 57.3 24.8
NOPc 4.1 5.8 5.1 16.9 42.7 75.2

NOP 91.0 92.4 92.7 0.0 0.0 0.0 0.0 0.0 0.0
MIOP 9.0 7.6 7.3 100 100 100 100 100 100

MIOP 95.2 94.3 94.8 85.0 63.3 33.4
MIOPc 4.8 5.7 5.2 15.0 36.7 66.6

Vuong tests

LR tests

   250   500  1000
OP NOP NOPc MIOP MIOPc

   250   500  1000    250   500  1000    250   500  1000    250   500  1000

Table 3. Summary of Monte Carlo results: Vuong and LR tests.

Table 4 reports the percentage of times when each of the information criteria and hit
rate selects each of the estimated models. Under the OP, NOP and MIOP dgp all �ve
information criteria for all sample sizes overwhelmingly select the true model: the AIC
and AICc in 84.5-89.8%, while the BIC, cAIC and HQIC in 96.5-100% of times; the BIC
and cAIC have the best performance, above 98.8% of times, over all sample sizes. Under
the NOP(c) and MIOP(c) dgp, the smaller the sample size the more all criteria are biased
toward less parameterized NOP and MIOP models, respectively. The BIC and cAIC select
the uncorrelated versions for all sample sizes in 75.7-99.1% of times. The HQIC prefers the
uncorrelated versions in the samples with 250 and 500 observations in 66-89% of times, but
switches to the true correlated models with 1000 observations in 52-63% of times. The AIC
and AICc prefer the uncorrelated models only with 250 observations in 66-73%, while in
the larger samples they prefer the true models. Overall, while the AIC and AICc under
the OP, NOP and MIOP dgp select the true model slightly less frequently than the BIC
and cAIC, under the NOP(c) and MIOP(c) dgp they clearly outperform the HQIC and
especially the BIC and cAIC.

The selection performance of the Hit rate is rather di¤erent. Under the NOP and MIOP
dgp, hit rate correctly selects the true model only in 47-57% of times. Under the NOP(c)
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and MIOP(c) dgp, the Hit rate correctly prefers the true model only with 1000 observations,
but marginally in 47-52% of times; in smaller samples, the Hit rate prefers the uncorrelated
versions. Under the OP dgp the Hit rate favors the OP model only in 35-40% of times, while
the NOP model in 32-36% of times. Such low performance of the Hit rate is not surprising
- the ML estimation is not optimized with respect to this measure of �t. Moreover, this
goodnes-of-�t statistics is based on the idea that is in discordance with the meaning of
probabilities. The probabilities of each outcome mean that the alternative will be observed
a certain fraction of times, but not that the outcome with the highest probability will be
selected every time.

1 84.5 87.9 87.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
2 9.3 7.9 8.6 87.4 84.7 86.2 66.5 40.0 12.4 0.0 0.0 0.0 0.0 0.0 0.0

AIC 3 12.6 15.3 13.8 33.5 60.0 87.6
4 6.3 4.2 4.4 86.5 85.2 86.1 68.3 43.6 18.8
5 13.4 14.8 13.9 31.7 56.4 81.2
1 100 100 100 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.2 0.0 0.0
2 0.0 0.0 0.0 99.8 99.6 99.8 97.8 90.6 75.7 0.1 0.0 0.0 0.0 0.0 0.0

BIC 3 0.2 0.4 0.2 2.2 9.4 24.3
4 0.0 0.0 0.0 99.3 99.7 100 97.9 93.2 81.4
5 0.1 0.3 0.0 2.0 6.8 18.6
1 100 100 100 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.4 0.0 0.0
2 0.0 0.0 0.0 99.9 99.9 99.9 99.1 94.7 82.8 0.2 0.0 0.0 0.0 0.0 0.0

cAIC 3 0.1 0.1 0.1 1.0 5.3 17.2
4 0.0 0.0 0.0 98.8 100 100 98.9 96.7 87.8
5 0.1 0.0 0.0 0.7 3.3 12.2
1 87.7 89.3 87.8 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
2 7.9 7.0 8.4 89.7 85.8 86.8 69.5 41.3 12.9 0.0 0.0 0.0 0.0 0.0 0.0

AICc 3 10.3 14.2 13.2 30.5 58.7 87.1
4 4.4 3.7 3.8 89.0 86.3 86.7 72.1 45.6 19.4
5 10.9 13.7 13.3 27.9 54.4 80.6
1 98.4 99.3 99.6 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
2 1.4 0.7 0.4 97.5 96.8 97.8 88.2 66.6 37.6 0.0 0.0 0.0 0.0 0.0 0.0

HQIC 3 2.5 3.2 2.2 11.8 33.4 62.4
4 0.2 0.1 0.0 96.7 96.5 97.3 88.8 73.5 48.0
5 3.1 3.5 2.7 11.2 26.5 52.0
1 39.7 35.1 35.9 16.3 10.4 3.9 14.9 7.2 1.9 23.1 15.8 9.2 27.0 15.1 10.2
2 32.4 35.8 33.6 57.0 53.5 56.1 57.7 48.2 46.4 1.1 0.6 0.1 1.0 0.9 0.6
3 26.7 36.2 40.0 27.4 44.6 51.7
4 27.9 29.1 30.5 47.8 49.4 51.1 42.9 43.4 41.5
5 27.9 34.2 39.6 29.1 40.6 47.8

NOPc (3) MIOP (4) MIOPc (5)

   250   500  1000    250   500  1000    250   500  1000    250   500  1000    250   500  1000
Sample
size:

True dgp:

Hit
rate

OP (1) NOP (2)

Table 4. Summary of Monte Carlo results: model selection criteria and hit rate.

3.2.3 The e¤ect of exclusion restrictions

In general, the identi�cation of the parameters of the two-level models is warranted by
the non-linearity of the OP models; thus, there is no need in exclusion restrictions on the
speci�cation of the covariates in the three latent equations to avoid the collinearity problems.
In practice, however, there might still be the collinearity problems if most observations lie
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within the middle quasi-linear range of the normal cdf. Then, without explicit exclusion
restrictions (for example, whenX, Z� and Z+ are identical or have a large set of variables in
common), the parameters can be estimated imprecisely, and the model can su¤er from weak
identi�cation, lack of convergence and problems with invertibility of the Hessian. Hopefully,
the speci�cations with complete overlap of covariates in the latent equations are unlikely to
be of empirical interest and supported by the data.

To assess the e¤ect of exclusion restrictions on the performance of estimators, Table
5 reports the above measures of accuracy for �ve models with di¤erent sample sizes and
under three di¤erent scenarios of the overlap among the covariates in the speci�cations of
three latent equations: n - "no overlap", p - "partial overlap" and c - "complete overlap".
The more exclusion restrictions the more accurate the estimates of the PE and the fewer
problems with estimation. The simulation results suggest that the asymptotic estimator
might not perform well without the exclusion restrictions, that is with the complete overlap
among covariates, when the number of observation per parameter is less than 35. In case of
the NOP(c) and MIOP(c) models under the partial overlap scenario in small samples (less
than 35 observations per parameter) there might be the problems with the convergence and
invertability of the Hessian.

n p c n p c n p c n p c

250 35.7 25.0 19.2 27.8 20.8 16.7 27.8 20.8 16.7 22.7 17.9 14.7
500 71.4 50.0 38.5 55.6 41.7 33.3 55.6 41.7 33.3 45.5 35.7 29.4
1000 143 100 76.9 111 83.3 66.7 111 83.3 66.7 90.9 71.4 58.8

250 3.22 3.19 3.08 3.21 3.19 3.08 3.27 3.23 3.07 3.27 3.25 3.11
500 3.24 3.21 3.09 3.23 3.20 3.11 3.26 3.25 3.08 3.26 3.26 3.12
1000 3.25 3.23 3.11 3.24 3.21 3.13 3.26 3.26 3.09 3.25 3.27 3.14

250 0.28 0.30 0.43 0.55 1.31 0.59 0.60 1.34 1.24 1.02 1.76 1.52
500 0.12 0.23 0.29 0.30 0.41 0.35 0.24 0.82 0.77 0.34 0.86 1.22
1000 0.07 0.13 0.11 0.11 0.14 0.26 0.16 0.52 0.69 0.20 0.34 0.86

250 1.20 2.12 3.21 1.40 2.30 3.20 1.96 2.92 4.18 2.36 3.24 4.30
500 0.81 1.40 2.14 0.97 1.55 2.17 1.36 1.97 2.75 1.69 2.26 2.85
1000 0.57 0.99 1.48 0.67 1.08 1.53 0.96 1.39 1.88 1.17 1.56 1.95

250 92.7 91.6 88.6 91.6 91.6 89.9 86.9 89.5 86.3 89.9 89.4 87.3
500 93.9 93.6 91.4 93.0 93.0 92.5 93.0 92.0 89.4 91.2 91.0 90.4
1000 94.5 94.0 93.1 93.7 93.8 93.6 94.1 93.1 91.6 92.8 92.4 92.3

250 0.96 0.95 0.91 0.97 0.98 0.97 0.92 0.91 0.81 0.93 0.91 0.87
500 0.98 0.99 0.95 0.97 0.98 1.01 0.98 0.95 0.87 0.92 0.92 0.92
1000 1.00 0.99 0.97 0.98 0.98 1.01 0.99 0.96 0.92 0.95 0.95 0.95

250 0.98 0.96 1.00 1.01 1.01 1.11 0.92 0.94 0.88 0.99 0.99 1.06
500 0.99 1.00 0.97 1.00 1.01 1.19 0.99 0.97 0.92 0.96 0.99 1.03
1000 1.00 0.99 0.99 1.00 1.00 1.10 1.00 0.97 0.95 0.97 1.01 1.02

250 0.0 0.0 0.0 16.1 25.8 55.9 0.0 0.0 0.0 16.4 34.3 56.7
500 0.0 0.0 0.0 3.0 7.4 30.7 0.0 0.0 0.0 3.2 13.2 41.0
1000 0.0 0.0 0.0 0.1 0.5 13.4 0.0 0.0 0.0 0.2 2.8 26.7

Mratio

RMSEP

Problems,  %

Aratio

Sample
size

True dgp  and
estimated model:

MIOPcMIOP

Overlap:

Number of
observations per
parameter

NOPcNOP

RMSE

CP,  %

Bias
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Table 5. Summary of Monte Carlo results: The e¤ect of exclusion restrictions.

4 An application to the policy interest rate

The policy rate is a key determinant of other short-term market interest rates and of sharp
interest for �nancial market participants: �What the market needs to know is the policy
response function by which the central bank acts in a consistent way over time� (Poole,
2003). Furthermore, �if practitioners in �nancial markets gain a better understanding of
how policy is likely to respond to incoming information, asset prices and bond yields will
tend to respond to economic data in ways that further the central bank�s policy objectives�
(Bernanke, 2007). The modeling of the policy rates is of special interest for econometricians
because the rates are set administratively and not the outcomes of the interaction between
the market supply and demand.

4.1 The data

The proposed model is applied to explain the policy interest rate decisions of the Monetary
Policy Council (MPC) of the NBP, using the "micro-type" panel of the individual votes of
policymakers and real-time macroeconomic data available at the dates of monetary policy
decisions in 1998-20098. The MPC consists of ten members and makes policy rate decisions
once per month by formal voting. The Council members are appointed for a non-renewable
term of six years, but the Chair may serve for two consecutive terms. The �rst term lasted
from February 1998 through January 20049. The second term lasted from February 2004
through January 2010. Since the adoption of the direct in�ation targeting in 1998 the
reference rate may be undoubtedly treated as a principal instrument of Polish monetary
policy10. The MPC has always altered the levels of policy rates in discrete adjustments �
the multiples of 25 basis points. Table 6 reports the frequency distribution of individual
MPC members�preferences for the changes to the rate in the period 1998/05 - 2009/12,
consolidated into three categories: "hike", "no change" and "cut".

Preferred change to the rate Cut No change Hike All

Number of observations (in %) 300 (22%) 898 (65%) 187 (14%) 1385 (100%)

Table 6. Frequency distribution of the MPC members�policy preferences.

The policy inclination decision, modeled by Eq. (1), is assumed to be driven by the
immediate policy response to the new economic information, such as changes since the

8The data were taken from Sirchenko (2008) and updated till the end of 2009.
9However, one member was replaced before the policy meeting in January 2004, and another passed away,

so his seat was �lled midterm in August 2003. Because the �rst MPC Chair had resigned in December 2000,
the Chair since then has been appointed with a three-year lag with respect to the other members.
10The NBP suspended foreign exchange interventions already in mid-1998, de facto entering the �oating

exchange rate regime (Pruski and Szpunar, 2005); in April 2000 the Polish zloty started �oating o¢ cially.
The reference rate sets the path of monetary policy and �determines the minimum yield obtainable on main
open market operations, in�uencing, at the same time, the level of interbank deposit rates for comparable
maturities�(NBP, 2005).
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last policy meeting in the current and expected in�ation, real sector expectations, spread
between long- and short-term market interest rates, and recent change to the European
Central Bank (ECB) policy rate. The policy inertia decisions, represented by Eqs (3) and
(6), are expected to be driven by the institutional factors (such as the "policy bias" or
"balance of risks" statements and disagreement among the policymakers at the last policy
meeting) and reaction to accumulated economic information (such as the cumulative changes
to the real sector expectations since the date of the last policy rate adjustment).

The measure of dissent among the MPC members at the last meeting is calculated as
follows. Consider a committee with N members. For each i member and each policy-setting
meeting t de�ne the indicator function

Ii;t =

8<:
1 if �ri;t > �rt,
0 if �ri;t = �rt,
-1 if �ri;t < �rt,

where �ri;t is the change to the policy rate preferred by member i and �rt is the change
made by the committee. The measure of dissent is then de�ned as

Dissentt =
1

N

NX
i=1

Ii;t (15)

Mnemonics Variable description (source of data)

Δy
Direction of the change to NBP reference rate, preferred by MPC member: 1 if hike, 0 if no change, 1 if cut
(NBP & AC  author calculations).

ΔCPI
Change since the previous MPC meeting to consumer price index (CPI), annual rate in percent (GUS  Central
Statistical Office of Poland).

Δ(CPI e T)
Change since the previous MPC meeting to deviation of expected CPI over next 12 months from NBP target
(T), annual rate in percent (IpsosDemoskop survey of consumers and NBP).

GES e Index of expected general economic situation in industry from Business Tendency Survey, divided by 10 (GUS).

Δ c GES e Change (since the date of last nonzero adjustment to the reference rate) to the index of expected general
economic situation in industry from Business Tendency Survey, divided by 10 (GUS).

Spread
Difference between 12 and 1month Warsaw interbank offer rate, 5businessday moving average, annualized
percent (Datastream).

Dissent Measure of dissent at last MPC meeting from by Eq. (15) (NBP & AC).

Bias
Indicator of "policy bias" or "balance of risks" (since 2006/1) statements: 1 if "mild", 0 if "neutral", and 1 if
"restrictive" (NBP & AC).

Δr NBP Change to NBP reference rate, announced at last policy meeting, annualized percent (NBP).
Δr ECB Change to ECB policy rate, announced at last policy meeting, annualized percent (ECB).
I(H) 1 if MPC member is a "hawk", and 0 otherwise.
I(D) 1 if MPC member is a "dove", and 0 otherwise.
I(CPI e>T) 1 if CPI e T  > 0, and 0 otherwise.

Notes: All data are not adjusted seasonally. The "hawkish" MPC members: M. Dąbrowski, D. Filar, M. Noga, J. Pruski, H.
WasilewskaTrenkner. The "dovish" MPC members: S. Nieckarz, M. Pietrewicz, S. Skrzypek, W. Ziółkowska, G. Wójtowicz.

Table 7. Description of variables.

To account for unobserved heterogeneity of policy preferences, I divided the policymakers
into three groups - "hawks", "centrists" and "doves" - by sorting them with respect to their
average proposed policy rate decision. The two dummy variables, indicating the "hawkish"
and "dovish" members, were included into all three latent equations. The change to the
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rate at the last meeting was allowed to enter all equations too. Finally, a dummy variable
for the deviation of expected in�ation from the NBP target was included into Eq. (6). The
description of all variables used in the study is given in Table 7.

4.2 Econometric results11

The four competing models were estimated using the same information set: the conventional
OP model with a single latent equation; the ZIOP model, based on two latent equations
with X matrix of covariates at the �rst stage and union of Z� and Z+ matrices at the
second stage, that allow zero observations to come from two di¤erent processes; the ZIOPa
model, which is identical to the ZIOP model, except that all covariates in X are taken by
their the absolute values; and the MIOP model, based on three latent equations. Table A5
of the Online Appendix gives the details for the speci�cations and estimated coe¢ cients of
all four models. The coe¢ cient for the last change to the NBP policy rate has the positive
sign in �, but the negative one in  and �.

Model OP ZIOP ZIOPa MIOP

ln l(θ) 743.5 873.7 823.8 550.1

AIC 1515.0 1783.4 1683.6 1148.3

HQIC 1542.4 1818.6 1718.9 1195.2

BIC 1588.3 1877.6 1777.8 1273.9

Hit rate, % 72.7 71.5 71.1 81.7

Vuong vs OP 6.83*** 4.18*** 11.88***

Vuong vs ZIOP 3.74*** 14.36***

Vuong vs ZIOPa 12.20***

Note: *** and ** denote statistical significance at 1% and 5% levels, respectively.

Table 8. Changes to the policy rate: summary statistics from four alternative models.

The Table 8 reports the summary statistics from �ve alternative models. The MIOP
model demonstrate a sharp increase in the likelihood and is overwhelmingly superior to all
the other models according to all information criteria and the Vuong tests. Interestingly,
both the ZIOP or ZIOPa models are clearly inferior to the simple OP model according to
all information criteria and the Vuong tests. The contingency tables for the OP and MIOP
models are contrasted in Table 9. The MIOP model demonstrate drastic improvement in
the correct predictions of the cuts and hikes to the rate, while the simple OP models tends
to overpredict the no change decisions.

11Sorry, this section is under construction.
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Actual Cut No change Hike Cut No change Hike Total

Cut 122 178 0 212 88 0 300
No change 99 772 27 72 785 41 898
Hike 0 74 113 0 53 134 187
Total 221 1024 140 284 926 175 1385

Predicted

OP model MIOP model

Table 9. Changes to the policy rate: contingency tables for OP and MIOP models.

The PE on the probabilities are presented in Table 10. The OP and MIOP models have
the opposite sign for �rNBP for all three discrete choices. Besides, the PE for some other
explanatory factors (such as Bias and I(CPIe > 0)) have opposite signs for the probability
of no change. The PE for some explanatory factors are insigni�cant in the OP model at
least 10% level, but signi�cant in the MIOP models at 1% level.
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OP MIOP OP OP MIOP

total loose neutral tight

0.080*** 0.374*** 0.059*** 0.307*** 0.147*** 0.387*** 0.067*** 0.021*** 0.067**
(0.012) (0.066) (0.013) (0.079) (0.000) (0.000) (0.000) (0.005) (0.027)

0.061*** 0.271*** 0.022* 0.259*** 0.106*** 0.354*** 0.012* 0.040*** 0.012**
(0.009) (0.055) (0.012) (0.057) (0.030) (0.084) (0.007) (0.009) (0.006)

0.000 0.104*** 0.000 0.086*** 0.041*** 0.108*** 0.019*** 0.000 0.019**
(0.001) (0.022) (0.001) (0.023) (0.000) (0.000) (0.000) (0.000) (0.009)

0.205*** 0.690*** 0.151*** 0.566*** 0.270*** 0.713*** 0.123*** 0.054*** 0.124**
(0.024) (0.118) (0.029) (0.144) (0.000) (0.000) (0.000) (0.012) (0.050)

0.002 0.092** 0.002 0.076** 0.036*** 0.095*** 0.016*** 0.001 0.017**
(0.012) (0.040) (0.009) (0.037) (0.000) (0.000) (0.000) (0.003) (0.008)

0.012*** 0.089*** 0.009** 0.066** 0.036*** 0.056 0.158** 0.003*** 0.023
(0.004) (0.021) (0.003) (0.029) (0.012) (0.107) (0.081) (0.001) (0.016)

0.077*** 0.092*** 0.000 0.001 0.020 0.003 0.018 0.076*** 0.091***
(0.012) (0.027) (0.016) (0.034) (0.013) (0.040) (0.013) (0.014) (0.029)

0.071*** 0.115** 0.061*** 0.104** 0.004 0.103* 0.006 0.011*** 0.011*
(0.022) (0.053) (0.020) (0.051) (0.018) (0.059) (0.006) (0.004) (0.006)

0.173*** 0.063** 0.127*** 0.051* 0.063*** 0.000*** 0.012*** 0.045*** 0.012
(0.037) (0.026) (0.035) (0.027) (0.000) (0.000) (0.000) (0.012) (0.008)

0.086*** 0.095*** 0.045* 0.085*** 0.095*** 0*** 0.01* 0.131*** 0.01*
(0.013) (0.028) (0.024) (0.029) (0.028) (0.000) (0.006) (0.018) (0.006)

0.004*** 0.011** 0.003*** 0.011** 0.011*** 0.000*** 0.001***
(0.001) (0.006) (0.001) (0.006) (0.000) (0.000) (0.000)

0.088*** 0.076*** 0.011* 0.000*** 0.011* 0.012*** 0.011*
(0.018) (0.016) (0.006) (0.000) (0.006) (0.004) (0.006)

MIOP

Pr(Δy = 0)

Variable

I(CPI e >0)

Bias

Δ cGES e

I(H)

I(D)

Dissent

ΔCPI

Δ(CPI e T)

Δr NBP

Spread

Δr ECB

GES e

Pr(Δy = 1) Pr(Δy = 1)

Table 10. Changes to the policy rate: partial e¤ects.

Figure 2 shows the predicted probabilities for the range of �rNBP and for three values
of Bias, holding all the other explanatory variables at their sample median values. The
decomposition of the Pr(�y = 0) into three components (loose, neutral and tight zeros)
is also plotted. If the change to the policy rate at the last MPC meeting was -0.75% and
the policy bias was easing, then Pr(�y = 0) is totally dominated by neutral zeros. If the
policy bias was neutral, then Pr(�y = 0) is composed by 17.3% of loose zeros and 82.7% of
neutral zeros. Finally, if the policy bias was tightening, then Pr(�y = 0) is composed by
50.3% of loose zeros and 49.7% of neutral zeros.
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Figure 2. Changes to the policy rate: predicted probabilities by lagged change and policy
bias.
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5 Conclusions

The discrete ordinal outcomes are often characterized by abundant observations in the
middle of ordered categories. Such excessive "zeros" can be generated by di¤erent decision-
making processes. Besides, the "positive" and "negative" outcomes can be driven by distinct
factors. In such situation, it would be a misspeci�cation to treat the zeros and non-zeros as
coming from the same dgp, and apply a standard ordered-response or count model based on
a single latent equation. This paper develops a two-level cross-nested model for such type
of ordinal responses, using a system of three latent equations.

The proposed two-step decision-making process attempts to model the observed empir-
ical facts of monetary policy making such as discreteness, interest rate inertia and prepon-
derance of no-change decisions. This is done by combining three discrete-choice ordered
probit models with possibly di¤erent covariates. One latent equation (a policy inclination
equation) models the monetary policy stance (easy, neutral or tight) as a reaction to the
changes in the macroeconomic environment. The other two equations (the policy inertia
equations), conditional on the easy or tight policy stance, allow the loose or tight policy
inclinations to be o¤set by the policy inertia, driven by the institutional factors (such as
the "policy bias" statements and disagreement among the policymakers at the last policy
meeting). The probability of zero outcome is "in�ated", since there are following three types
of zeros: "neutral zeros", generated directly by neutral policy reaction to the contemporary
economic developments, and two kinds of "inertial zeros", "loose or tight zeros", generated
by loose or tight policy inclinations o¤set by the inertia of policymaking process.

The performed Monte Carlo simulations suggest good performance of the model in �nite
samples and demonstrate its superiority with respect to the conventional and nested OP
models.

The proposed model is then applied to explain the policy interest rate decisions of the
National Bank of Poland, using the "micro-type" panel of the individual votes of MPC
members and real-time macroeconomic data available at the dates of monetary policy de-
cisions. The voting preferences appeared to be well-modelled by such an approach. The
empirical application demostrates the advantages of the MIOP model in separating the
di¤erent decision-making paths for three types of zeros. In particular, some of the explana-
tory variables, statistically signi�cant at the policy inertia decision, do not have an impact
on the policy inclination one. Another important covariate, the policy rate change at the
last MPC meeting, has the opposing impacts on the two decisions. The conventional OP
model, based on a single latent equation, is shown to confuse the e¤ects of some important
explanatory variables that have the impact only on one decision or opposing impacts on
both decisions. In contrast, the MIOP model is able to estimate the proportion of zeros
generated by each regime and identify the driving factors in each regime.
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OP

n p c n p c n p c n p c

250 41.7 35.7 25.0 19.2 27.8 20.8 16.7 27.8 20.8 16.7 22.7 17.9 14.7
500 83.3 71.4 50.0 38.5 55.6 41.7 33.3 55.6 41.7 33.3 45.5 35.7 29.4
1000 166.7 142.9 100.0 76.9 111.1 83.3 66.7 111.1 83.3 66.7 90.9 71.4 58.8

250 0.89 5.52 3.56 7.54 3.08 3.71 8.74 4.42 3.41 6.05 2.31 3.38 11.88
500 0.60 2.24 1.39 2.62 1.52 1.36 11.71 2.25 1.85 2.53 1.13 1.64 10.62
1000 0.09 1.06 0.55 1.03 0.57 0.59 10.66 0.84 1.07 1.89 0.53 0.72 7.94

250 0.94 2.66 2.46 4.65 2.67 2.55 3.31 2.19 2.34 4.03 2.09 2.31 3.98
500 0.63 1.54 1.39 1.70 1.51 1.47 2.62 1.43 1.51 2.32 1.42 1.54 2.90
1000 0.46 1.03 0.95 1.10 1.07 1.01 2.19 1.00 1.04 1.61 0.98 1.04 2.16

250 94.8 96.0 95.1 95.3 95.6 94.4 93.4 92.7 91.7 85.1 94.1 90.9 86.6
500 95.5 95.2 95.4 95.0 95.2 94.5 91.4 93.8 92.8 85.5 94.2 91.7 87.3
1000 95.5 95.0 95.1 95.0 94.6 94.5 90.7 94.1 93.1 86.8 94.7 92.9 88.7

250 0.98 0.85 0.89 0.72 0.88 0.91 1.27 0.89 0.83 0.62 0.93 0.83 0.77

500 1.02 0.95 0.99 0.94 0.98 0.98 1.31 0.96 0.90 0.75 0.94 0.87 0.83

1000 1.00 0.98 0.99 0.97 0.97 0.99 1.25 0.97 0.93 0.80 0.97 0.92 0.89

250 0.99 1.63 1.41 2.93 1.90 2.06 1.81 0.97 0.87 0.95 0.99 0.99 1.16
500 1.02 0.97 1.00 1.04 1.01 1.00 1.65 0.97 0.92 0.77 0.97 0.95 1.12
1000 1.00 0.99 0.99 0.98 1.00 1.00 1.49 0.98 0.95 0.83 0.98 1.00 1.13
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Table A2.1. Summary of Monte Carlo results: Accuracy of estimated slope coefficients β , γ , and δ

NOP NOPc MIOP MIOPcSample 
size

Number of 
observations per 
parameter

True dgp  and 
estimated model:

Overlap:

CP, %

A-ratio

M-ratio

RMSE

Bias



OP

n p c n p c n p c n p c

250 1.85 2.69 3.52 14.72 5.24 6.91 32.37 5.02 12.36 27.29 6.97 13.69 63.86
500 1.09 0.99 1.13 4.91 2.44 2.40 38.69 2.55 5.16 20.80 2.66 4.94 56.68
1000 0.38 0.48 0.70 2.47 1.13 1.05 34.18 1.21 2.40 14.09 1.47 1.70 44.38

250 1.29 2.24 2.82 7.35 3.69 3.66 7.99 3.18 5.86 13.03 3.89 5.86 13.75
500 0.90 1.46 1.72 3.07 2.43 2.28 7.22 2.16 3.42 9.95 2.65 3.55 11.97
1000 0.62 1.00 1.21 2.02 1.68 1.59 6.13 1.52 2.18 7.75 1.78 2.13 9.50

250 95.3 95.3 94.9 95.1 92.0 93.5 92.3 91.8 89.3 79.7 92.1 90.5 83.9
500 94.7 95.1 95.5 94.7 92.7 93.6 91.3 93.2 91.3 81.1 92.8 90.5 85.2
1000 95.2 95.0 94.8 95.0 93.2 93.6 90.1 94.2 92.7 82.6 94.0 91.7 87.6

250 0.98 0.92 0.90 0.75 0.96 0.95 1.36 0.91 0.74 0.51 0.85 0.69 0.72

500 0.98 0.97 0.99 0.96 0.98 0.99 1.30 0.97 0.85 0.57 0.87 0.74 0.70

1000 1.00 0.98 0.98 0.98 0.98 0.99 1.25 0.98 0.91 0.59 0.92 0.88 0.75

250 0.99 1.10 1.13 3.69 1.33 1.24 1.86 1.00 1.82 2.62 0.96 2.92 2604.0
500 0.99 0.98 1.00 1.07 1.00 1.01 1.59 0.98 1.10 1.78 0.94 1.35 1897.1
1000 1.00 0.98 0.98 0.99 0.99 1.01 1.44 0.99 0.96 1.12 0.96 1.01 1574.6
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True dgp  and 
estimated model:

NOP NOPc MIOP MIOPcSample 
size

RMSE

CP, %

A-Ratio

Bias

M-Ratio

Table A2.2. Summary of Monte Carlo results: Accuracy of estimated threshold coefficients α , µ - and µ +

Overlap:



n   p   c    n   p   c    

250 8.70 14.33 41.31 9.94 22.58 54.78

500 3.82 5.36 43.01 3.72 10.18 45.80
1000 1.75 1.96 38.10 1.89 4.22 36.84

250 4.27 4.76 7.27 4.36 5.66 8.09

500 3.02 3.40 7.44 3.12 4.24 7.34
1000 2.10 2.52 6.76 2.18 3.17 6.25

250 85.2 85.4 87.1 84.0 79.8 73.6

500 88.2 87.8 82.1 87.2 81.6 73.4
1000 90.7 89.4 81.6 90.8 85.5 78.8

250 0.99 1.05 2.41 0.95 0.91 1.35

500 0.98 1.00 1.84 0.93 0.88 1.24
1000 0.98 0.97 1.68 0.95 0.91 1.35

250 0.99 1.07 334.3 0.97 1.03 454.1

500 0.97 1.01 128.2 0.95 0.95 285.5
1000 0.98 0.97 44.2 0.96 1.01 211.5

Table A2.3. Summary of Monte Carlo results:                                                                    

Accuracy of estimated correlation coefficients ρ
- and ρ +
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True dgp  and estimated model:

Bias

NOPc MIOPc

RMSE

CP, %

M-ratio

A-ratio

Sample 
size Covariates' overlap:



OP NOP MIOP OP NOP NOPc OP NOP NOPc OP NOP MIOP MIOPc OP NOP MIOP MIOPc

Bias 0.01 -0.08 -0.10 -0.70 0.04 0.08 -1.09 -0.43 0.07 -1.22 0.35 0.00 0.03 -1.32 -0.01 -0.42 0.02
A-ratio 1.00 0.98 0.92 1.06 1.00 1.01 1.04 0.99 1.01 1.13 1.00 0.98 1.02 1.14 1.04 1.01 0.99
RMSE 0.44 0.61 0.66 0.90 0.63 0.73 1.23 0.76 0.78 1.30 0.55 0.49 0.67 1.38 0.36 0.60 0.66
CP, % 94.4 94.1 92.6 83.1 94.6 94.7 55.9 91.4 94.8 27.7 82.3 93.5 94.7 12.6 95.2 90.4 93.0

Bias 0.01 0.00 -0.04 4.25 -0.05 -0.07 4.59 0.23 -0.08 3.78 2.62 0.03 0.02 4.05 2.83 0.29 0.03
A-ratio 1.01 0.98 0.94 0.96 1.01 1.00 0.95 1.00 1.00 0.93 1.01 1.00 1.01 0.91 0.99 0.98 0.98
RMSE 0.43 0.55 0.58 4.27 0.79 0.83 4.60 0.83 0.89 3.81 2.69 0.79 0.83 4.08 2.90 0.86 0.87
CP, % 95.2 94.5 94.1 0.0 95.5 95.5 0.0 92.4 95.0 0.0 1.9 94.5 94.5 0.0 1.1 91.0 93.6

Bias -0.60 0.00 0.00 -0.63 0.00 0.00 -2.29 0.00 0.00 0.00 -2.45 0.00 0.00 0.00
A-ratio 1.02 n/a n/a 1.00 n/a n/a 1.15 n/a n/a n/a 1.13 n/a n/a n/a
RMSE 0.72 0.00 0.00 0.76 0.00 0.00 2.32 0.00 0.00 0.00 2.48 0.00 0.00 0.00
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Table A3. Summary of Monte Carlo results: Partial effects of covariates on probabilities of discrete outcomes

Partial effects on Pr(y = -0.50 | v1=2, v2=0, v3=0)

MIOP

v1

v2

v3

NOPTrue dgp :

Estimated model:

OP NOPc MIOPc

RMSE 0.72 0.00 0.00 0.76 0.00 0.00 2.32 0.00 0.00 0.00 2.48 0.00 0.00 0.00
CP, % 65.8 n/a n/a 62.6 n/a n/a 0.0 n/a n/a n/a 0.0 n/a n/a n/a

Bias 0.00 0.09 -0.25 2.05 -0.01 -0.05 3.00 0.42 -0.07 3.39 1.29 -0.10 -0.16 4.13 2.08 0.42 -0.11
A-ratio 1.00 0.99 0.97 0.99 0.98 0.98 1.00 1.02 1.03 1.03 1.08 1.00 1.06 1.00 1.06 0.94 0.96
RMSE 0.78 0.96 1.20 2.22 0.97 1.05 3.12 1.03 1.04 3.47 1.53 1.27 1.31 4.18 2.23 1.37 1.41
CP, % 94.5 94.4 94.0 34.2 94.2 94.9 6.9 91.8 96.1 1.0 69.0 95.2 95.5 0.0 33.0 90.4 94.2

Bias 0.01 0.03 -0.37 -5.67 0.05 0.07 -6.02 -0.23 0.08 3.15 10.18 -0.05 -0.07 2.79 9.80 -0.53 -0.15
A-ratio 0.98 0.97 1.02 1.01 1.01 1.00 1.01 1.00 1.00 1.02 1.01 1.01 1.02 1.01 0.99 0.99 0.98
RMSE 0.78 0.83 1.02 5.70 0.79 0.83 6.05 0.83 0.89 3.22 10.20 1.35 1.53 2.86 9.82 1.50 1.58
CP, % 94.7 94.1 94.6 0.0 95.5 95.5 0.0 92.4 95.0 0.6 0.0 95.7 95.4 2.2 0.0 94.7 94.9

Bias -1.06 0.00 0.00 -1.11 0.00 0.00 -4.15 0.00 0.00 0.00 -4.21 0.00 0.00 0.00
A-ratio 1.01 n/a n/a 1.00 n/a n/a 1.06 n/a n/a n/a 1.05 n/a n/a n/a
RMSE 1.28 0.00 0.00 1.33 0.00 0.00 4.20 0.00 0.00 0.00 4.26 0.00 0.00 0.00
CP, % 68.2 n/a n/a 65.2 n/a n/a 0.0 n/a n/a n/a 0.0 n/a n/a n/a

Partial effects on Pr(y = -0.25 | v1=2, v2=0, v3=0)

v1

v2

v3



OP NOP MIOP OP NOP NOPc OP NOP NOPc OP NOP MIOP MIOPc OP NOP MIOP MIOPc

Bias 0.01 0.01 0.01 0.03 -0.03 -0.03 0.09 0.01 0.01 0.10 -0.02 0.01 -0.01 -1.82 -1.93 -0.95 0.12
A-ratio 1.01 1.01 0.99 1.03 1.01 1.01 1.00 0.97 0.98 1.02 1.04 0.99 1.01 1.02 1.05 0.94 0.97
RMSE 0.72 0.72 1.62 0.93 1.06 1.06 0.92 1.10 1.10 0.62 0.61 1.60 1.80 1.88 1.99 1.87 2.15
CP, % 95.4 95.4 95.5 96.3 95.7 95.8 95.1 94.6 94.7 95.8 96.4 94.8 95.7 4.9 4.1 86.2 95.2

Bias -0.03 -0.01 0.60 0.01 0.00 0.00 0.02 0.00 0.00 -12.72 -12.80 0.02 0.05 -12.57 -12.63 0.24 0.12
A-ratio 1.00 0.99 0.99 1.05 n/a n/a 1.04 n/a n/a 1.01 n/a 1.01 1.03 1.01 n/a 0.98 0.98
RMSE 2.00 2.07 2.86 0.11 0.00 0.00 0.12 0.00 0.00 12.73 12.80 1.63 1.70 12.58 12.63 1.70 1.79
CP, % 94.7 94.8 93.8 99.8 n/a n/a 99.9 n/a n/a 0.0 n/a 94.9 95.0 0.0 n/a 94.8 94.7

Bias -0.16 0.00 0.00 -0.16 0.00 0.00 10.82 12.51 0.06 0.06 10.47 12.26 -2.27 0.01
A-ratio 0.93 n/a n/a 0.95 n/a n/a 0.90 n/a 1.00 1.04 0.92 n/a 0.98 1.01
RMSE 0.28 0.00 0.00 0.28 0.00 0.00 10.85 12.51 2.05 2.36 10.50 12.26 3.22 2.42
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Table A3 (contd). Summary of Monte Carlo results: Partial effects of covariates on probabilities of discrete outcomes

True dgp : OP NOP NOPc MIOP MIOPc

Estimated model:

v1

v2

v3

Partial effects on Pr(y = 0 | v1=2, v2=0, v3=0)

RMSE 0.28 0.00 0.00 0.28 0.00 0.00 10.85 12.51 2.05 2.36 10.50 12.26 3.22 2.42
CP, % 99.5 n/a n/a 99.6 n/a n/a 0.0 n/a 94.5 93.6 0.0 n/a 81.7 94.8

Bias -0.01 -0.08 0.26 -1.98 0.02 0.06 -3.81 -1.12 0.11 -3.30 -1.28 0.09 0.16 -3.28 -1.15 -0.34 -0.05
A-ratio 1.01 1.01 0.96 0.99 0.99 1.00 0.94 0.95 1.00 1.02 1.08 1.00 1.05 1.01 1.07 0.96 0.97
RMSE 0.76 0.93 1.19 2.17 0.95 1.02 3.91 1.50 1.17 3.37 1.51 1.25 1.30 3.34 1.40 1.25 1.55
CP, % 94.8 95.0 94.2 36.6 95.2 95.1 1.6 75.5 94.3 0.9 68.7 94.7 94.4 0.4 72.4 91.6 95.0

Bias 0.03 -0.19 -0.30 0.89 0.00 0.00 0.88 0.00 0.00 3.51 0.00 0.00 0.00 3.36 0.00 0.00 0.00
A-ratio 1.01 0.99 0.94 1.00 n/a n/a 0.99 n/a n/a 1.03 n/a n/a n/a 1.03 n/a n/a n/a
RMSE 1.36 2.23 2.48 1.07 0.00 0.00 1.06 0.00 0.00 3.56 0.00 0.00 0.00 3.41 0.00 0.00 0.00
CP, % 95.0 95.1 93.6 68.4 n/a n/a 66.8 n/a n/a 0.0 n/a n/a n/a 0.0 n/a n/a n/a

Bias 7.12 -0.04 -0.07 8.13 0.23 -0.14 2.90 -6.28 -0.06 -0.13 4.97 -4.83 3.01 -0.22
A-ratio 1.03 1.01 1.02 1.03 0.99 0.99 1.03 1.01 0.97 1.02 1.07 0.98 0.89 0.98
RMSE 7.16 0.98 0.99 8.17 1.05 1.11 3.03 6.38 1.97 2.41 5.04 4.97 3.85 2.61
CP, % 0.0 95.2 95.2 0.0 93.8 95.3 5.3 0.0 92.5 92.5 0.0 0.6 63.3 94.0

Partial effects on Pr(y = 0.25 | v1=2, v2=0, v3=0)

v2

v1

v3



OP NOP MIOP OP NOP NOPc OP NOP NOPc OP NOP MIOP MIOPc OP NOP MIOP MIOPc

Bias -0.02 0.06 0.08 0.61 -0.03 -0.07 1.80 1.11 -0.12 1.03 -0.33 0.00 -0.02 2.29 1.01 1.28 0.02
A-ratio 1.00 0.98 0.92 1.02 0.98 1.00 1.07 1.03 1.00 1.11 1.02 1.00 1.05 1.16 1.04 1.04 0.96
RMSE 0.44 0.60 0.64 0.84 0.64 0.71 1.88 1.26 0.89 1.12 0.55 0.49 0.68 2.32 1.08 1.34 0.58
CP, % 94.4 94.3 93.1 85.4 94.7 94.8 8.6 60.1 94.6 46.0 85.3 93.8 95.6 0.0 20.0 5.3 87.6

Bias -0.03 0.17 0.12 0.52 0.00 0.00 0.54 0.00 0.00 2.29 0.00 0.00 0.00 2.37 0.00 0.00 0.00
A-ratio 0.99 1.00 0.91 1.00 n/a n/a 1.00 n/a n/a 1.10 n/a n/a n/a 1.10 n/a n/a n/a
RMSE 1.40 1.96 2.11 0.62 0.00 0.00 0.65 0.00 0.00 2.32 0.00 0.00 0.00 2.41 0.00 0.00 0.00
CP, % 94.6 95.0 92.2 69.1 n/a n/a 67.5 n/a n/a 0.0 n/a n/a n/a 0.0 n/a n/a n/a

Bias -5.30 0.04 0.07 -6.22 -0.23 0.14 -7.28 -6.23 0.01 0.07 -8.78 -7.43 -0.73 0.21
A-ratio 0.96 1.01 1.02 0.94 0.99 0.99 0.95 1.01 1.01 1.03 0.93 0.98 0.99 1.01
RMSE 5.32 0.98 0.99 6.24 1.05 1.11 7.33 6.33 1.50 1.52 8.82 7.53 1.79 1.68

Estimated model:

Partial effects on Pr(y = 0.50 | v1=2, v2=0, v3=0)
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Table A3 (contd). Summary of Monte Carlo results: Partial effects of covariates on probabilities of discrete outcomes

True dgp : OP NOP NOPc MIOP MIOPc

v3

v1

v2

RMSE 5.32 0.98 0.99 6.24 1.05 1.11 7.33 6.33 1.50 1.52 8.82 7.53 1.79 1.68
CP, % 0.0 95.2 95.2 0.0 93.8 95.3 0.0 0.1 95.5 95.5 0.0 0.0 90.7 95.2



Variable Mean Std deviation Minimum Maximum

∆y -0.08 0.59 -1.00 1.00

Spread -0.20 0.80 -2.73 1.36

∆r ECB -0.01 0.18 -0.75 0.50

GES e 1.32 1.08 -2.01 3.41

∆CPI -0.06 0.49 -1.80 1.40

∆(CPI e -T) -0.03 0.65 -2.23 1.86

∆r NBP -0.14 0.57 -2.50 2.50

I(H) 0.30 0.46 0.00 1.00

I(D) 0.23 0.42 0.00 1.00

Dissent 0.07 0.21 -0.44 0.50

Bias 0.12 0.68 -1.00 1.00

∆ c GES e 0.03 1.03 -2.41 3.03

I(CPI e >T) 0.52 0.50 0.00 1.00

Table A4. Sample descriptive statistics
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Model OP

Covariates X X Z X Z X Z- Z+

0.47*** -1.11*** 19.81** 2.36***
(0.06) (0.18) (9.77) (0.25)

2.08*** -4.17*** 2.23*** 4.51***
(0.24) (0.79) (0.63) (0.72)

0.02 0.47** 6.65* 0.66***
(0.05) -0.20 (3.68) (0.13)

1.22*** 0.31 -6.70 4.35***
-0.10 (0.23) (4.74) (0.43)

-0.01 0.96*** 19.21** 0.58***
(0.07) (0.22) (9.23) (0.21)

-0.26*** -3.68*** 0.29*** 0.13 0.36*** 4.61*** -0.92*** -3 .82***
(0.08) (0.68) (0.07) -0.70 (0.05) (1.03) (0.14) (0.78)

0.78*** 1.30*** 0.81*** 1.91 0.84*** 0.86*** 1.19*** 0.75* **
(0.09) (0.37) (0.09) (1.35) (0.09) (0.21) (0.19) (0.21)

-0.34*** -0.30 -0.31*** 0.11 -0.22** -0.44** -0.38** -0.83***
-0.10 (0.27) (0.12) -0.50 -0.10 (0.22) (0.17) (0.26)

1.02*** 1.39*** 1.55*** 1.35*** 1.25**
(0.19) (0.19) -0.20 (0.33) (0.54)

1.06*** 1.25*** 1.22*** 2.44*** 1.36***
(0.08) (0.09) (0.07) (0.23) (0.18)

0.22*** 0.36*** 0.43*** 0.24***
(0.05) (0.04) (0.04) (0.08)

0.41*** 0.41*** 0.62*** 1.86***
(0.08) (0.08) (0.09) (0.24)

∆ c GES e

I(CPI e >T)

I(D)

Dissent

Bias

∆(CPI e -T)

∆r NBP

I(H)

∆r ECB

GES e

∆CPI

Spread

ZIOP ZIOPa MIOP
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Table A5. Changes to the policy rate: parameters' estimates from four alternative models


