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NOTATION AND ABBREVIATIONS

ID �identi�cation

FOC/SOC ��rst/second order condition(s)

CDF �cumulative distribution function, typically denoted as F

PDF �probability density function, typically denoted as f

LIME �law of iterated (mathematical) expectations

LLN �law of large numbers

CLT �central limit theorem

IfAg �indicator function equalling unity when A holds and zero otherwise
Pr fAg �probability of A
E [yjx] �mathematical expectation (mean) of y conditional on x
V [yjx] �variance of y conditional on x
C [x; y] �covariance between x and y
BLP, BLP [yjx] �best linear predictor
Ik �k � k identity matrix
plim �probability limit

� typically means �distributed as�
N �normal (Gaussian) distribution

�2k �chi-squared distribution with k degrees of freedom

�2k (�) �non-central chi-squared distribution with k degrees of freedom and non-centrality
parameter �

B (p) �Bernoulli distribution with success probability p
IID �independently and identically distributed

n �typically sample size in cross-sections

T �typically sample size in time series

k �typically number of parameters in parametric models

` �typically number of instruments or moment conditions

X ;Y;Z; E ; bE �data matrices of regressors, dependent variables, instruments, errors, residuals
L (�) �(conditional) likelihood function
`n (�) �(conditional) loglikelihood function
s (�) �(conditional) score function
m (�) �moment function
Qf �typically E [f ] ; for example, Qxx = E [xx0] ; Qgge2 = E

�
g�g

0
�e
2
�
; Q@m = E [@m=@�] ; etc.

I �Information matrix
W �Wald test statistic

LR �likelihood ratio test statistic

LM �Lagrange multiplier (score) test statistic

J �Hansen�s J test statistic
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1. ASYMPTOTIC THEORY: GENERAL AND
INDEPENDENT DATA

1.1 Asymptotics of transformations

1. Suppose that
p
T (�̂� 2�) d! N (0; 1). Find the limiting distribution of T (1� cos �̂).

2. Suppose that T ( ̂ � 2�) d! N (0; 1). Find the limiting distribution of T sin  ̂.

3. Suppose that T �̂ d! �21. Find the limiting distribution of T log �̂.

1.2 Asymptotics of rotated logarithms

Let the positive random vector (Un; Vn)
0
be such that

p
n

��
Un
Vn

�
�
�
�u
�v

��
d! N

��
0

0

�
;

�
!uu !uv
!uv !vv

��
as n!1: Find the joint asymptotic distribution of�

lnUn � lnVn
lnUn + lnVn

�
:

What is the condition under which lnUn� lnVn and lnUn+ lnVn are asymptotically independent?

1.3 Escaping probability mass

Let X = fx1; : : : ; xng be a random sample from some population of x with E [x] = � and V [x] = �2.
Let An denote an event such that P fAng = 1 � 1

n ; and let the distribution of An be independent
of the distribution of x. Now construct the following randomized estimator of �:

�̂n =

�
�xn if An happens,
n otherwise.

(i) Find the bias, variance, and MSE of �̂n. Show how they behave as n!1.

(ii) Is �̂n a consistent estimator of �? Find the asymptotic distribution of
p
n(�̂n � �):

(iii) Use this distribution to construct an approximately (1��)� 100% con�dence interval for �.
Compare this CI with the one obtained by using �xn as an estimator of �.
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1.4 Asymptotics of t-ratios

Let fxigni=1 be a random sample of a scalar random variable x with E[x] = �; V[x] = �2;
E[(x� �)3] = 0; E[(x� �)4] = � ; where all parameters are �nite.

(a) De�ne Tn �
x

�̂
; where

x � 1

n

nX
i=1

xi; �̂2 � 1

n

nX
i=1

(xi � x)2 :

Derive the limiting distribution of
p
nTn under the assumption � = 0.

(b) Now suppose it is not assumed that � = 0. Derive the limiting distribution of

p
n

�
Tn � plim

n!1
Tn

�
:

Be sure your answer reduces to the result of part (a) when � = 0.

(c) De�ne Rn �
x

�
; where

�2 � 1

n

nX
i=1

x2i

is the constrained estimator of �2 under the (possibly incorrect) assumption � = 0. Derive
the limiting distribution of

p
n

�
Rn � plim

n!1
Rn

�
for arbitrary � and �2 > 0. Under what conditions on � and �2 will this asymptotic distrib-
ution be the same as in part (b)?

1.5 Creeping bug on simplex

Consider a positive (x; y) orthant R2+ and its unit simplex, i.e. the line segment x+ y = 1; x � 0;
y � 0: Take an arbitrary natural number k 2 N: Imagine a bug starting creeping from the origin
(x; y) = (0; 0): Each second the bug goes either in the positive x direction with probability p; or
in the positive y direction with probability 1 � p; each time covering distance 1

k : Evidently, this
way the bug reaches the simplex in k seconds. Suppose it arrives there at point (xk; yk): Now let
k !1; i.e. as if the bug shrinks in size and physical abilities per second. Determine

(a) the probability limit of (xk; yk);

(b) the rate of convergence;

(c) the asymptotic distribution of (xk; yk).
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1.6 Asymptotics of sample variance

Let x1; : : : ; xn be a random sample from a population of x with �nite fourth moments. Let �xn and
x2n be the sample averages of x and x

2, respectively. Find constants a and b and function c(n) such
that the vector sequence

c(n)

�
�xn � a
x2n � b

�
converges to a nontrivial distribution, and determine this limiting distribution. Derive the asymp-
totic distribution of the sample variance x2n � (�xn)

2 :

1.7 Asymptotics of roots

Suppose we are interested in the inference about the root � of the nonlinear system

F (a; �) = 0;

where F : Rp � Rk ! Rk; and a is a vector of constants. Let available be â; a consistent and
asymptotically normal estimator of a: Assuming that � is the unique solution of the above system,
and �̂ is the unique solution of the system

F (â; �̂) = 0;

derive the asymptotic distribution of �̂: Assume that all needed smoothness conditions are satis�ed.

1.8 Second-order Delta-method

Let Sn = n�1
Pn

i=1Xi; where Xi; i = 1; : : : ; n; is a random sample of scalar random variables with

E [Xi] = � and V [Xi] = 1: It is easy to show that
p
n(S2n � �2)

d! N (0; 4�2) when � 6= 0:

(a) Find the asymptotic distribution of S2n when � = 0; by taking a square of the asymptotic
distribution of Sn.

(b) Find the asymptotic distribution of cos(Sn): Hint: take a higher-order Taylor expansion
applied to cos(Sn).

(c) Using the technique of part (b), formulate and prove an analog of the Delta-method for the
case when the function is scalar-valued, has zero �rst derivative and nonzero second derivative
(when the derivatives are evaluated at the probability limit). For simplicity, let all involved
random variables be scalars.

1.9 Asymptotics with shrinking regressor

Suppose that
yi = �+ �xi + ui;
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where fuig are IID with E [ui] = 0, E
�
u2i
�
= �2 and E

�
u3i
�
= �, while the regressor xi is determin-

istically shrinking: xi = �i with � 2 (0; 1): Let the sample size be n: Discuss as fully as you can the
asymptotic behavior of the OLS estimates (�̂; �̂; �̂2) of (�; �; �2) as n!1:

1.10 Power trends

Suppose that
yi = �xi + �i"i; i = 1; : : : ; n;

where "i � IID (0; 1) while xi = i� for some known �; and �2i = �i� for some known �:

1. Under what conditions on � and � is the OLS estimator of � consistent? Derive its asymptotic
distribution when it is consistent.

2. Under what conditions on � and � is the GLS estimator of � consistent? Derive its asymptotic
distribution when it is consistent.
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2. ASYMPTOTIC THEORY: TIME SERIES

2.1 Trended vs. di¤erenced regression

Consider a linear model with a linearly trending regressor:

yt = �+ �t+ "t;

where the sequence "t is independently and identically distributed according to some distribution
D with mean zero and variance �2: The object of interest is �:

1. Write out the OLS estimator �̂ of � in deviations form and �nd its asymptotic distribution.

2. A researcher suggests removing the trending regressor by taking di¤erences to obtain

yt � yt�1 = � + "t � "t�1

and then estimating � by OLS. Write out the OLS estimator �� of � and �nd its asymptotic
distribution.

3. Compare the estimators �̂ and �� in terms of asymptotic e¢ ciency.

2.2 Long run variance for AR(1)

Often one needs to estimate the long-run variance

Vze � lim
T!1

V

 
1p
T

TX
t=1

ztet

!

of a stationary sequence ztet that satis�es the restriction E[etjzt] = 0: Derive a compact expression
for Vze in the case when et and zt follow independent scalar AR(1) processes. For this example,
propose a method to consistently estimate Vze; and show your estimator�s consistency.

2.3 Asymptotics of averages of AR(1) and MA(1)

Let xt be a martingale di¤erence sequence with respect to its own past, and let all conditions for the

CLT be satis�ed:
p
TxT = T�1=2

PT
t=1 xt

d! N (0; �2): Let now yt = �yt�1+xt and zt = xt+�xt�1;

where j�j < 1 and j�j < 1: Consider time averages yT = T�1
PT

t=1 yt and zT = T�1
PT

t=1 zt:

1. Are yt and zt martingale di¤erence sequences relative to their own past?

2. Find the asymptotic distributions of yT and zT :
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3. How would you estimate the asymptotic variances of yT and zT ?

4. Repeat what you did in parts 1�3 when xt is a k�1 vector, and we have
p
TxT = T�1=2

PT
t=1 xt

d!
N (0;�), yt = Pyt�1+xt; zt = xt+�xt�1; where P and � are k�k matrices with eigenvalues
inside the unit circle.

2.4 Asymptotics for impulse response functions

A stationary and ergodic process zt that admits the representation

zt = �+
1X
j=0

�j"t�j ;

where
P1

j=0 j�j j <1 and "t is zero mean IID, is called linear. The function IRF (j) = �j is called
impulse response function of zt; re�ecting the fact that �j = @zt=@"t�j ; a response of zt to its unit
shock j periods ago.

1. Show that the strong zero mean AR(1) and ARMA(1,1) processes

yt = �yt�1 + "t; j�j < 1

and
zt = �zt�1 + "t � �"t�1; j�j < 1; j�j < 1; � 6= �;

are linear, and derive their impulse response functions.

2. Suppose a sample z1; : : : ; zT is given. For the AR(1) process, construct an estimator of the
IRF on the basis of the OLS estimator of �. Derive the asymptotic distribution of your IRF
estimator for �xed horizon j as the sample size T !1.

3. Suppose that for the ARMA(1,1) process one estimates � from the sample z1; : : : ; zT by

�̂ =

PT
t=3 ztzt�2PT
t=3 zt�1zt�2

;

and � �by an appropriate root of the quadratic equation

� �̂

1 + �̂
2 =

PT
t=2 êtêt�1PT
t=2 ê

2
t

; êt = zt � �̂zt�1:

On the basis of these estimates, construct an estimator of the impulse response function you
derived. Outline the steps (no need to show all math) which you would undertake in order
to derive its asymptotic distribution for �xed j as T !1.
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3. BOOTSTRAP

3.1 Brief and exhaustive

Evaluate the following claims.

1. The only di¤erence between Monte�Carlo and the bootstrap is possibility and impossibility,
respectively, of sampling from the true population.

2. When one does bootstrap, there is no reason to raise the number of bootstrap repetition too
high: there is a level when making it larger does not yield any improvement in precision.

3. The bootstrap estimator of the parameter of interest is preferable to the asymptotic one,
since its rate of convergence to the true parameter is often larger.

3.2 Bootstrapping t-ratio

Consider the following bootstrap procedure. Using the nonparametric bootstrap, generate boot-

strap samples and calculate
�̂
�
b � �̂
s(�̂)

at each bootstrap repetition. Find the quantiles q��=2 and q
�
1��=2

from this bootstrap distribution, and construct

CI = [�̂ � s(�̂)q�1��=2; �̂ � s(�̂)q
�
�=2]:

Show that CI is exactly the same as the percentile interval, and not the percentile-t interval.

3.3 Bootstrap bias correction

1. Consider a random variable x with mean �: A random sample fxigni=1 is available. One
estimates � by �xn and �2 by �x2n: Find out what the bootstrap bias corrected estimators of �
and �2 are.

2. Suppose we have a sample of two independent observations z1 = 0 and z2 = 3 from the
same distribution. Let us be interested in E[z2] and (E[z])2 which are natural to estimate by
z2 = 1

2(z
2
1 + z

2
2) and �z

2 = 1
4(z1+ z2)

2: Compute the bootstrap-bias-corrected estimates of the
quantities of interest.
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3.4 Bootstrap in linear model

1. Suppose one has a random sample of n observations from the linear regression model

y = x0� + e; E [ejx] = 0:

Is the nonparametric bootstrap valid or invalid in the presence of heteroskedasticity? Explain.

2. Let the model be
y = x0� + e;

but E [ex] 6= 0; i.e. the regressors are endogenous. The OLS estimator �̂ of the parameter
� is biased. We know that the bootstrap is a good way to estimate bias, so the idea is to
estimate the bias of �̂ and construct a bias-adjusted estimate of �: Explain whether or not
the non-parametric bootstrap can be used to implement this idea.

3. Take the linear regression
y = x0� + e; E [ejx] = 0:

For a particular value of x; the object of interest is the conditional mean g(x) = E [yjx] :
Describe how you would use the percentile-t bootstrap to construct a con�dence interval for
g(x):

3.5 Bootstrap for impulse response functions

Recall the formulation of Problem 2.4.

1. Describe in detail how to construct 95% error bands around the IRF estimates for the AR(1)
process using the bootstrap that attains asymptotic re�nement.

2. It is well known that in spite of their asymptotic unbiasedness, usual estimates of impulse
response functions are signi�cantly biased in samples typically encountered in practice. Pro-
pose a bootstrap algorithm to construct a bias corrected impulse response function for the
above ARMA(1,1) process.
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4. REGRESSION AND PROJECTION

4.1 Regressing and projecting dice

Let y be a random variable that denotes the number of dots obtained when a fair six sided die is
rolled. Let

x =

�
y if y is even,
0 otherwise.

(i) Find the joint distribution of (x; y).

(ii) Find the best predictor of y given x.

(iii) Find the best linear predictor, BLP [yjx], of y conditional on x.

(iv) Calculate E
�
U2BP

�
and E

�
U2BLP

�
, the mean square prediction errors for cases (ii) and (iii)

respectively, and show that E
�
U2BP

�
� E

�
U2BLP

�
.

4.2 Mixture of normals

Suppose that n pairs (xi; yi); i = 1; : : : ; n; are independently drawn from the following mixture of
normals distribution:

�
x

y

�
�

8>><>>:
N
��

0
4

�
;

�
1 0
0 1

��
with probability p;

N
��

4
0

�
;

�
1 0
0 1

��
with probability 1� p;

where 0 < p < 1:

1. Derive the best linear predictor BLP [yjx] of y given x.

2. Argue that the conditional expectation function E [yjx] is nonlinear. Provide a step-by-step
algorithm allowing one to derive E [yjx] ; and derive it if you can.

4.3 Bernoulli regressor

Let x be distributed Bernoulli, and, conditional on x; y be distributed as

yjx �
�
N
�
�0; �

2
0

�
; x = 0;

N
�
�1; �

2
1

�
; x = 1:

Write out E [yjx] and E
�
y2jx

�
as linear functions of x: Why are these expectations linear in x?
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4.4 Best polynomial approximation

Given jointly distributed random variables x and y; a best kth order polynomial approximation
BPAk [yjx] to E [yjx] ; in the MSE sense, is a solution to the problem

min
�0;�1;:::;�k

E
��
E [yjx]� �0 � �1x� : : :� �kxk

�2�
:

Assuming that BPAk [yjx] exists, �nd its characterization and derive the properties of the associated
prediction error Uk = y � BPAk [yjx] :

4.5 Handling conditional expectations

1. Consider the following situation. The vector (y; x; z; w) is a random quadruple. It is known
that

E [yjx; z; w] = �+ �x+ 
z:

It is also known that C [x; z] = 0 and that C [w; z] > 0: The parameters �; � and 
 are not
known. A random sample of observations on (y; x; w) is available; z is not observable. In this
setting, a researcher weighs two options for estimating �: One is a linear least squares �t of
y on x: The other is a linear least squares �t of y on (x;w): Compare these options.

2. Let (x; y; z) be a random triple. For a given real constant 
; a researcher wants to estimate
E [yjE [xjz] = 
]. The researcher knows that E [xjz] and E [yjz] are strictly increasing and
continuous functions of z, and is given consistent estimates of these functions. Show how the
researcher can use them to obtain a consistent estimate of the quantity of interest.
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5. LINEAR REGRESSION AND OLS

5.1 Fixed and random regressors

1. Comment on: �Treating regressors x in a mean regression as random variables rather than
�xed numbers simpli�es further analysis, since then the observations (xi; yi) may be treated
as IID across i�.

2. A labor economist argues: �It is more plausible to think of my regressors as random rather
than �xed. Look at education, for example. A person chooses her level of education, thus it
is random. Age may be misreported, so it is random too. Even gender is random, because
one can get a sex change operation done.�Comment on this pearl.

3. Consider a linear mean regression y = x0� + e; E [ejx] = 0; where x; instead of being IID
across i; depends on i through an unknown function ' as xi = '(i) + ui; where ui are IID
independent of ei: Show that the OLS estimator of � is still unbiased.

5.2 Consistency of OLS under serially correlated errors

1Let fytg+1t=�1 be a strictly stationary and ergodic stochastic process with zero mean and �nite
variance.

(i) De�ne

� =
C [yt; yt�1]
V [yt]

; ut = yt � �yt�1;

so that we can write
yt = �yt�1 + ut:

Show that the error ut satis�es E [ut] = 0 and C [ut; yt�1] = 0:

(ii) Show that the OLS estimator �̂ from the regression of yt on yt�1 is consistent for �:

(iii) Show that, without further assumptions, ut is serially correlated. Construct an example with
serially correlated ut.

(iv) A 1994 paper in the Journal of Econometrics leads with the statement: �It is well known that
in linear regression models with lagged dependent variables, ordinary least squares (OLS)
estimators are inconsistent if the errors are autocorrelated�. This statement, or a slight
variation of it, appears in virtually all econometrics textbooks. Reconcile this statement with
your �ndings from parts (ii) and (iii).

1This problem closely follows J.M. Wooldridge (1998) Consistency of OLS in the Presence of Lagged Dependent
Variable and Serially Correlated Errors. Econometric Theory 14, Problem 98.2.1.
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5.3 Estimation of linear combination

Suppose one has a random sample of n observations from the linear regression model

y = �+ �x+ 
z + e;

where e has mean zero and variance �2 and is independent of (x; z) :

1. What is the conditional variance of the best linear conditionally (on the x and z samples)
unbiased estimator �̂ of

� = �+ �cx + 
cz;

where cx and cz are some given constants?

2. Obtain the limiting distribution of
p
n
�
�̂ � �

�
:

Write your answer as a function of the means, variances and correlations of x, z and e and of
the constants �; �; 
; cx; cz; assuming that all moments are �nite.

3. For which value of the correlation coe¢ cient between x and z is the asymptotic variance
minimized for given variances of e and x?

4. Discuss the relationship of the result of part 3 with the problem of multicollinearity.

5.4 Incomplete regression

Consider the linear regression

y = x0� + e; E [ejx] = 0; E
�
e2jx

�
= �2;

where x is k1 � 1: Suppose that some component of the error e is observable, so that

e = z0
 + �;

where zi is a k2 � 1 vector of observables such that E [�jz] = 0 and E [xz0] 6= 0: A researcher wants
to estimate � and 
 and considers two alternatives:

1. Run the regression of y on x and z to �nd the OLS estimates �̂ and 
̂ of � and 
:

2. Run the regression of y on x to get the OLS estimate �̂ of �, compute the OLS residuals
ê = y � x0�̂ and run the regression of ê on z to retrieve the OLS estimate 
̂ of 
:

Which of the two methods would you recommend from the point of view of consistency of
�̂ and 
̂? For the method(s) that yield(s) consistent estimates, �nd the limiting distribution ofp
n (
̂ � 
) :
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5.5 Generated coe¢ cient

Consider the following regression model:

y = �x+ �z + u;

where � and � are scalar unknown parameters, u has zero mean and unit variance, pair (x; z) are
independent of u with E

�
x2
�
= 
2x 6= 0; E

�
z2
�
= 
2z 6= 0; E [xz] = 
xz 6= 0. A collection of triples

f(xi; zi; yi)gni=1 is a random sample. Suppose we are given an estimator �̂ of � independent of all
ui�s, and the limiting distribution of

p
n (�̂� �) is N (0; 1) as n!1: De�ne the estimator �̂ of �

as

�̂ =

 
nX
i=1

x2i

!�1 nX
i=1

xi (yi � �̂zi) :

Obtain the asymptotic distribution of �̂ as n!1:

5.6 OLS in nonlinear model

Consider the equation y = (�+ �x)e, where y and x are scalar observables, e is unobservable. Let
E [ejx] = 1 and V [ejx] = 1. How would you estimate (�; �) by OLS? How would you construct
standard errors?

5.7 Long and short regressions

Take the true model y = x01�1 + x
0
2�2 + e, E [ejx1; x2] = 0; and assume random sampling. Suppose

that �1 is estimated by regressing y on x1 only. Find the probability limit of this estimator. What
are the conditions when it is consistent for �1?

5.8 Ridge regression

In the standard linear mean regression model, one estimates k � 1 parameter � by
~� =

�
X 0X + �Ik

��1X 0Y;
where � > 0 is a �xed scalar, Ik is a k � k identity matrix, X is n � k and Y is n � 1 matrices of
data.

1. Find E[~�jX ]. Is ~� conditionally unbiased? Is it unbiased?

2. Find the probability limit of ~� as n!1. Is ~� consistent?

3. Find the asymptotic distribution of ~�.

4. From your viewpoint, why may one want to use ~� instead of the OLS estimator �̂? Give
conditions under which ~� is preferable to �̂ according to your criterion, and vice versa.
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5.9 Inconsistency under alternative

Suppose that
y = �+ �x+ u;

where u is distributed N (0; �2) independently of x: The variable x is unobserved. Instead we
observe z = x+ v; where v is distributed N (0; �2) independently of x and u: Given a sample of size
n; it is proposed to run the linear regression of y on z and use a conventional t-test to test the null
hypothesis � = 0: Critically evaluate this proposal.

5.10 Returns to schooling

A researcher presents his research on returns to schooling at a lunchtime seminar. He runs OLS,
using a random sample of individuals, on a Mincer-type linear regression, where the left side variable
is a logarithm of hourly wage rate. The results are shown in the table.

Regressor Point estimate Standard error t-statistic
Constant �0:30 2:16 �0:14
Male (g) 0:39 0:07 5:54
Age (a) 0:14 0:12 1:16
Experience (e) 0:019 0:036 0:52
Completed schooling (s) 0:027 0:023 1:15
Ability (f) 0:081 0:124 0:65
Schooling-ability interaction (sf) �0:001 0:014 �0:06

1. The presenter says: �Our model yields a 2:7 percentage point return per additional year
of schooling (I allow returns to schooling to vary by ability by introducing ability-schooling
interaction, but the corresponding estimate is essentially zero). At the same time, the esti-
mated coe¢ cient on ability is 8:1 (although it is statistically insigni�cant). This implies that
one would have to acquire three additional years of education to compensate for one standard
deviation lower innate ability in terms of labor market returns.�A person from the audience
argues: �So you have just divided one insigni�cant estimate by another insigni�cant estimate.
This is like dividing zero by zero. You can get any answer by dividing zero by zero, so your
number �3�is as good as any other number.�How would you professionally respond to this
argument?

2. Another person from the audience argues: �Your dummy variable �Male�enters the regression
only as a separate variable, so the gender in�uences only the intercept. But the corresponding
estimate is statistically very signi�cant (in fact, it is the only signi�cant variable in your
regression). This makes me think that it must enter the regression also in interactions with
the other variables. If I were you, I would run two regressions, one for males and one for
females, and test for di¤erences in coe¢ cients across the two using a sup-Wald test. In
any case, I would compute bootstrap standard errors to replace your asymptotic standard
errors hoping that most of parameters would become statistically signi�cant with more precise
standard errors.�How would you professionally respond to these arguments?
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6. HETEROSKEDASTICITY AND GLS

6.1 Conditional variance estimation

Econometrician A claims: �In an IID context, to run OLS and GLS I don�t need to know the
skedastic function. See, I can estimate the conditional variance matrix 
 of the error vector
by 
̂ = diag

�
ê2i
	n
i=1

; where êi for i = 1; : : : ; n are OLS residuals. When I run OLS, I can

estimate the variance matrix by (X 0X )�1X 0
̂X (X 0X )�1; when I run feasible GLS, I use the formula
�� = (X 0
̂�1X )�1X 0
̂�1Y:� Econometician B argues: �That ain�t right. In both cases you are
using only one observation, ê2i , to estimate the value of the skedastic function, �

2(xi): Hence, your
estimates will be inconsistent and inference wrong.�Resolve this dispute.

6.2 Exponential heteroskedasticity

Let y be scalar and x be k� 1 vector random variables. Observations (yi; xi) are drawn at random
from the population of (y; x). You are told that E [yjx] = x0� and that V [yjx] = exp(x0�+�), with
(�; �) unknown. You are asked to estimate �.

1. Propose an estimation method that is asymptotically equivalent to GLS that would be com-
putable were V [yjx] fully known.

2. In what sense is the feasible GLS estimator of part 1 e¢ cient? In which sense is it ine¢ cient?

6.3 OLS and GLS are identical

Let Y = X (�+ v)+U , where X is n� k, Y and U are n� 1, and � and v are k� 1. The parameter
of interest is �. The properties of (Y;X ;U ; v) are: E [UjX ] = 0, E [vjX ] = 0, E [UU 0jX ] = �2In,
E [vv0jX ] = �, E [Uv0jX ] = 0. Y and X are observable, while U and v are not.

1. What are E [YjX ] and V [YjX ]? Denote the latter by �. Is the environment homo- or
heteroskedastic?

2. Write out the OLS and GLS estimators �̂ and ~� of �. Prove that in this model they are
identical. Hint: First prove that X 0 bE = 0, where ê is the n� 1 vector of OLS residuals. Next
prove that X 0��1 bE = 0. Then conclude. Alternatively, use formulae for the inverse of a sum
of two matrices. The �rst method is preferable, being more �econometric�.

3. Discuss bene�ts of using both estimators in this model.
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6.4 OLS and GLS are equivalent

Let us have a regression written in a matrix form: Y = X� + U , where X is n � k, Y and U
are n � 1, and � is k � 1. The parameter of interest is �. The properties of u are: E [UjX ] = 0,
E [UU 0jX ] = �. Let it be also known that �X = X� for some k � k nonsingular matrix �:

1. Prove that in this model the OLS and GLS estimators �̂ and ~� of � have the same �nite
sample conditional variance.

2. Apply this result to the following regression on a constant:

yi = �+ ui;

where the disturbances are equicorrelated, that is, E [ui] = 0, V [ui] = �2 and C [ui; uj ] = ��2

for i 6= j:

6.5 Equicorrelated observations

Suppose xi = � + ui; where E [ui] = 0 and

E [uiuj ] =
�
1 if i = j


 if i 6= j

with i; j = 1; : : : ; n: Is �xn = 1
n (x1 + : : :+ xn) the best linear unbiased estimator of �? Investigate

�xn for consistency.

6.6 Unbiasedness of certain FGLS estimators

Show that

(a) for a random variable z; if z and �z have the same distribution, then E [z] = 0;

(b) for a random vector " and a vector function q (") of "; if " and �" have the same distribution
and q (�") = �q (") for all ", then E [q (")] = 0:

Consider the linear regression model written in matrix form:

Y = X� + E ; E [EjX ] = 0; E
�
EE 0jX

�
= �:

Let �̂ be an estimate of � which is a function of products of least squares residuals, i.e. �̂ =
F (MEE 0M) = H (EE 0) forM = I � X (X 0X )�1X 0: Show that if E and �E have the same condi-
tional distribution (e.g. if E is conditionally normal), then the feasible GLS estimator

~�F =
�
X 0�̂�1X

��1
X 0�̂�1Y

is unbiased.
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7. VARIANCE ESTIMATION

7.1 White estimator

Evaluate the following claims.

1. When one suspects heteroskedasticity, one should use the White formula

Q�1xxQxxe2Q
�1
xx

instead of good old �2Q�1xx , since under heteroskedasticity the latter does not make sense,
because �2 is di¤erent for each observation.

2. Since for the OLS estimator

�̂ =
�
X 0X

��1X 0Y
we have

E[�̂jX ] = �

and

V[�̂jX ] =
�
X 0X

��1X 0
X �X 0X ��1 ;
we can estimate the �nite sample variance by

\V[�̂jX ] =
�
X 0X

��1 nX
i=1

xix
0
iê
2
i

�
X 0X

��1
(which, apart from the factor n; is the same as the White estimator of the asymptotic variance)
and construct t and Wald statistics using it. Thus, we do not need asymptotic theory to do
OLS estimation and inference.

7.2 HAC estimation under homoskedasticity

We look for a simpli�cation of HAC variance estimators under conditional homoskedasticity. Sup-
pose that the regressors xt and left side variable yt in a linear time series regression

yt = x0t� + et; E [etjxt; xt�1; : : :] = 0

are jointly stationary and ergodic. The error et is serially correlated of unknown order, but let it
be known that it is conditionally homoskedastic, i.e. E [etet�j jxt; xt�1; : : :] = 
j is constant (i.e.
does not depend on xt; xt�1; : : :) for all j � 0: Develop a Newey�West-type HAC estimator of the
long-run variance of xtet that would take advantage of conditional homoskedasticity.
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7.3 Expectations of White and Newey�West estimators in IID setting

Suppose one has a random sample of n observations from the linear conditionally homoskedastic
regression model

yi = x0i� + ei; E [eijxi] = 0; E
�
e2i jxi

�
= �2:

Let �̂ be the OLS estimator of �, and let V̂�̂ and
�V�̂ be the White and Newey�West estimators of

the asymptotic variance matrix of �̂: Find E[V̂�̂jX ] and E[ �V�̂jX ]; where X is the matrix of stacked
regressors for all observations.
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8. NONLINEAR REGRESSION

8.1 Local and global identi�cation

Consider the nonlinear regression E [yjx] = �1 + �22x; where �2 6= 0 and V [x] 6= 0: Which identi�-
cation condition for (�1; �2)

0 fails and which does not?

8.2 Identi�cation when regressor is nonrandom

Suppose we regress y on scalar x, but x is distributed only at one point (that is,

Pr fx = ag = 1

for some a). When does the identi�cation condition hold and when does it fail if the regression
is linear and has no intercept? If the regression is nonlinear? Provide both algebraic and intu-
itive/graphical explanations.

8.3 Cobb�Douglas production function

Suppose we have a random sample of n �rms with data on output Q; capital K and labor L; and
want to estimate the Cobb�Douglas production function

Q = �K�L1��";

where " has the property E ["jK;L] = 1: Evaluate the following suggestions of estimation of �:

1. Run a linear regression of logQ� logL on a constant and logK � logL

2. For various values of � on a grid, run a linear regression of Q on K�L1�� without a constant,
and select the value of � that minimizes a sum of squared OLS errors.

8.4 Exponential regression

Suppose you have the homoskedastic nonlinear regression

y = exp (�+ �x) + e; E[ejx] = 0; E[e2jx] = �2

and random sample f(xi; yi)gni=1 : Let the true � be 0, and x be distributed as standard normal.
Investigate the problem for local identi�ability, and derive the asymptotic distribution of the NLLS
estimator of (�; �): Describe a concentration method algorithm giving all formulas (including stan-
dard errors that you would use in practice) in explicit forms.
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8.5 Power regression

Suppose you have the nonlinear regression

y = �(1 + x�) + e; E[ejx] = 0

and IID data f(xi; yi)gni=1 : How would you test H0 : � = 0 properly?

8.6 Transition regression

Given the random sample f(xi; yi)gni=1 ; consider the nonlinear regression

y = �1 +
�2

1 + �3x
+ e; E[ejx] = 0:

1. Describe how to test using the t-statistic if the marginal in�uence of x on the conditional
mean of y, evaluated at x = 0; equals 1.

2. Describe how to test using the Wald statistic that the regression function does not depend
on x.

8.7 Nonlinear consumption function

Consider the model

E [ctjyt�1; yt�2; yt�3; : : :] = �+ �I fyt�1 > �g+ �y
t�1;

where ct is consumption at t and yt is income at t: The pair (ct; yt) is continuously distributed,
stationary and ergodic. The parameter � represents a �normal� income level, and is known.
Suppose you are given a long quarterly series of length T on ct and yt.

1. Describe at least three di¤erent situations when parameter identi�cation will fail.

2. Describe in detail how you will run the NLLS estimation employing the concentration method,
including construction of standard errors for model parameters.

3. Describe how you will test the hypothesis H0 : 
 = 1 against Ha : 
 < 1

(a) by employing the asymptotic approach,

(b) by employing the bootstrap approach without using standard errors.
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9. EXTREMUM ESTIMATORS

9.1 Regression on constant

Consider the following model:
y = � + e;

where all variables are scalars. Assume that fyigni=1 is a random sample, and E[e] = 0, E[e2] = �2,
E[e3] = 0 and E[e4] = �. Consider the following three estimators of �:

�̂1 =
1

n

nX
i=1

yi;

�̂2 = argmin
b

(
log b2 +

1

nb2

nX
i=1

(yi � b)2
)
;

�̂3 =
1

2
argmin

b

nX
i=1

�yi
b
� 1
�2
:

Derive the asymptotic distributions of these three estimators. Which of them would you prefer
most on the asymptotic basis? What is the idea behind each of the three estimators?

9.2 Quadratic regression

Consider a nonlinear regression model

y = (�0 + x)
2 + u;

where we assume:

(A) The parameter space is B =
�
�1
2 ;+

1
2

�
.

(B) The error u has properties E [u] = 0, V [u] = �20.

(C) The regressor x has is distributed uniformly over [1; 2] independently of u. In particular, this
implies E

�
x�1

�
= ln 2 and E [xr] = 1

1+r (2
r+1 � 1) for integer r 6= �1.

A random sample f(xi; yi)gni=1 is available. De�ne two estimators of �0:

1. �̂ minimizes Sn(�) =
Pn

i=1

�
yi � (� + xi)2

�2
over B.

2. ~� minimizes Wn(�) =
Pn

i=1

�
yi

(� + xi)
2 + ln (� + xi)

2

�
over B.

For the case �0 = 0, obtain asymptotic distributions of �̂ and ~�. Which one of the two do you
prefer on the asymptotic basis?
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9.3 Nonlinearity at left hand side

A random sample f(xi; yi)gni=1 is available for the nonlinear model

(y + �)2 = �x+ e; E[ejx] = 0; E[e2jx] = �2;

where the parameters � and � are scalars.

1. Show that the NLLS estimator of � and ��
�̂

�̂

�
= argmin

a;b

nX
i=1

�
(yi + a)

2 � bxi
�2

is in general inconsistent. What feature makes the model di¤er from a nonlinear regression
where the NLLS estimator is consistent?

2. Propose a consistent CMM estimator of � and � and derive its asymptotic distribution.

9.4 Least fourth powers

Suppose y = �x+ e; where all variables are scalars, x and e are independent, and the distribution
of e is symmetric around 0. For a random sample f(xi; yi)gni=1 ; consider the following extremum
estimator of �:

�̂ = argmin
b

nX
i=1

(yi � bxi)4 :

Derive the asymptotic properties of �̂; paying special attention to the identi�cation condition.
Compare this estimator with the OLS estimator in terms of asymptotic e¢ ciency for the case when
x and e are normally distributed.

9.5 Asymmetric loss

Suppose that f(xi; yi)gni=1 is a random sample from a population satisfying

y = �+ x0� + e;

where e is independent of x; a k � 1 vector. Suppose also that all moments of x and e are �nite
and that E [xx0] is nonsingular. Suppose that �̂ and �̂ are de�ned to be the values of � and � that
minimize

1

n

nX
i=1

�
�
yi � �� x0i�

�
over some set � � Rk+1; where for some 0 < 
 < 1

�(u) =

�

u3 if u � 0;
�(1� 
)u3 if u < 0:

Describe the asymptotic behavior of the estimators �̂ and �̂ as n ! 1: If you need to make
additional assumptions be sure to specify what these are and why they are needed.
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10. MAXIMUM LIKELIHOOD ESTIMATION

10.1 Normal distribution

Let x1; : : : ; xn be a random sample from N (�; �2): Derive the ML estimator �̂ of � and prove its
consistency.

10.2 Pareto distribution

A random variable X is said to have a Pareto distribution with parameter �, denoted X �
Pareto(�), if it is continuously distributed with density

fX(xj�) =
�
�x�(�+1); if x > 1;
0; otherwise.

A random sample x1; : : : ; xn from the Pareto(�) population is available.

(a) Derive the ML estimator �̂ of �; prove its consistency and �nd its asymptotic distribution.

(b) Derive the Wald, Likelihood Ratio and Lagrange Multiplier test statistics for testing the null
hypothesis H0 : � = �0 against the alternative hypothesis Ha : � 6= �0. Do any of these
statistics coincide?

10.3 Comparison of ML tests

1Berndt and Savin in 1977 showed that W � LR � LM for the case of a multivariate regression
model with normal disturbances. Ullah and Zinde-Walsh in 1984 showed that this inequality is
not robust to non-normality of the disturbances. In the spirit of the latter article, this problem
considers simple examples from non-normal distributions and illustrates how this con�ict among
criteria is a¤ected.

1. Consider a random sample x1; : : : ; xn from a Poisson distribution with parameter �: Show
that testing � = 3 versus � 6= 3 yields W � LM for �x � 3 and W � LM for �x � 3.

2. Consider a random sample x1; : : : ; xn from an exponential distribution with parameter �:
Show that testing � = 3 versus � 6= 3 yields W � LM for 0 < �x � 3 and W � LM for �x � 3.

3. Consider a random sample x1; : : : ; xn from a Bernoulli distribution with parameter �: Show
that for testing � = 1

2 versus � 6=
1
2 ; we always getW � LM: Show also that for testing � = 2

3
versus � 6= 2

3 ; we get W � LM for 13 � �x �
2
3 and W � LM for 0 < �x � 1

3 or
2
3 � �x � 1:

1This problem closely follows Badi H. Baltagi (2000) Con�ict Among Criteria for Testing Hypotheses: Examples
from Non-Normal Distributions. Econometric Theory 16, Problem 00.2.4.
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10.4 Invariance of ML tests to reparameterizations of null

2Consider the hypothesis

H0 : h(�) = 0;

where h : Rk ! Rq: It is possible to recast the hypothesis H0 in an equivalent form

H0 : g(�) = 0;

where g : Rk ! Rq is such that g(�) = f(h(�))� f(0) for some one-to-one function f : Rq ! Rq:

1. Show that the LR statistic is invariant to such reparameterization.

2. Show that the W statistic is invariant to such reparameterization when f is linear, but may
not be when f is nonlinear.

3. Suppose that � 2 R2 and reparameterize H0 : �1 = �2 as (�1 � �) = (�2 � �) = 1 for some �:
Show that the W statistic may be made as close to zero as desired by manipulating �: What
value of � gives the largest possible value to the W statistic?

10.5 Misspeci�ed maximum likelihood

1. Suppose that the nonlinear regression model

E[yjx] = g (x; �)

is estimated by maximum likelihood based on the conditional homoskedastic normal distrib-
ution, although the true conditional distribution is from a di¤erent family. Provide a simple
argument why the ML estimator of � is nevertheless consistent.

2. Suppose we know the true density f(zj�) up to the parameter �; but instead of using log f(zjq)
in the objective function of the extremum problem which would give the ML estimate, we
use f(zjq) itself. What asymptotic properties do you expect from the resulting estimator of
�? Will it be consistent? Will it be asymptotically normal?

3. Suppose that a stationary and ergodic conditionally heteroskedastic time series regression

E [ytjIt�1] = x0t�;

where xt contains various lagged yt�s, is estimated by maximum likelihood based on a con-
ditionally normal distribution N (x0t�; �2t ); with �2t depending on past data whose parametric
form, however, does not match the true conditional variance V [ytjIt�1]. Determine whether
or not the resulting estimator provides a consistent estimate of �:

2This problem closely follows discussion in the book Ruud, Paul (2000) An Introduction to Classical Econometric
Theory ; Oxford University Press.
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10.6 Individual e¤ects

Suppose f(xi; yi)gni=1 is a serially independent sample from a sequence of jointly normal distributions
with E [xi] = E [yi] = �i, V [xi] = V [yi] = �2, and C [xi; yi] = 0 (i.e., xi and yi are independent
with common but varying means and a constant common variance). All parameters are unknown.
Derive the maximum likelihood estimate of �2 and show that it is inconsistent. Explain why. Find
an estimator of �2 which would be consistent.

10.7 Irregular con�dence interval

Let x1; : : : ; xn be a random sample from a population of x distributed uniformly on [0; �]: Con-
struct an asymptotic con�dence interval for � with signi�cance level 5% by employing a maximum
likelihood approach.

10.8 Trivial parameter space

Consider a parametric model with density f(Xj�0), known up to a parameter �0, but with � = f�1g,
i.e. the parameter space is reduced to only one element. What is an ML estimator of �0, and what
are its asymptotic properties?

10.9 Nuisance parameter in density

Let random vector Z � (Y;X 0)0 have a joint density of the form

f(Zj�0) = fc(Y jX; 
0; �0)fm(Xj�0);

where �0 � (
0; �0), both 
0 and �0 are scalar parameters, and fc and fm denote the conditional
and marginal distributions, respectively. Let �̂c � (
̂c; �̂c) be the conditional ML estimators of 
0
and �0, and �̂m be the marginal ML estimator of �0. Now de�ne

~
 � argmax



X
i

ln fc(yijxi; 
; �̂m);

a two-step estimator of subparameter 
0 which uses marginal ML to obtain a preliminary estimator
of the �nuisance parameter� �0. Find the asymptotic distribution of ~
. How does it compare to
that for 
̂c? You may assume all the needed regularity conditions for consistency and asymptotic
normality to hold.
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10.10 MLE versus OLS

Consider the model where y is regressed only on a constant:

y = �+ e;

where e conditioned on x is distributed as N (0; x2�2); the random variable x is not present in
the regression, �2 is unknown, y and x are observable, e is unobservable. The collection of pairs
f(yi; xi)gni=1 is a random sample.

1. Find the OLS estimator �̂OLS of �. Is it unbiased? Consistent? Obtain its asymptotic
distribution. Is �̂OLS the best linear unbiased estimator for �?

2. Find the ML estimator �̂ML of � and derive its asymptotic distribution. Is �̂ML unbiased? Is
�̂ML asymptotically more e¢ cient than �̂OLS? Does your conclusion contradicts your answer
to the last question of part 1? Why or why not?

10.11 MLE versus GLS

Consider the following normal linear regression model with conditional heteroskedasticity of known
form. Conditional on x; the dependent variable y is normally distributed with

E [yjx] = x0�; V [yjx] = �2
�
x0�
�2
:

Available is a random sample (x1; y1); : : : ; (xn; yn): Describe a feasible generalized least squares
estimator for � based on the OLS estimator for �. Show that this GLS estimator is asymptotically
less e¢ cient than the maximum likelihood estimator. Explain the source of ine¢ ciency.

10.12 MLE in heteroskedastic time series regression

Assume that data (yt; xt), t = 1; 2; : : : ; T; are stationary and ergodic and generated by

yt = �+ �xt + ut;

where utjxt; yt�1; xt�1; yt�2; : : : � N (0; �2t ) and xtjyt�1; xt�1; yt�2; xt�2; : : : � N (0; v): Explain,
without going into deep math, how to �nd estimates and their standard errors for all parame-
ters when:

1. The entire �2t as a function of xt is fully known.

2. The values of �2t at t = 1; 2; : : : ; T are known.

3. It is known that �2t = (� + �xt)
2; but the parameters � and � are unknown.

4. It is known that �2t = � + �u2t�1; but the parameters � and � are unknown.

5. It is only known that �2t is stationary.
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10.13 Does the link matter?

3Consider a binary random variable y and a scalar random variable x such that

P fy = 1jxg = F (�+ �x) ;

where the link F (�) is a continuous distribution function. Show that when x assumes only two
di¤erent values, the value of the log-likelihood function evaluated at the maximum likelihood esti-
mates of � and � is independent of the form of the link function. What are the maximum likelihood
estimates of � and �?

10.14 Maximum likelihood and binary variables

Suppose z and y are discrete random variables taking values 0 or 1. The distribution of z and y is
given by

Pfz = 1g = �; Pfy = 1jzg = e
z

1 + e
z
; z = 0; 1:

Here � and 
 are scalar parameters of interest. Find the ML estimator of (�; 
) from a random
sample giving explicit formulas whenever possible, and derive its asymptotic distribution.

10.15 Maximum likelihood and binary dependent variable

Suppose y is a discrete random variable taking values 0 or 1 representing some choice of an indi-
vidual. The distribution of y given the individual�s characteristic x is

Pfy = 1jxg = e
x

1 + e
x
;

where 
 is the scalar parameter of interest. The data f(yi; xi)gni=1 are a random sample. When
deriving various estimators, try to make the formulas as explicit as possible.

1. Derive the ML estimator of 
 and its asymptotic distribution.

2. Find the (nonlinear) regression function by regressing y on x: Derive the NLLS estimator of

 and its asymptotic distribution.

3. Show that the regression you obtained in part 2 is heteroskedastic. Setting weights !(x) equal
to the variance of y conditional on x; derive the WNLLS estimator of 
 and its asymptotic
distribution.

4. Write out the systems of moment conditions implied by the ML, NLLS and WNLLS problems
of parts 1�3.

5. Rank the three estimators in terms of asymptotic e¢ ciency. Do any of your �ndings appear
unexpected? Give intuitive explanation for anything unusual.

3This problem closely follows Joao M.C. Santos Silva (1999) Does the link matter? Econometric Theory 15,
Problem 99.5.3.

DOES THE LINK MATTER? 43



10.16 Poisson regression

Some random variables called counts (like number of patent applications by a �rm, or number of
doctor visits by a patient) take non-negative integer values 0; 1; 2; : : :. Suppose that y is a count
variable, and that, conditional on scalar random variable x; its density is Poisson:

f(yjx; �; �) = exp(��(x; �; �))�(x; �; �)y
y!

; where �(x; �; �) = exp (�+ �x) :

Here � and � are unknown scalar parameters. Assume that x has a nondegenerate distribution
(i.e., is not a constant). The data f(xi; yi)gni=1 is a random sample.

1. Derive the three asymptotic ML tests (W, LR, LM) for the null hypothesis H0 : � = 0;
giving fully implementable formulas (in explicit form whenever possible) depending only on
the data.

2. Suppose the researcher has misspeci�ed the conditional mean and uses

�(x; �; �) = �+ exp (�x) :

Will the coe¢ cient � be consistently estimated?

10.17 Bootstrapping ML tests

1. For the likelihood ratio test of H0 : g(�) = 0; we use the statistic

LR = 2

�
max
q2�

`n(q)� max
q2�;g(q)=0

`n(q)

�
:

Write out the formula for the bootstrap statistic LR�.

2. For the Lagrange Multiplier test of H0 : g(�) = 0; we use the statistic

LM =
1

n

X
i

s
�
zi; �̂

R

ML

�0 bI�1X
i

s
�
zi; �̂

R

ML

�
:

Write out the formula for the bootstrap statistic LM�.
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11. INSTRUMENTAL VARIABLES

11.1 Invalid 2SLS

Consider the model
y = �z2 + u; z = �x+ v;

where E
�
(u; v)0 jx

�
= 0 and V

�
(u; v)0 jx

�
= �; with � unknown. The triples f(xi; zi; yi)gni=1 consti-

tute a random sample.

1. Show that �, � and � are identi�ed. Suggest analog estimators for these parameters.

2. Consider the following two stage estimation method. In the �rst stage, regress z on x and
de�ne ẑ = �̂x, where �̂ is the OLS estimator. In the second stage, regress y in ẑ2 to obtain
the least squares estimate of �. Show that the resulting estimator of � is inconsistent.

3. Suggest a method in the spirit of 2SLS for estimating � consistently.

11.2 Consumption function

Consider the consumption function
Ct = �+ �Yt + et; (11.1)

where Ct is aggregate consumption at t, and Yt is aggregate income at t: The ordinary least squares
(OLS) estimation applied to (11.1) may give an inconsistent estimate of the marginal propensity
to consume (MPC) �: The remedy suggested by Haavelmo lies in treating the aggregate income as
endogenous:

Yt = Ct + It +Gt; (11.2)

where It is aggregate investment at t, and Gt is government consumption at t; and both variables
are exogenous. Assume that the shock et is mean zero IID across time, and all variables are jointly
stationary and ergodic. A sample of size T containing Yt; Ct; It; and Gt is available.

1. Show that the OLS estimator of � is indeed inconsistent. Compute the amount and direction
of this inconsistency.

2. Econometrician A intends to estimate (�; �)0 by running 2SLS on (11.1) using the instru-
mental vector (1; It; Gt)

0 : Econometrician B argues that it is not necessary to use this rela-
tively complicated estimator since running simple IV on (11.1) using the instrumental vector
(1; It +Gt)

0 will do the same. Is econometrician B right?

3. Econometrician C regresses Yt on a constant and Ct; and obtains corresponding OLS esti-
mates (�̂0; �̂C)0: Econometrician D regresses Yt on a constant, Ct; It; and Gt and obtains
corresponding OLS estimates (�̂0; �̂C ; �̂I ; �̂G)

0: What values do parameters �̂C and �̂C con-
sistently estimate?
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11.3 Optimal combination of instruments

Suppose you have the following speci�cation, where e may be correlated with x:

y = �x+ e:

1. You have instruments z and � which are mutually uncorrelated. What are their necessary
properties to provide consistent IV estimators �̂z and �̂�? Derive the asymptotic distributions
of these estimators.

2. Calculate the optimal IV estimator as a linear combination of �̂z and �̂� .

3. You notice that �̂z and �̂� are not that close together. Give a test statistic which allows you
to decide if they are estimating the same parameter. If the test rejects, what assumptions
are you rejecting?

11.4 Trade and growth

In the paper �Does Trade Cause Growth?� (American Economic Review, June 1999), Je¤rey
Frankel and David Romer study the e¤ect of trade on income. Their simple speci�cation is

log Yi = �+ �Ti + 
Wi + "i; (11.3)

where Yi is per capita income, Ti is international trade, Wi is within-country trade, and "i re�ects
other in�uences on income. Since the latter is likely to be correlated with the trade variables,
Frankel and Romer decide to use instrumental variables to estimate the coe¢ cients in (11.3). As
instruments, they use a country�s proximity to other countries Pi and its size Si; so that

Ti =  + �Pi + �i (11.4)

and
Wi = � + �Si + �i; (11.5)

where �i and �i are the best linear prediction errors.

1. As the key identifying assumption, the authors use the fact that countries� geographical
characteristics Pi and Si are uncorrelated with the error term in (11.3). Provide an economic
rationale for this assumption and a detailed explanation how to estimate (11.3) when one has
data on Y; T; W; P and S for a list of countries.

2. Unfortunately, data on within-country trade are not available. Determine if it is possible to
estimate any of the coe¢ cients in (11.3) without further assumptions. If it is, provide all the
details on how to do it.

3. In order to be able to estimate key coe¢ cients in (11.3), the authors add another identi-
fying assumption that Pi is uncorrelated with the error term in (11.5). Provide a detailed
explanation how to estimate (11.3) when one has data on Y; T; P and S for a list of countries.

4. The authors estimated an equation similar to (11.3) by OLS and IV and found out that the IV
estimates are greater than the OLS estimates. One explanation may be that the discrepancy
is due to a sampling error. Provide another, more econometric, explanation why there is a
discrepancy and what the reason is that the IV estimates are larger.
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12. GENERALIZED METHOD OF MOMENTS

12.1 Nonlinear simultaneous equations

Let
y = �x+ u; x = 
y2 + v;

where x and y are observable, but u and v are not. The data f(xi; yi)gni=1 is a random sample.

1. Suppose we know that E [u] = E [v] = 0. When are � and 
 identi�ed? Propose analog
estimators for these parameters.

2. Let also be known that E [uv] = 0. Propose a method to estimate � and 
 as e¢ ciently as
possible given the above information. What is the asymptotic distribution of your estimator?

12.2 Improved GMM

Consider GMM estimation with the use of the moment function

m(x; y; q) =

�
x� q
y

�
:

Determine under what conditions the second restriction helps in reducing the asymptotic variance
of the GMM estimator of �:

12.3 Minimum Distance estimation

Consider a similar to GMM procedure called the Minimum Distance (MD) estimation. Suppose
we want to estimate a parameter 
0 2 � implicitly de�ned by �0 = s(
0); where s : Rk ! R` with
` � k; and available is an estimator �̂ of �0 with asymptotic properties

�̂
p! �0;

p
n
�
�̂ � �0

�
d! N

�
0; V�̂

�
:

Also suppose that available is a symmetric and positive de�nite estimator V̂�̂ of V�̂: The MD
estimator is de�ned as


̂MD = argmin

2�

�
�̂ � s(
)

�0
Ŵ
�
�̂ � s(
)

�
;

where Ŵ is some symmetric positive de�nite data-dependent matrix consistent for a symmetric
positive de�nite weight matrix W: Assume that � is compact, s(
) is continuously di¤erentiable
with full rank matrix of derivatives S(
) = @s(
)=@
0 on �; 
0 is unique and all needed moments
exist.
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1. Give an informal argument for consistency of 
̂MD. Derive the asymptotic distribution of

̂MD:

2. Find the optimal choice for the weight matrix W and suggest its consistent estimator.

3. Develop a speci�cation test, i.e. of the hypothesis H0 : 9
0 such that �0 = s(
0):

4. Apply parts 1�3 to the following problem. Suppose that we have an autoregression of order
2 without a constant term:

(1� �L)2yt = "t;

where j�j < 1; L is the lag operator, and "t is IID(0; �2): Written in another form, the model
is

yt = �1yt�1 + �2yt�2 + "t;

and (�1; �2)0 may be e¢ ciently estimated by OLS. The target, however, is to estimate � and
verify that both autoregressive roots are indeed equal.

12.4 Formation of moment conditions

1. Let z be a scalar random variable. Let it be known that z has mean � and that its fourth
central moment equals three times its squared variance (like for a normal random variable).
Formulate a system of moment conditions for GMM estimation of �.

2. Consider the AR(1)�ARCH(1) model

yt = �yt�1 + et; E [etjIt�1] = 0; E
�
e2t jIt�1

�
= ! + 
e2t�1;

where It�1 embeds information on the history from yt�1 to the past. Such models are typically
estimated by ML, but may also be estimated by GMM, if desired. Suppose you have data
on yt for t = 1; : : : ; T: Construct an overidentifying set of moment conditions to be used by
GMM.

12.5 What CMM estimates

Let g(z; q) be a function such that dimensions of g and q are identical, and let z1; : : : ; zn be a
random sample. Note that nothing is said about moment conditions. De�ne �̂ as the solution to

nX
i=1

g(zi; q) = 0:

What is the probability limit of �̂? What is the asymptotic distribution of �̂?
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12.6 Trinity for GMM

Derive the three classical tests (W, LR, LM) for the composite null

H0 : � 2 �0 � f� : h(�) = 0g;

where h : Rk ! Rq, for the e¢ cient GMM case. The analog for the Likelihood Ratio test will be
called the Distance Di¤erence test. Hint: treat the GMM objective function as the �normalized
loglikelihood�, and its derivative as the �sample score�.

12.7 All about J

1. Show that the J-test statistic diverges to in�nity when the system of moment conditions is
misspeci�ed.

2. Provide an example showing that the J-test statistic need not be asymptotically chi-squared
with degrees of freedom equalling the degree of overidenti�cation under valid moment restric-
tions, if one uses a non-e¢ cient GMM.

3. Suppose an econometrician estimates parameters of a time series regression by GMM after
having chosen an overidentifying vector of instrumental variables. He performs the overiden-
ti�cation test and claims: �A big value of the J -statistic is an evidence against validity of
the chosen instruments�. Comment on this claim.

12.8 Interest rates and future in�ation

Frederic Mishkin in early 90�s investigated whether the term structure of current nominal interest
rates can give information about future path of in�ation. He speci�ed the following econometric
model:

�mt � �nt = �m;n + �m;n (i
m
t � int ) + �

m;n
t ; Et [�m;nt ] = 0; (12.1)

where �kt is k-periods-into-the-future in�ation rate, i
k
t is the current nominal interest rate for k-

periods-ahead maturity, and �m;nt is the prediction error.

1. Show how (12.1) can be obtained from the conventional econometric model that tests the
hypothesis of conditional unbiasedness of interest rates as predictors of in�ation. What re-
striction on the parameters in (12.1) implies that the term structure provides no information
about future shifts in in�ation? Determine the autocorrelation structure of �m;nt .

2. Describe in detail how you would test the hypothesis that the term structure provides no
information about future shifts in in�ation, by using overidentifying GMM and asymptotic
theory. Make sure that you discuss such issues as selection of instruments, construction of
the optimal weighting matrix, construction of the GMM objective function, estimation of
asymptotic variance, etc.
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3. Mishkin obtained the following results (standard errors are in parentheses):

m, n �m;n �m;n t-test of t-test of
(months) �m;n = 0 �m;n = 1

3; 1 0:1421 �0:3127 �0:70 2:92
(0:1851) (0:4498)

6; 3 0:0379 0:1813 0:33 1:49
(0:1427) (0:5499)

9; 6 0:0826 0:0014 0:01 3:71
(0:0647) (0:2695)

Discuss and interpret the estimates and results of hypotheses tests.

12.9 Spot and forward exchange rates

Consider a simple problem of prediction of spot exchange rates by forward rates:

st+1 � st = �+ � (ft � st) + et+1; Et [et+1] = 0; Et
�
e2t+1

�
= �2;

where st is the spot rate at t; ft is the forward rate for one-month forwards at t, and Et denotes
expectation conditional on time t information. The current spot rate is subtracted to achieve
stationarity. Suppose the researcher decides to use ordinary least squares to estimate � and �:
Recall that the moment conditions used by the OLS estimator are

E [et+1] = 0; E [(ft � st) et+1] = 0: (12.2)

1. Beside (12.2), there are other moment conditions that can be used in estimation:

E [(ft�k � st�k) et+1] = 0;

because ft�k � st�k belongs to information at time t for any k � 1: Consider the case k = 1
and show that such moment condition is redundant.

2. Beside (12.2), there is another moment condition that can be used in estimation:

E [(ft � st) (ft+1 � ft)] = 0;

because information at time t should be unable to predict future movements in forward rates.
Although this moment condition does not involve � or �, its use may improve e¢ ciency
of estimation. Under what condition is the e¢ cient GMM estimator using both moment
conditions as e¢ cient as the OLS estimator? Is this condition likely to be satis�ed in practice?

12.10 Returns from �nancial market

Suppose you have the following parametric model supported by one of �nancial theories, for the
daily dynamics of 3-month Treasury bills return rt:

rt+1 � rt = �0 + �1rt + �2r
2
t + �3r

�1
t + "t+1;
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where
"t+1jIt � N

�
0; �2r2
t

�
;

where It contains information on rt; rt�1; : : : : Such model arises from a discretization of a continuous
time process de�ned by a di¤usion model for returns. Suppose you have a long stationary and
ergodic sample frtgTt=1.

In answering the following questions, �rst of all write out the mentioned estimators, giving
explicit formulas whenever possible.

1. Derive the asymptotic distributions of the OLS and feasible GLS estimators of the regression
coe¢ cients. Write out moment conditions that correspond to these estimators.

2. Derive the asymptotic distributions of the ML estimator of all parameters. Write out a system
of moment conditions that corresponds to this estimator.

3. Construct an exactly identifying system of moment conditions from (a) the moment con-
ditions implicitly used by OLS estimation of the regression function, and (b) the moment
conditions implicitly used by NLLS estimation of the skedastic function. Derive the asymp-
totic distribution of the resulting method of moments estimator of all parameters.

4. Compare the asymptotic e¢ ciency of the estimators from parts 1�3 for the regression para-
meters, and of the estimators from parts 2�3 for �2 and 
.

12.11 Instrumental variables in ARMA models

1. Consider an AR(1) model xt = �xt�1 + et with E [etjIt�1] = 0; E
�
e2t jIt�1

�
= �2; and j�j < 1:

We can look at this as an instrumental variables regression that implies, among others, instru-
ments xt�1; xt�2; : : : : Find the asymptotic variance of the instrumental variables estimator
that uses instrument xt�j ; where j = 1; 2; : : : : What does your result suggest on what the
optimal instrument must be?

2. Consider an ARMA(1; 1) model yt = �yt�1+et��et�1 with j�j < 1, j�j < 1 and E [etjIt�1] =
0. Suppose you want to estimate � by just-identifying IV. What instrument would you use
and why?

12.12 Hausman may not work

1. Suppose we want to perform a Hausman test for validity of instruments z for a linear con-
ditionally homoskedastic mean regression model. To this end, we compute OLS estimator
�̂OLS and 2SLS estimator �̂2SLS of � using x and z as instruments. Explain carefully why
the Hausman test based on comparison of �̂OLS and �̂2SLS will not work.

2. Suppose that in a context of a linear model with (overidentifying) instrumental variables a
researcher intends to test for conditional homoskedasticity using a Hausman test based on
the di¤erence between the 2SLS and GMM estimators of parameters. Explain carefully why
this is not a good idea.

INSTRUMENTAL VARIABLES IN ARMA MODELS 51



12.13 Testing moment conditions

In the linear model
y = x0� + u

under random sampling and the unconditional moment restriction E [xu] = 0; suppose you wanted
to test the additional moment restriction E

�
xu3
�
= 0; which might be implied by conditional

symmetry of the error terms u:
A natural way to test for the validity of this extra moment condition would be to e¢ ciently

estimate the parameter vector � both with and without the additional restriction, and then to check
whether the corresponding estimates di¤er signi�cantly. Devise such a test and give step-by-step
instructions for carrying it out.

12.14 Bootstrapping OLS

We know that one should use recentering when bootstrapping a GMM estimator. We also know
that the OLS estimator is one of GMM estimators. However, when we bootstrap the OLS estimator,
we calculate

�̂
�
= (X �0X �)�1X �0Y�

at each bootstrap repetition, and do not recenter. Resolve the contradiction.

12.15 Bootstrapping DD

The Distance Di¤erence test statistic for testing the composite null H0 : h(�) = 0 is de�ned as

DD = n

�
min

q:h(q)=0
Qn(q)�min

q
Qn(q)

�
;

where Qn(q) is the GMM objective function

Qn(q) =
 
1

n

nX
i=1

m (zi; q)

!0
Q̂�1mm

 
1

n

nX
i=1

m (zi; q)

!
;

where Q̂mm consistently estimates Qmm = E
�
m (z; �)m (z; �)0

�
: It is known that, as the sample

size n tends to in�nity, DD d! �2dim(q):Write out a detailed formula for the bootstrap statistic DD
�.
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13. PANEL DATA

13.1 Alternating individual e¤ects

Suppose that the unobservable individual e¤ects in a one-way error component model are di¤erent
across odd and even periods:

yit = �Oi + x
0
it� + vit for odd t;

yit = �Ei + x
0
it� + vit for even t;

(�)

where t = 1; 2; : : : ; 2T; i = 1; : : : n: Note that there are 2T observations for each individual. We will
call (�) �alternating e¤ects�speci�cation. As usual, we assume that vit are IID(0; �2v) independent
of x�s.

1. There are two ways to arrange the observations: (a) in the usual way, �rst by individual, then
by time for each individual; (b) �rst all �odd�observations in the usual order, then all �even�
observations, so it is as though there are 2N �individuals�each having T observations. Find
out the Q-matrices that wipe out individual e¤ects for both arrangements and explain how
they transform the original equations. For the rest of the problem, choose the Q-matrix to
your liking.

2. Treating individual e¤ects as �xed, describe the Within estimator and its properties. Develop
an F -test for individual e¤ects, allowing heterogeneity across odd and even periods.

3. Treating individual e¤ects as random and assuming their independence of x�s, v�s and each
other, propose a feasible GLS procedure. Consider two cases: (a) when the variance of
�alternating e¤ects�is the same: V

�
�Oi
�
= V

�
�Ei
�
= �2�, (b) when the variance of �alternating

e¤ects�is di¤erent: V
�
�Oi
�
= �2O; V

�
�Ei
�
= �2E , �

2
O 6= �2E :

13.2 Time invariant regressors

Consider a panel data model

yit = x0it� + zi
 + �i + vit; i = 1; 2; : : : ; n; t = 1; 2; : : : ; T;

where n is large and T is small. One wants to estimate � and 
:

1. Explain how to e¢ ciently estimate � and 
 under (a) �xed e¤ects, (b) random e¤ects, when-
ever it is possible. State clearly all assumptions that you will need.

2. Consider the following proposal to estimate 
. At the �rst step, estimate the model yit =
x0it�+�i+vit by the least squares dummy variables approach. At the second step, take these
estimates �̂i and estimate the coe¢ cient of the regression of �̂i on zi: Investigate the resulting
estimator of 
 for consistency. Can you suggest a better estimator of 
?
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13.3 Within and Between

Recall the standard one-way static error component model. For simplicity, assume that all data are
in deviations from their means so that there is no intercept. Denote by �̂W and �̂B the Within and
Between estimators of structural parameters, respectively. Denote the matrix of right side variables
by X: Show that under random e¤ects, �̂W and �̂B are uncorrelated conditionally on X: Develop
an asymptotic test for random e¤ects based on the di¤erence between �̂W and �̂B: In particular,
derive the asymptotic distribution of your test statistic when the random e¤ects model is valid,
and show that it asymptotically diverges to in�nity when the random e¤ects are inappropriate.

13.4 Panels and instruments

Recall the standard one-way static error component model with random e¤ects where the regressors
are denoted by xit. Suppose that these regressors are endogenous. Additional data zit for each
individual at each time period are given, and let these additional variables be independent of
the errors and correlated with the regressors. Hence, one can use these variables as instrumental
variables (IV). Using knowledge of linear panel regressions and IV theory, answer the following
questions about various estimators, not worrying about standard errors.

1. Develop the IV-Within estimator and show that it will be identical irrespective of whether
one uses original instruments or Within-transformed instruments.

2. Develop the IV-Between estimator and show that it will be identical irrespective of whether
one uses original instruments or Between-transformed instruments.

3. What will happen if we use Within-transformed instruments in the Between regression? If
we use Between-transformed instruments in the Within regression?

4. Develop the IV-GLS estimator and show that now it matters whether one uses original in-
struments or GLS-transformed instruments. Intuitively, which way would you prefer?

5. What will happen if we use Within-transformed instruments in the GLS-transformed regres-
sion? If we use Between-transformed instruments in the GLS-transformed regression?

13.5 Di¤erencing transformations

Evaluate the following proposals.

1. In a one-way error component model with �xed e¤ects, instead of using individual dummies,
one can alternatively eliminate individual e¤ects by taking the �rst di¤erencing (FD) trans-
formation. After this procedure one has n(T � 1) equations without individual e¤ects, so the
vector � of structural parameters can be estimated by OLS.

2. Recall the standard dynamic panel data model. The individual heterogeneity may be removed
not only by �rst di¤erencing, but also by (for example) subtracting the equation corresponding
to t = 2 from each other equation for the same individual.
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13.6 Nonlinear panel data model

We know (see Problem 9.3) that the NLLS estimator of � and ��
�̂

�̂

�
= argmin

a;b

nX
i=1

�
(yi + a)

2 � bxi
�2

in the nonlinear model
(y + �)2 = �x+ e;

where e is independent of x; is in general inconsistent.
Suppose that there is a panel fxit; yitgni=1 Tt=1; where n is large and T is small, so that there is

an opportunity to control individual heterogeneity. Write out a one-way error component model
assuming the same functional form but allowing for individual heterogeneity in the form of random
e¤ects. Using an analogy with the theory of a linear panel regression, propose a multistep procedure
of estimating � and � adapting the estimator you used in Problem 9.3 to a panel data environment.

13.7 Durbin�Watson statistic and panel data

1Consider the standard one-way error component model with random e¤ects:

yit = x0it� + �i + vit; i = 1; : : : ; n; t = 1; : : : ; T; (13.1)

where � is k � 1; �i are random individual e¤ects, �i � IID(0; �2�); vit are idiosyncratic shocks,
vit � IID(0; �2v); and �i and vit are independent of xit for all i and t and mutually. The equations
are arranged so that the index t is faster than the index i: Consider running OLS on the original
regression (13.1) and running OLS on the GLS-transformed regression

yit � �̂�yi� = (x0it � �̂�xi�)0� + (1� �̂)�i + vit � �̂�vi�; i = 1; : : : ; n; t = 1; : : : ; T; (13.2)

where �̂ is a consistent (as n!1 and T stays �xed) estimate of � = 1��v=
q
�2v + T�

2
�:When each

OLS estimate is obtained using a typical regression package, the Durbin�Watson (DW) statistic is
provided among the regression output. Recall that if ê1; ê2; : : : ; êN�1; êN is a series of regression
residuals, then the DW statistic is

DW =

NP
j=2

(êj � êj�1)2

NP
j=1

ê2j

:

1. Derive the probability limits of the two DW statistics, as n!1 and T stays �xed.

2. Using the obtained result, propose an asymptotic test for individual e¤ects based on the DW
statistic [Hint: That the errors are estimated does not a¤ect the asymptotic distribution of
the DW statistic. Take this for granted.]

1This problem is a part of S. Anatolyev (2002, 2003) Durbin�Watson statistic and random individual e¤ects.
Econometric Theory 18, Problem 02.5.1, 1273�1274, and 19, Solution 02.5.2, 882�883.
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13.8 Higher-order dynamic panel

Formulate a linear dynamic panel regression with a single weakly exogenous regressor, and AR(2)
feedback in place of AR(1) feedback (i.e. when two most recent lags of the left side variable are
present at the right side). Describe the algorithm of estimation of this model.
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14. NONPARAMETRIC ESTIMATION

14.1 Nonparametric regression with discrete regressor

Let (xi; yi); i = 1; : : : ; n be a random sample from the population of (x; y), where x has a discrete
distribution with the support a(1); : : : ; a(k), where a(1) < : : : < a(k). Having written the conditional
expectation E

�
yjx = a(j)

�
in the form that allows to apply the analogy principle, propose an analog

estimator ĝj of gj = E
�
yjx = a(j)

�
and derive its asymptotic distribution.

14.2 Nonparametric density estimation

Suppose we have a random sample fxigni=1 and let

F̂ (x) =
1

n

nX
i=1

I [xi � x]

denote the empirical distribution function if xi; where I(�) is an indicator function. Consider two
density estimators:

� one-sided estimator:
f̂1(x) =

F̂ (x+ h)� F̂ (x)
h

� two-sided estimator:
f̂2(x) =

F̂ (x+ h=2)� F̂ (x� h=2)
h

Show that:

(a) F̂ (x) is an unbiased estimator of F (x). Hint: recall that F (x) = Pfxi � xg = E [I [xi � x]] :

(b) The bias of f̂1(x) is O (ha) : Find the value of a. Hint: take a second-order Taylor series
expansion of F (x+ h) around x.

(c) The bias of f̂2(x) is O
�
hb
�
: Find the value of b. Hint: take a second-order Taylor series

expansion of F
�
x+ h

2

�
and F

�
x� h

2

�
around x.

14.3 Nadaraya�Watson density estimator

Derive the asymptotic distribution of the Nadaraya�Watson estimator of the density of a scalar
random variable x having a continuous distribution, similarly to how the asymptotic distribution
of the Nadaraya�Watson estimator of the regression function is derived, under similar conditions.
Give interpretation to how your expressions for asymptotic bias and asymptotic variance depend
on the shape of the density.
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14.4 First di¤erence transformation and nonparametric regression

This problem illustrates the use of a di¤erence operator in nonparametric estimation with IID data.
Suppose that there is a scalar variable z that takes values on a bounded support. For simplicity,
let z be deterministic and compose a uniform grid on the unit interval [0; 1]: The other variables
are IID. Assume that for the function g (�) below the following Lipschitz condition is satis�ed:

jg(u)� g(v)j � Gju� vj

for some constant G:

1. Consider a nonparametric regression of y on z:

yi = g(zi) + ei; i = 1; : : : ; n; (14.1)

where E [eijzi] = 0: Let the data f(zi; yi)gni=1 be ordered so that the z�s are in increasing
order. A �rst di¤erence transformation results in the following set of equations:

yi � yi�1 = g(zi)� g(zi�1) + ei � ei�1; i = 2; : : : ; n: (14.2)

The target is to estimate �2 � E
�
e2i
�
: Propose its consistent estimator based on the FD-

transformed regression (14.2). Prove consistency of your estimator.

2. Consider the following partially linear regression of y on x and z:

yi = x0i� + g(zi) + ei; i = 1; : : : ; n; (14.3)

where E [eijxi; zi] = 0: Let the data f(xi; zi; yi)gni=1 be ordered so that the z�s are in increasing
order. The target is to nonparametrically estimate g: Propose its consistent estimator using
the FD-transformation of (14.3). [Hint: on the �rst step, consistently estimate � from the
FD-transformed regression.] Prove consistency of your estimator.

14.5 Unbiasedness of kernel estimates

Recall the Nadaraya�Watson kernel estimator ĝ (x) of the conditional mean g (x) � E [yjx] con-
structed for a random sample. Show that if g (x) = c, where c is some constant, then ĝ (x) is
unbiased, and provide intuition behind this result. Find out under what circumstance will the
local linear estimator of g (x) be unbiased under random sampling. Finally, investigate the kernel
estimator of the density f (x) of x for unbiasedness under random sampling.

14.6 Shape restriction

Firms produce some product using technology f(l; k). The functional form of f is unknown,
although we know that it exhibits constant returns to scale. For a �rm i; we observe labor li;
capital ki; and output yi; and the data generating process takes the form yi = f(li; ki) + "i;
where E ["i] = 0 and "i is independent of (li; ki). Using random sample fyi; li; kigni=1, suggest a
nonparametric estimator of f(l; k) which also exhibits constant returns to scale.
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14.7 Nonparametric hazard rate

Let z1; : : : ; zn be scalar IID random variables with unknown PDF f(�) and CDF F (�). Assume
that the distribution of z has support R. Pick t 2 R such that 0 < F (t) < 1. The objective is to
estimate the hazard rate H(t) = f(t)=(1� F (t)).

(i) Suggest a nonparametric estimator for F (t). Denote this estimator by F̂ (t).

(ii) Let

f̂(t) =
1

nhn

nX
j=1

k

�
zj � t
hn

�
denote the Nadaraya�Watson estimate of f(t) where the bandwidth hn is chosen so that
nh5n ! 0, and k(�) is a symmetric kernel. Find the asymptotic distribution of f̂(t): Do not
worry about regularity conditions.

(iii) Use f̂(t) and F̂ (t) to suggest an estimator for H(t). Denote this estimator by Ĥ(t): Find the
asymptotic distribution of Ĥ(t).

14.8 Nonparametrics and perfect �t

Analyze carefully the asymptotic properties of the Nadaraya�Watson estimator of a regression
function with perfect �t, i.e. when the variance of the error is zero.

14.9 Nonparametrics and extreme observations

Discuss the behavior of a Nadaraya�Watson mean regression estimate when one of IID observations,
say (x1;y1); tends to assume extreme values. Speci�cally, discuss

(a) the case when x1 is very big,

(b) the case when y1 is very big.
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15. CONDITIONALMOMENTRESTRICTIONS

15.1 Usefulness of skedastic function

Suppose that for the following linear regression model

y = x0� + e; E [ejx] = 0

the form of a skedastic function is
E
�
e2jx

�
= h(x; �; �);

where h(�) is a known smooth function, and � is an additional parameter vector. Compare asymp-
totic variances of optimal GMM estimators of � when only the �rst restriction or both restrictions
are employed. Under what conditions does including the second restriction into a set of moment
restrictions reduce asymptotic variance? What if the function h(�) does not depend on �? What if
in addition the distribution of e conditional on x is symmetric?

15.2 Symmetric regression error

Consider the regression
y = �x+ e; E [ejx] = 0;

where all variables are scalars. The random sample fyi; xigni=1 is available.

1. The researcher also suspects that y; conditional on x; is distributed symmetrically around the
conditional mean. Devise a Hausman speci�cation test for this symmetry. Be speci�c and
give all details at all stages when constructing the test.

2. Suppose that even though the Hausman test rejects symmetry, the researcher uses the as-
sumption that ejx � N (0; �2). Derive the asymptotic properties of the QML estimator of
�.

15.3 Optimal instrumentation of consumption function

Consider the model
ct = �+ �y
t + et;

where ct is consumption at t; yt is income at t; and all variables are jointly stationary. There is
endogeneity in income, however, so that et is not mean independent of yt: However, the lagged
values of income are predetermined, so et is mean independent of the past history of yt and ct:

E [etjyt�1; ct�1; yt�2; ct�2; : : :] = 0:

Suppose a long time series on ct and yt is available. Outline how you would estimate the model
parameters most e¢ ciently.
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15.4 Optimal instrument in AR-ARCH model

Consider an AR(1) � ARCH(1) model: xt = �xt�1 + "t where the distribution of "t conditional
on It�1 is symmetric around 0 with E

�
"2t jIt�1

�
= (1 � �) + �"2t�1; where 0 < �; � < 1 and

It = fxt; xt�1; : : :g :

1. Let the space of admissible instruments for estimation of the AR(1) part be

Zt =
( 1X
i=1

�ixt�i; s.t.
1X
i=1

�2i <1
)
:

Using the optimality condition, �nd the optimal instrument as a function of the model para-
meters � and �: Outline how to construct its feasible version.

2. Use your intuition to speculate on relative e¢ ciency of the optimal instrument you found in
part 1 versus the optimal instrument based on the conditional moment restriction E ["tjIt�1] =
0.

15.5 Optimal instrument in AR with nonlinear error

Consider an AR(1) model xt = �xt�1 + "t; where the disturbance "t is generated as "t = �t�t�1;
where �t is an IID sequence with mean zero and variance one.

1. Show that E ["txt�j ] = 0 for all j � 1: Find the optimal instrument based on this system
of unconditional moment restrictions. How many lags of xt does it employ? Outline how to
construct its feasible version.

2. Show that E ["tjIt�1] = 0; where It = fxt; xt�1; : : :g : Find the optimal instrument based on
this conditional moment restriction. Outline how to construct its feasible version, or, if that
is impossible, explain why.

15.6 Optimal IV estimation of a constant

Consider the following MA(p) data generating mechanism:

yt = �+�(L)"t;

where "t is a mean zero IID sequence, and �(L) is lag polynomial of �nite order p. Derive the
optimal instrument for estimation of � based on the conditional moment restriction

E [ytjyt�p�1; yt�p�2; : : :] = �:
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15.7 Negative binomial distribution and PML

Determine if using the negative binomial distribution having the density

f (u;m) =
� (a+ u)

� (a) � (1 + u)

�m
a

�u �
1 +

m

a

��(a+u)
;

where m is its mean and a is an arbitrary known constant, leads to consistent estimation of �0 in
the mean regression

E [yjx] = m (x; �0)

when the true conditional distribution is heteroskedastic normal, with the skedastic function

V [yjx] = 2m (x; �0) :

15.8 Nesting and PML

Consider the regression model E [yjx] = m (x; �0) : Suppose that a PML1 estimator based on the
density f (z; �) parameterized by the mean � consistently estimates the true parameter �0: Consider
another density h (z; �; &) parameterized by two parameters, the mean � and some other parameter
&; which nests f (z; �) (i.e., f is a special case of h). Use the example of the Weibull distribution
having the density

h (z; �; &) = &

 
�
�
1 + &�1

�
�

!&
z&�1 exp

 
�
 
�
�
1 + &�1

�
�

z

!&!
� I [z � 0] ; & > 0;

to show that the PML1 estimator based on h (z; �; &) does not necessarily consistently estimates
�0: What is the econometric explanation of this perhaps counter-intuitive result?

Hint: you may use the information that E
�
z2
�
= �2�

�
2 + &�1

�
=�
�
1 + &�1

�2
; � (x) = (x �

1)� (x� 1) ; and � (1) = 1:

15.9 Misspeci�cation in variance

Consider the regression model E [yjx] = m (x; �0) : Suppose that this regression is conditionally nor-
mal and homoskedastic. A researcher, however, uses the following conditional density to construct
a PML1 estimator of �0:

(yjx; �) � N
�
m (x; �) ;m (x; �)2

�
:

Establish if such estimator is consistent for �0:
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15.10 Modi�ed Poisson regression and PML estimators

1Let the observable random variable y be distributed, conditionally on observable x and unobserv-
able " as Poisson with the parameter �(x) = exp(x0�+"); where E[exp "jx] = 1 and V[exp "jx] = �2:
Suppose that vector x is distributed as multivariate standard normal.

1. Find the regression and skedastic functions, where the conditional information involves only
x.

2. Find the asymptotic variances of the Nonlinear Least Squares (NLLS) andWeighted Nonlinear
Least Squares (WNLLS) estimators of �.

3. Find the asymptotic variances of the Pseudo-Maximum Likelihood (PML) estimators of �
based on

(a) the normal distribution;

(b) the Poisson distribution;

(c) the Gamma distribution.

4. Rank the �ve estimators in terms of asymptotic e¢ ciency.

15.11 Optimal instrument and regression on constant

Consider the following model:
yi = �+ ei; i = 1; : : : ; n;

where unobservable ei conditionally on xi is distributed symmetrically with mean zero and variance
x2i�

2 with unknown �2. The data (yi; xi) are IID.

1. Construct a pair of conditional moment restrictions from the information about the condi-
tional mean and conditional variance. Derive the optimal unconditional moment restrictions,
corresponding to (a) the conditional restriction associated with the conditional mean; (b) the
conditional restrictions associated with both the conditional mean and conditional variance.

2. Describe in detail the GMM estimators that correspond to the two optimal sets of uncondi-
tional moment restrictions of part 1. Note that in part 1(a) the parameter �2 is not identi�ed,
therefore propose your own estimator of �2 that di¤ers from the one implied by part 1(b). All
estimators that you construct should be fully feasible. If you use nonparametric estimation,
give all the details. Your description should also contain estimation of asymptotic variances.

3. Compare the asymptotic properties of the GMM estimators that you designed.

4. Derive the Pseudo-Maximum Likelihood estimator of � and �2 of order 2 (PML2) that is
based on the normal distribution. Derive its asymptotic properties. How does this estimator
relate to the GMM estimators you obtained in part 2?

1The idea of this problem is borrowed from Gourieroux, C. and Monfort, A. �Statistics and Econometric Models�,
Cambridge University Press, 1995.
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16. EMPIRICAL LIKELIHOOD

16.1 Common mean

Suppose we have the following moment restrictions: E [x] = E [y] = �.

1. Find the system of equations that yields the empirical likelihood (EL) estimator �̂ of �, the
associated Lagrange multipliers �̂ and the implied probabilities p̂i. Derive the asymptotic
variances of �̂ and �̂ and show how to estimate them.

2. Reduce the number of parameters by eliminating the redundant ones. Then linearize the
system of equations with respect to the Lagrange multipliers that are left, around their
population counterparts of zero. This will help to �nd an approximate, but explicit solution
for �̂, �̂ and p̂i. Derive that solution and interpret it.

3. Instead of de�ning the objective function

1

n

nX
i=1

log pi

as in the EL approach, let the objective function be

� 1
n

nX
i=1

pi log pi:

This gives rise to the exponential tilting (ET) estimator of �: Find the system of equations
that yields the ET estimator of �̂, the associated Lagrange multipliers �̂ and the implied
probabilities p̂i. Derive the asymptotic variances of �̂ and �̂ and show how to estimate them.

16.2 Kullback�Leibler Information Criterion

The Kullback�Leibler Information Criterion (KLIC) measures the distance between distributions,
say g(z) and h(z):

KLIC(g : h) = Eg
�
log

g(z)

h(z)

�
;

where Eg [�] denotes mathematical expectation according to g(z):
Suppose we have the following moment condition:

E
�
m(zi; �0

k�1
)

�
= 0

`�1
; ` � k;

and a random sample z1; : : : ; zn with no elements equal to each other. Denote by e the empirical
distribution function (EDF), i.e. the one that assigns probability 1

n to each sample point. Denote
by � a discrete distribution that assigns probability �i to the sample point zi; i = 1; : : : ; n:
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1. Show that minimization of KLIC(e : �) subject to
Pn

i=1 �i = 1 and
Pn

i=1 �im(zi; �) = 0
yields the Empirical Likelihood (EL) value of � and corresponding implied probabilities.

2. Now we switch the roles of e and � and consider minimization of KLIC(� : e) subject to
the same constraints. What familiar estimator emerges as the solution to this optimization
problem?

3. Now suppose that we have a priori knowledge about the distribution of the data. So, instead
of using the EDF, we use the distribution p that assigns known probability pi to the sample
point zi; i = 1; : : : ; n (of course,

Pn
i=1 pi = 1). Analyze how the solutions to the optimization

problems in parts 1 and 2 change.

4. Now suppose that we have postulated a family of densities f(z; �) which is compatible with
the moment condition. Interpret the value of � that minimizes KLIC(e : f):

16.3 Empirical likelihood as IV estimation

Consider a linear model with instrumental variables:

y = x0� + e; E [ze] = 0;

where x is k� 1, z is `� 1; and ` � k:Write down the EL estimator of � in a matrix form of a (not
completely feasible) instrumental variables estimator. Also write down the e¢ cient GMM estimator,
and explain intuitively why the former is expected to exhibit better �nite sample properties than
the latter.
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17. ADVANCED ASYMPTOTIC THEORY

17.1 Maximum likelihood and asymptotic bias

Derive the second order bias of the Maximim Likelihood (ML) estimator �̂ of the parameter � > 0
of the exponential distribution

f(y; �) =

�
� exp(��y); y � 0
0; y < 0

obtained from random sample y1; : : : ; yT ;

(a) using an explicit formula for �̂;

(b) using the expression for the second order bias of extremum estimators.

Construct the bias corrected ML estimator of �.

17.2 Empirical likelihood and asymptotic bias

Consider estimation of a scalar parameter � on the basis of the moment function

m(x; y; �) =

�
x� �
y � �

�
and IID data (xi; yi); i = 1; : : : ; n: Show that the second order asymptotic bias of the empirical
likelihood estimator of � equals 0.

17.3 Asymptotically irrelevant instruments

Consider the linear model
y = �x+ e;

where scalar random variables x and e are correlated with the correlation coe¢ cient �. Available
are data for an ` � 1 vector of instruments z. These instruments, however, are asymptotically
irrelevant, i.e. E [zx] = 0: The data (xi; yi; zi); i = 1; : : : ; n; are IID. You may additionally assume
that both x and e are homoskedastic conditional on z; and that they are homocorrelated conditional
on z:

1. Find the probability limit of the 2SLS estimator of � from the �rst principles (i.e. without
using the weak instruments theory).
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2. Verify that your result in part 1 conforms to the weak instruments theory being its special
case.

3. Find the expected value of the probability limit of the 2SLS estimator. How does it relate to
the probability limit of the OLS estimator?

17.4 Weakly endogenous regressors

Consider the regression
Y = X� + E ;

where the regressors X are correlated with the error E ; but this correlation is weak. Consider the
decomposition of E to its projection on X and the orthogonal component U :

E = X� + U :

Assume that
�
n�1X 0X ; n�1=2X 0U

� p! (Q; �) ; where � � N
�
0; �2uQ

�
and Q has full rank. Show

that under the assumption of the drifting parameter DGP � = c=
p
n; where n is the sample size

and c is �xed, the OLS estimator of � is consistent and asymptotically noncentral normal, and
derive the asymptotic distribution of the Wald test statistic for testing the set of linear restriction
R� = r; where R has full rank q:

17.5 Weakly invalid instruments

Consider a linear model with IID data
y = �x+ e;

where all variables are scalars.

1. Suppose that x and e are correlated, but there is an ` � 1 strong �instrument� z weakly
correlated with e: Derive the asymptotic (as n ! 1) distributions of the 2SLS estimator of
�, its t ratio, and the overidenti�cation test statistic

J = n
bU 0Z(Z 0Z)�1Z 0 bUbU 0 bU ;

where bU � Y � �̂X are the vector of 2SLS residuals and Z is the matrix of instruments,
under the drifting DGP ! = c!=

p
n; where ! is the vector of coe¢ cients on z in the linear

projection of e on z: Also, specialize to the case ` = 1.

2. Suppose that x and e are correlated, but there is an ` � 1 weak �instrument� z weakly
correlated with e: Derive the asymptotic (as n ! 1) distributions of the 2SLS estimator of
�, its t ratio, and the overidenti�cation test statistic J ; under the drifting DGP ! = c!=

p
n

and � = c�=
p
n; where ! is the vector of coe¢ cients on z in the linear projection of e on z;

and � is the vector of coe¢ cients on z in the linear projection of x on z: Also, specialize to
the case ` = 1.
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1. ASYMPTOTIC THEORY: GENERAL AND
INDEPENDENT DATA

1.1 Asymptotics of transformations

1. There are at least two ways to solve the problem. An easier way is using the �second-order
Delta-method�, see Problem 1.8. The second way is using trigonometric identities and the
regular Delta-method:

T (1� cos �̂) = 2T sin2 �̂
2
= 2

 
p
T sin

�̂

2

!2
d! 2

�cos�
2

� N (0; 1)
�2
� 1

2
�21:

2. Recalling how the Delta-method is proved,

T sin  ̂ = T (sin  ̂ � sin 2�) = T
@ sin 

@ 

����
 � p!2�

( ̂ � 2�) d! N (0; 1) :

3. By the Mann�Wald theorem,

log T + log �̂
d! log�21 ) log �̂

d! �1 ) T log �̂
d! �1:

1.2 Asymptotics of rotated logarithms

Use the Delta-method for

p
n

��
Un
Vn

�
�
�
�u
�v

��
d�! N

��
0

0

�
;�

�
and

g

��
x

y

��
=

�
lnx� ln y
lnx+ ln y

�
:

We have

@g

@(x y)

�
x

y

�
=

�
1=x �1=y
1=x 1=y

�
; G =

@g

@(x y)

�
�u
�v

�
=

�
1=�u �1=�v
1=�u 1=�v

�
;

so
p
n

��
lnUn � lnVn
lnUn + lnVn

�
�
�
ln�u � ln�v
ln�u + ln�v

��
d�! N

��
0

0

�
; G�G0

�
;

where

G�G0 =

0B@
!uu
�2u

� 2!uv
�u�v

+
!vv
�2v

!uu
�2u

� !vv
�2v

!uu
�2u

� !vv
�2v

!uu
�2u

+
2!uv
�u�v

+
!vv
�2v

1CA :

It follows that lnUn � lnVn and lnUn + lnVn are asymptotically independent when
!uu
�2u

=
!vv
�2v
.
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1.3 Escaping probability mass

(i) The expectation is

E [�̂n] = E [�xnjAn]P fAng+ E
�
nj �An

�
P
�
�An
	
= �

�
1� 1

n

�
+ 1;

so the bias is
E [�̂n]� � = �

�

n
+ 1! 1

as n!1. The expectation of the square is

E
�
�̂2n
�
= E

�
�x2njAn

�
P fAng+ E

�
n2j �An

�
P
�
�An
	
=

�
�2 +

�2

n

��
1� 1

n

�
+ n;

so the variance is

V [�̂n] = E
�
�̂2n
�
� (E [�̂n])2 =

1

n

�
1� 1

n

��
(n� �)2 + �2

�
!1

as n!1: As a consequence, the MSE of �̂n is

MSE [�̂n] = V [�̂n] + (E [�̂n]� �)2 =
1

n

�
(n� �)2 +

�
1� 1

n

�
�2
�
;

and also tends to in�nity as n!1.

(ii) Despite the MSE of �̂n goes to in�nity, �̂n is consistent: for any " > 0;

P fj�̂n � �j > "g = P fj�xn � �j > "g
�
1� 1

n

�
+ P fjn� �j > "g 1

n
! 0

by consistency of �xn and boundedness of probabilities. The CDF of
p
n(�̂n � �) is

Fpn(�̂n��) (t) = P
�p

n(�̂n � �) � t
	

= P
�p

n(�xn � �) � t
	�
1� 1

n

�
+ P

�p
n(n� �) � t

	 1
n

! FN (0;�2) (t)

by the asymptotic normality of �xn and boundedness of probabilities.

(iii) Since the asymptotic distributions of �xn and �̂n are the same, the approximate con�dence
intervals for � will be identical except that they center at �xn and �̂n; respectively.

1.4 Asymptotics of t-ratios

The solution is straightforward once we determine to which vector the LLN or CLT should be
applied.

(a) When � = 0, we have: x
p! 0,

p
nx

d! N (0; �2), and �̂2 p! �2. Therefore

p
nTn =

p
nx

�̂

d! 1

�
N (0; �2) � N (0; 1):
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(b) Consider the vector

Wn �
�
x

�̂2

�
=
1

n

nX
i=1

�
xi

(xi � �)2

�
�
�

0

(x� �)2

�
:

By the LLN, the last term goes in probability to the zero vector, while the �rst term, and
thus the whole Wn, converges in probability to

plim
n!1

Wn =

�
�

�2

�
:

Moreover, because
p
n (x� �) d! N (0; �2), we have

p
n (x� �)2 d! 0.

Next, let Wi �
�
xi; (xi � �)2

�0. Then pn�Wn � plim
n!1

Wn

�
d! N (0; V ), where V � V [Wi].

Let us calculate V . First, V [xi] = �2 and V
�
(xi � �)2

�
= E

�
((xi � �)2 � �2)2

�
= � � �4.

Second, C
�
xi; (xi � �)2

�
= E

�
(xi � �)((xi � �)2 � �2)

�
= 0. Therefore,

p
n

�
Wn � plim

n!1
Wn

�
d! N

��
0

0

�
;

�
�2 0
0 � � �4

��
Now use the Delta-method with the transformation

g

��
t1
t2

��
=

t1p
t2

) g0
��

t1
t2

��
=

1p
t2

0@ 1

� t1
2t2

1A
to get

p
n

�
Tn � plim

n!1
Tn

�
d! N

�
0; 1 +

�2(� � �4)
4�6

�
:

Indeed, this reduces to N (0; 1) when � = 0.

(c) Similarly, consider the vector

Wn �
�
x

�2

�
=
1

n

nX
i=1

�
xi
x2i

�
:

By the LLN, Wn converges in probability to

plim
n!1

Wn =

�
�

�2 + �2

�
:

Next,
p
n

�
Wn � plim

n!1
Wn

�
d! N (0; V ), where V � V [Wi], Wi �

�
xi; x

2
i

�0. Let us calculate
V . First, V [xi] = �2 and V

�
x2i
�
= E

�
(x2i � �2 � �2)2

�
= �+4�2�2��4. Second, C

�
xi; x

2
i

�
=

E
�
(xi � �)(x2i � �2 � �2)

�
= 2��2. Therefore,

p
n

�
Wn � plim

n!1
Wn

�
d! N

��
0

0

�
;

�
�2 2��2

2��2 � + 4�2�2 � �4
��

:

Now use the Delta-method with

g

��
t1
t2

��
=

t1p
t2

to get
p
n

�
Rn � plim

n!1
Rn

�
d! N

�
0;
�2� � �2�4 + 4�6
4(�2 + �2)3

�
:

This reduces to the answer in part (b) if and only if � = 0. Under this condition, Tn and Rn
are asymptotically equivalent.
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1.5 Creeping bug on simplex

Since xk and yk are perfectly correlated, it su¢ ces to consider either one, xk say. Note that at each
step xk increases by 1

k with probability p, or stays the same. That is, xk = xk�1+
1
k�k, where �k is

IID B (p). This means that xk = 1
k

Pk
i=1 �i which by the LLN converges in probability to E [�i] = p

as k !1. Therefore, plim (xk; yk) = (p; 1� p). Next, due to the CLT,
p
n (xk � plim xk)

d! N (0; p(1� p)) :

Therefore, the rate of convergence is
p
n, as usual, and

p
n

��
xk
yk

�
� plim

�
xk
yk

��
d! N

��
0
0

�
;

�
p(1� p) �p(1� p)
�p(1� p) p(1� p)

��
:

1.6 Asymptotics of sample variance

According to the LLN, a must be E[x]; and b must be E[x2]: According to the CLT, c(n) must bep
n; and

p
n

�
�xn � E[x]
x2n � E[x2]

�
d! N

��
0

0

�
;

�
V[x] C[x; x2]
C[x; x2] V[x2]

��
:

Using the Delta-method with

g

��
u1
u2

��
= u2 � u21

whose derivative is

G

��
u1
u2

��
=

�
�2u1
1

�
;

we get

p
n
�
x2n � (�xn)

2 �
�
E[x2]� E[x]2

�� d!

N

�
0;

�
�2E[x]
1

�0� V[x] C[x; x2]
C[x; x2] V[x2]

��
�2E[x]
1

��
;

or p
n
�
x2n � (�xn)

2 � V[x]
�

d! N
�
0;V[x2] + 4E[x]2V[x]� 4E[x]C[x; x2]

�
:

1.7 Asymptotics of roots

More precisely, we need to assume that F is continuously di¤erentiable, at least at (a; �), and that
it possesses a continuously di¤erentiable inverse at (a; �). Suppose that

p
n (â� a) d! N (0; Vâ) :

The consistency of �̂ follows from application of the Mann�Wald theorem. Next, the �rst-order
Taylor expansion of

F
�
â; �̂
�
= 0
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around (a; �) yields

F (a; �) +
@F (a�; ��)

@a0
(â� a) + @F (a�; ��)

@�0

�
�̂ � �

�
= 0;

where (a�; ��) lies between (a; �) and
�
â; �̂
�
componentwise, and hence is consistent for (a; �) :

Because F (a; �) = 0; we have

@F (a�; ��)

@a0
p
n (â� a) + @F (a�; ��)

@�0
p
n
�
�̂ � �

�
= 0;

or

p
n
�
�̂ � �

�
= �

�
@F (a�; ��)

@�0

��1 @F (a�; ��)
@a0

p
n (â� a)

d! N
 
0;

�
@F (a; �)

@�0

��1 @F (a; �)
@a0

Vâ
@F (a; �)0

@a

�
@F (a; �)0

@�

��1!
;

where it is assumed that @F (a; �) =@�0 is of full rank. Alternatively, one could use the theorem on
di¤erentiation of an implicit function.

1.8 Second-order Delta-method

(a) From the CLT,
p
nSn

d! N (0; 1). Using the Mann�Wald theorem for g(x) = x2 we get

nS2n
d! �21:

(b) The Taylor expansion around cos(0) = 1 yields cos(Sn) = 1 � 1
2 cos(S

�
n)S

2
n, where S

�
n 2

[0; Sn]. From the LLN and Mann�Wald theorem, cos(S�n)
p! 1, and from the Slutsky theorem,

2n(1� cos(Sn))
d! �21:

(c) Let zn
p! z = const and

p
n(zn � z)

d! N
�
0; �2

�
: Let g be twice continuously di¤erentiable

at z with g0(z) = 0 and g00(z) 6= 0: Then

2n

�2
g(zn)� g(z)

g00(z)
d! �21:

Proof. Indeed, as g0(z) = 0; from the second-order Taylor expansion,

g(zn) = g(z) +
1

2
g00(z�)(zn � z)2;

and, since g00(z�)
p! g00(z) and

p
n(zn � z)

�

d! N (0; 1) ; we have

2n

�2
g(zn)� g(z)

g00(z)
=

�p
n(zn � z)

�

�2
d! �21:

QED
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1.9 Asymptotics with shrinking regressor

The OLS estimates are

�̂ =
n�1

P
i yixi �

�
n�1

P
i yi
� �
n�1

P
i xi
�

n�1
P

i x
2
i � (n�1

P
i xi)

2 ; �̂ =
1

n

X
i

yi � �̂ �
1

n

X
i

xi (1.1)

and
�̂2 =

1

n

X
i

êi
2:

Let us consider �̂ �rst. From (1.1) it follows that

�̂ =
n�1

P
i(�+ �xi + ui)xi � n�2

P
i(�+ �xi + ui)

P
i xi

n�1
P

i x
2
i � n�2(

P
i xi)

2

= � +
n�1

P
i �
iui � n�2

P
i ui
P

i �
i

n�1
P

i �
2i � n�2(

P
i �
i)2

= � +

P
i �
iui � �(1��n)

1��
�
n�1

P
i ui
�

�2(1��2n)
1��2 � n�1

�
�(1��n)
1��

�2 ;

which converges to

� +
1� �2
�2

plim
n!1

nX
i=1

�iui;

if � � plim
P

i �
iui exists and is a well-de�ned random variable. Its moments are E [�] = 0,

E
�
�2
�
= �2 �2

1��2 and E
�
�3
�
= � �3

1��3 . Hence,

�̂ � � d! 1� �2
�2

�: (1.2)

Now let us look at �̂. Again, from (1.1) we see that

�̂ = �+ (� � �̂) � 1
n

X
i

�i +
1

n

X
i

ui
p! �;

where we used (1.2) and the LLN for an average of ui. Next,

p
n(�̂� �) = 1p

n
(� � �̂)�(1� �

1+n)

1� � +
1p
n

X
i

ui = Un + Vn:

Because of (1.2), Un
p! 0: From the CLT it follows that Vn

d! N (0; �2): Taken together,
p
n(�̂� �) d! N (0; �2):

Lastly, let us look at �̂2:

�̂2 =
1

n

X
i

ê2i =
1

n

X
i

�
(�� �̂) + (� � �̂)xi + ui

�2
: (1.3)

Using the facts that: (1) (�� �̂)2 p! 0, (2) (�� �̂)2=n p! 0, (3) n�1
P

i u
2
i

p! �2, (4) n�1
P

i ui
p! 0,

(5) n�1=2
P

i �
iui

p! 0, we conclude that

�̂2
p! �2:
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The rest of this solution is optional and is usually not meant when the asymptotics of �̂2 is
concerned. Before proceeding to deriving its asymptotic distribution, we would like to mark out
that n��(� � �̂) p! 0 and n��

P
i �
iui

p! 0 for any � > 0. Using the same algebra as before we get

p
n(�̂2 � �2) A� 1p

n

X
i

(u2i � �2);

since the other terms converge in probability to zero. Using the CLT, we get

p
n(�̂2 � �2) d! N (0;m4);

where m4 = E
�
u4i
�
� �4; provided that it is �nite.

1.10 Power trends

1. The OLS estimator satis�es

�̂ � � =
 

nX
i=1

x2i

!�1 nX
i=1

xi�i"i =
p
�

 
nX
i=1

i2�

!�1 nX
i=1

i�+�=2"i:

We can see that E[�̂ � �] = 0 and

V[�̂ � �] = �

 
nX
i=1

i2�

!�2 nX
i=1

i2�+�:

If V[�̂ � �]! 0; the estimator �̂ will be consistent. This will occur when � < 2�+ 1 (in this

case the continuous analog
�R T

t2�dt
�2
� T 2(2�+1) of the �rst sum squared diverges faster or

converges slowlier than the continuous analog
R T

t2�+�dt � T 2�+�+1 of the second sum, as
2(2�+ 1) < 2�+ �+ 1 if and only if � < 2�+ 1). In this case the asymptotic distribution is

n�+(1��)=2(�̂ � �) =
p
�n�+(1��)=2

 
nX
i=1

i2�

!�1 nX
i=1

i�+�=2"i

d! N

0@0; � lim
n!1

n2�+1��

 
nX
i=1

i2�

!�2 nX
i=1

i2�+�

1A
by Lyapunov�s CLT for independent heterogeneous observations, provided that�Pn

i=1 i
3(2�+�)=2

�1=3
(
Pn

i=1 i
2�+�)

1=2
! 0

as n ! 1, which is satis�ed as
�R T

t2�+�dt
�1=2

� T (2�+�+1)=2 diverges faster or converges

slowlier than
�R T

t3(2�+�)=2dt
�1=3

� T (3(2�+�)=2+1)=3.
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2. The GLS estimator satis�es

~� � � =
 

nX
i=1

x2i
i�

!�1 nX
i=1

xi�i"i
i�

=
p
�

 
nX
i=1

i2���

!�1 nX
i=1

i���=2"i:

Again, E[~� � �] = 0 and

V[~� � �] = �

 
nX
i=1

i2���

!�2 nX
i=1

i2���:

The estimator ~� will be consistent under the same condition, i.e. when � < 2� + 1. In this
case the asymptotic distribution is

n�+(1��)=2(~� � �) =
p
�n�+(1��)=2

 
nX
i=1

i2���

!�1 nX
i=1

i���=2"i

d! N

0@0; � lim
n!1

n2�+1��

 
nX
i=1

i2���

!�2 nX
i=1

i2���

1A
by Lyapunov�s CLT for independent heterogeneous observations.
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2. ASYMPTOTIC THEORY: TIME SERIES

2.1 Trended vs. di¤erenced regression

1. The OLS estimator �̂ in this case is

�̂ =

PT
t=1(yt � �y)(t� �t)PT

t=1 (t� �t)
2

:

Now,

�̂ � � =
 

1

T�3
P

t t
2 � (T�2

P
t t)

2 ;�
T�2

P
t t

T�3
P

t t
2 � (T�2

P
t t)

2

!�
T�3

P
t "tt

T�2
P

t "t

�
:

Because
TX
t=1

t =
T (T + 1)

2
;

TX
t=1

t2 =
T (T + 1)(2T + 1)

6
;

it is easy to see that the �rst vector converges to (12;�6). Therefore,

T 3=2(�̂ � �) = (12;�6) 1p
T

X
t

� t
T "t
"t

�
:

Assuming that all conditions for the CLT for heterogenous martingale di¤erence sequences
(e.g., Hamilton (1994) �Time series analysis�, proposition 7.8) hold, we �nd that

1p
T

TX
t=1

� t
T "t
"t

�
d! N

��
0

0

�
; �2

�
1
3

1
2

1
2 1

��
;

because

lim
1

T

TX
t=1

V
�
t

T
"t

�
= �2 lim

1

T

TX
t=1

�
t

T

�2
=
1

3
;

lim
1

T

TX
t=1

V ["t] = �2;

lim
1

T

TX
t=1

C
�
t

T
"t; "t

�
= �2 lim

1

T

TX
t=1

t

T
=
1

2
:

Consequently,

T 3=2(�̂ � �)! (12;�6) � N
��
0

0

�
; �2

�
1
3

1
2

1
2 1

��
= N (0; 12�2):

2. For the regression in di¤erences, the OLS estimator is

�� =
1

T

TX
t=1

(yt � yt�1) = � +
"T � "0
T

:

So, T (�� � �) = "T � "0 � D(0; 2�2):
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3. When T is su¢ ciently large, �̂ A� N
�
�; 12�

2

T 3

�
, and �� � D

�
�; 2�

2

T 2

�
: It is easy to see that

for large T; the (approximate) variance of the �rst estimator is less than that of the second.
Intuitively, it is much easier to identify the trend of a trending sequence than the drift of a
drifting sequence.

2.2 Long run variance for AR(1)

The long run variance is Vze =
P+1

j=�1C [ztet; zt�jet�j ] : Because et and zt are scalars, inde-
pendent at all lags and leads, and E [et] = 0; we have C [ztet; zt�jet�j ] = E [ztzt�j ]E [etet�j ] :
Let for simplicity zt also have zero mean. Then for j � 0; E [ztzt�j ] = �jz

�
1� �2z

��1
�2z and

E [etet�j ] = �je
�
1� �2e

��1
�2e; where �z; �

2
z; �e; �

2
e are AR(1) parameters. To sum up,

Vze =
�2z

1� �2z
�2e

1� �2e

+1X
j=�1

�jjjz �
jjj
e =

1 + �z�e
(1� �z�e) (1� �2z) (1� �2e)

�2z�
2
e:

To estimate Vze; �nd the OLS estimates �̂z; �̂
2
z; �̂e; �̂

2
e from AR(1) regressions and plug them in.

The resulting V̂ze will be consistent by the Continuous Mapping Theorem.

2.3 Asymptotics of averages of AR(1) and MA(1)

Note that yt can be rewritten as yt =
P+1

j=0 �
jxt�j :

1. (i) yt is not an MDS relative to own past fyt�1; yt�2; : : :g as it is correlated with older
yt�s; (ii) zt is an MDS relative to fxt�2; xt�3; : : :g, but is not an MDS relative to own past
fzt�1; zt�2; : : :g, because zt and zt�1 are correlated through xt�1.

2. (i) By the CLT for the general stationary and ergodic case,
p
TyT

d! N (0; qyy), where

qyy =
P+1

j=�1C[yt; yt�j ]| {z }

j

: It can be shown that for an AR(1) process, 
0 =
�2

1� �2 , 
j =


�j =
�2

1� �2 �
j . Therefore, qyy =

P+1
j=�1 
j =

�2

(1� �)2 : (ii) By the CLT for the general

stationary and ergodic case,
p
TzT

d! N (0; qzz), where qzz = 
0 + 2
1 + 2
P+1

j=2 
j|{z}
=0

=

(1 + �2)�2 + 2��2 = �2(1 + �)2.

3. If we have consistent estimates �̂2, �̂, �̂ of �2, �, �, we can estimate qyy and qzz consistently by
�̂2

(1� �̂)2 and �̂
2(1 + �̂)2; respectively. Note that these are positive numbers by construction.

Alternatively, we could use robust estimators, like the Newey�West nonparametric estimator,
ignoring additional information that we have. But under the circumstances this seems to be
less e¢ cient.
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4. For vectors, (i)
p
TyT

d! N (0; Qyy), whereQyy =
P+1

j=�1C[yt;yt�j ]| {z } :
�j

But �0 =
P+1

j=0 P
j�P0j ,

�j = Pj�0 if j > 0, and �j = �0�j = �0P
0jjj if j < 0. Hence Qyy = �0 +

P+1
j=1 P

j�0 +P+1
j=1 �0P

0j = �0 + (I � P)�1P�0 + �0P0(I � P0)�1 = (I � P)�1�(I � P0)�1; (ii)
p
TzT

d!
N (0; Qzz), where Qzz = �0+�1+��1 = �+���

0
+��+��

0
= (I +�)�(I +�)

0
. As for

estimation of asymptotic variances, it is evidently possible to construct consistent estimators
of Qyy and Qzz that are positive de�nite by construction.

2.4 Asymptotics for impulse response functions

1. For the AR(1) process, we get by repeated substitution

yt =
1X
j=0

�j"t�j :

Since the weights decline exponentially, their sum absolutely converges to a �nite constant.
The IRF is

IRF (j) = �j ; j � 0:
The ARMA(1,1) process written via lag polynomials is

zt =
1� �L
1� �L"t;

of which the MA(1) representation is

zt = "t + (�� �)
1X
i=0

�i"t�i�1:

Since the weights decline exponentially, their sum absolutely converges to a �nite constant.
The IRF is

IRF (0) = 1; IRF (j) = (�� �) �j�1; j > 0:

2. The estimate based on the OLS estimator �̂ of �, is [IRF (j) = �̂j : Since
p
T (�̂� �) d!

N
�
0; 1� �2

�
; we can derive using the Delta-method that

p
T
�
[IRF (j)� IRF (j)

�
d! N

�
0; j2�2(j�1)

�
1� �2

��
as T !1 when j � 1; and [IRF (0)� IRF (0) = 0:

3. Denote et = "t � �"t�1: Since �̂
p! � and �̂

p! � (this will be shown below), we can construct
consistent estimators as

[IRF (0) = 1; [IRF (j) =
�
�̂� �̂

�
�̂j�1; j > 0:

Evidently, [IRF (0) has a degenerate distribution. To derive the asymptotic distribution of
[IRF (j) for j > 0; let us �rst derive the asymptotic distribution of

�
�̂; �̂
�0
: Consistency can

be shown easily:

�̂ = �+
T�1

PT
t=3 zt�2et

T�1
PT

t=3 zt�2zt�1

p! �+
E [zt�2et]
E [zt�1zt]

= �;
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� �̂

1 + �̂
2 =

PT
t=2 êtêt�1PT
t=2 ê

2
t

= : : : expansion of êt : : :
p! � �

1 + �2
:

Since the solution of a quadratic equation is a continuous function of its coe¢ cients, consis-
tency of �̂ obtains. To derive the asymptotic distribution, we need the following component:

1p
T

TX
t=3

0@ etet�1 � E [etet�1]
e2t � E

�
e2t
�

zt�2et

1A d! N (0;
) ;

where 
 is a 3� 3 variance matrix which is a function of �; �; �2" and � = E
�
"4t
�
(derivation

is very tedious; one should account for serial correlation in summands). Next, from exam-
ining the formula de�ning �̂; dropping the terms that do not contribute to the asymptotic
distribution, we can �nd that

p
T

 
� �̂

1 + �̂
2 �

�
� �

1 + �2

�!
A
= �1

p
T (�̂� �)

+�2
1p
T

X
(etet�1 � E [etet�1]) + �3

1p
T

X�
e2t � E

�
e2t
��

for certain constants �1; �2; �3: It follows by the Delta-method that

p
T
�
�̂ � �

�
A
= �

�
1 + �2

�2
1� �2

p
T

 
� �̂

1 + �̂
2 �

�
� �

1 + �2

�!
A
= �1

p
T (�̂� �) + �2

1p
T

X
(etet�1 � E [etet�1]) + �3

1p
T

X�
e2t � E

�
e2t
��

for certain constants �1; �2; �3: It follows that

p
T

�
�̂� �
�̂ � �

�
A
= �

1p
T

X0@ zt�2et
e2t � E

�
e2t
�

etet�1 � E [etet�1]

1A d! N
�
0;�
�0

�
:

for certain 2� 3 matrix �: Finally, applying the Delta-method again, we get

p
T
�
[IRF (j)� IRF (j)

�
A
= 
0

p
T

�
�̂� �
�̂ � �

�
d! N

�
0; 
0�
�0


�
;

for certain 2� 1 vector 
:
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3. BOOTSTRAP

3.1 Brief and exhaustive

1. The mentioned di¤erence indeed exists, but it is not the principal one. The two methods have
some common features like computer simulations, sampling, etc., but they serve completely
di¤erent goals. The bootstrap is an alternative to analytical asymptotic theory for making
inferences, while Monte�Carlo is used for studying �nite-sample properties of estimators or
tests.

2. After some point raising B; the number of bootstrap repetitions, does not help since the
bootstrap distribution is intrinsically discrete, and raising B cannot smooth things out. Even
more than that: if we are interested in quantiles (we usually are), the quantile for a discrete
distribution is an interval, and the uncertainty about which point to choose to be a quantile
does not disappear when we raise B.

3. There is no such thing as a �bootstrap estimator�. Bootstrapping is a method of inference,
not of estimation. The same goes for an �asymptotic estimator�.

3.2 Bootstrapping t-ratio

The percentile interval is CI% = [�̂� ~q�1��=2; �̂� ~q
�
�=2]; where ~q

�
� is a bootstrap �-quantile of �̂

�� �̂;

i.e. � = Pf�̂�� �̂ � ~q��g: Then
~q��
s(�̂)

is the �-quantile of
�̂
� � �̂
s(�̂)

= T �n ; since P

(
�̂
� � �̂
s(�̂)

� ~q��
s(�̂)

)
= �:

But by construction, the �-quantile of T �n is q
�
�, hence ~q

�
� = s(�̂)q��: Substituting this into CI% we

get the con�dence interval as CI in the problem.

3.3 Bootstrap bias correction

1. The bootstrap version �x�n of �xn has mean �xn with respect to the EDF: E� [�x�n] = �xn: Thus the
bootstrap version of the bias (which is itself zero) is Bias�(�xn) = E� [�x�n]� �xn = 0: Therefore,
the bootstrap bias corrected estimator of � is �xn �Bias�(�xn) = �xn: Now consider the bias of
�x2n:

Bias(�x2n) = E
�
�x2n
�
� �2 = V [�xn] =

1

n
V [x] :

Thus the bootstrap version of the bias is the sample analog of this quantity:

Bias�(�x2n) =
1

n
V� [x] =

1

n

�
1

n

X
x2i � �x2n

�
:
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Therefore, the bootstrap bias corrected estimator of �2 is

�x2n � Bias�(�x2n) =
n+ 1

n
�x2n �

1

n2

X
x2i :

2. Since the sample average is an unbiased estimator of the population mean for any distribution,
the bootstrap bias correction for z2 will be zero, and thus the bias-corrected estimator for
E[z2] will be

z2

(cf. part 1). Next note that the bootstrap distribution is 0 with probability 1
2 and 3 with

probability 1
2 ; so the bootstrap distribution for �z

2 = 1
4(z1 + z2)

2 is 0 with probability 1
4 ;

9
4

with probability 1
2 ; and 9 with probability

1
4 : Thus the bootstrap bias estimate is

1

4

�
0� 9

4

�
+
1

2

�
9

4
� 9
4

�
+
1

4

�
9� 9

4

�
=
9

8
;

and the bias corrected version is
1

4
(z1 + z2)

2 � 9
8
:

3.4 Bootstrap in linear model

1. Due to the assumption of random sampling, there cannot be unconditional heteroskedas-
ticity. If conditional heteroskedasticity is present, it does not invalidate the nonparametric
bootstrap. The dependence of the conditional variance on regressors is not destroyed by
bootstrap resampling as the data (xi; yi) are resampled in pairs.

2. When we bootstrap an inconsistent estimator, its bootstrap analogs are concentrated more
and more around the probability limit of the estimator, and thus the estimate of the bias
becomes smaller and smaller as the sample size grows. That is, bootstrapping is able to correct
the bias caused by �nite sample nonsymmetry of the distribution, but not the asymptotic
bias (di¤erence between the probability limit of the estimator and the true parameter value).

3. As a point estimate we take ĝ(x) = x0�̂; where �̂ is the OLS estimator for �. To pivotize
ĝ(x); observe that

p
nx0(�̂ � �) d! N (0; x0

�
E
�
xx0
���1 E �xx0e2� �E �xx0���1 x);

so the appropriate statistic to bootstrap is

tg =
x0(�̂ � �)
se (ĝ(x))

;

where se (ĝ(x)) =
q
x0 (
P

i xix
0
i)
�1 �P

i xix
0
iê
2
i

�
(
P

i xix
0
i)
�1 x: The bootstrap version is

t�g =
x0(�̂

� � �̂)
se (ĝ�(x))

;

where se (ĝ�(x)) =
q
x0 (
P

i x
�
ix
�0
i )
�1 �P

i x
�
ix
�0
i ê

�2
i

�
(
P

i x
�
ix
�0
i )
�1 x: The rest is standard, and

the con�dence interval is

CIt =
h
x0�̂ � q�1��

2
se (ĝ(x)) ;x0�̂ � q��

2
se (ĝ(x))

i
;

where q��
2
and q�1��

2
are appropriate bootstrap quantiles for t�g.
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3.5 Bootstrap for impulse response functions

1. For each j � 1 simulate the bootstrap distribution of the absolute value of the t-statistic:

jtj j =
p
T j�̂j � �j j

jj�̂jj�1
p
1� �̂2

;

the bootstrap analog of which is

jt�j j =
p
T j�̂�j � �̂j j

jj�̂�jj�1
p
1� �̂�2

;

read o¤ the bootstrap quantiles q�j;1�� and construct the symmetric percentile-t con�dence

interval
h
�̂j � q�j;1�� � jj�̂jj�1

q�
1� �̂2

�
=T
i
.

2. Most appropriate is the residual bootstrap when bootstrap samples are generated by resam-
pling estimates of innovations "t. The corrected estimates of the IRFs are

]IRF (j) = 2
�
�̂� �̂

�
�̂j�1 � 1

B

BX
b=1

�
�̂�b � �̂

�
b

�
�̂�j�1b ;

where �̂�b ; �̂
�
b are obtained in b

th bootstrap repetition by using the same formulae as used for
�̂; �̂ but computed from the corresponding bootstrap sample.
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4. REGRESSION AND PROJECTION

4.1 Regressing and projecting dice

(i) The joint distribution is

(x; y) =

8>>>>>><>>>>>>:

(0; 1) with probability 1
6 ;

(2; 2) with probability 1
6 ;

(0; 3) with probability 1
6 ;

(4; 4) with probability 1
6 ;

(0; 5) with probability 1
6 ;

(6; 6) with probability 1
6 :

(ii) The best predictor is

E [yjx] =

8>><>>:
3 x = 0;
2 x = 2;
4 x = 4;
6 x = 6;

and unde�ned for all other x:

(iii) To �nd the best linear predictor, we need E [x] = 2; E [y] = 7
2 ; E [xy] =

28
3 ; V [x] =

16
3 ;

� = C [x; y] =V [x] = 7
16 ; � =

21
8 ; so

BLP[yjx] = 21

8
+
7

16
x:

(iv)

UBP =

8<:
�2 with probability 1

6 ;
0 with probability 2

3 ;
2 with probability 1

6 ;

UBLP =

8>>>>>><>>>>>>:

�13
8 with probability 1

6 ;
�12
8 with probability 1

6 ;
3
8 with probability 1

6 ;
�3
8 with probability 1

6 ;
19
8 with probability 1

6 ;
6
8 with probability 1

6 :

so E
�
U2BP

�
= 4

3 ; E
�
U2BP

�
� 1:9: Indeed, E

�
U2BP

�
< E

�
U2BLP

�
.
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4.2 Mixture of normals

1. We need to compute E [y] ; E [x] ; C [x; y] ; V [x] : Let us denote the �rst event A; the second
event �A: Then

E [y] = p � E [yjA] + (1� p) � E
�
yj �A
�
= p � 4 + (1� p) � 0 = 4p;

E [x] = p � E [xjA] + (1� p) � E
�
xj �A

�
= p � 0 + (1� p) � 4 = 4� 4p;

E [xy] = p � (E [xjA]E [yjA] + C [x; yjA]) + (1� p) �
�
E
�
xj �A

�
E
�
yj �A
�
+ C

�
x; yj �A

��
= 0;

C [x; y] = E [xy]� E [x]E [y] = �16p (1� p) ;

E
�
x2
�
= p �

�
E [xjA]2 + V [xjA]

�
+ (1� p) �

�
E
�
xj �A

�2
+ V

�
xj �A

��
= 17� 16p;

V [x] = E
�
x2
�
� E [x]2 = 1 + 16p� 16p2:

Summarizing,

� =
C [x; y]
V [x]

=
1

1 + 16p� 16p2 � 1; � = E [y]� �E [x] = 4
�
1� 1� p

1 + 16p� 16p2

�
;

) BLP [yjx] = 4
�
1� 1� p

1 + 16p� 16p2

�
+

�
1

1 + 16p� 16p2 � 1
�
x;

2. If E [yjx] was linear, it would coincide with BLP [yjx] : But take, for example, the value of
BLP [yjx] for some big x: This value will be negative. But, given this large x; the mean of y
cannot be negative, as it should clearly be between 0 and 4. Contradiction. To derive E [yjx] ;
one have to write that

f

��
x

y

��
= p

1

2�
exp

�
�1
2
x2 � 1

2
(y � 4)2

�
+ (1� p) 1

2�
exp

�
�1
2
(x� 4)2 � 1

2
y2
�
;

f (x) = p
1p
2�
exp

�
�1
2
x2
�
+ (1� p) 1p

2�
exp

�
�1
2
(x� 4)2

�
;

so

f (yjx) = 1p
2�

p exp
�
�1
2x
2 � 1

2 (y � 4)
2
�
+ (1� p) exp

�
�1
2 (x� 4)

2 � 1
2y
2
�

p exp
�
�1
2x
2
�
+ (1� p) exp

�
�1
2 (x� 4)

2
� :

The conditional expectation is the integral

E [yjx] = 1p
2�

+1Z
�1

y
p exp

�
�1
2x
2 � 1

2 (y � 4)
2
�
+ (1� p) exp

�
�1
2 (x� 4)

2 � 1
2y
2
�

p exp
�
�1
2x
2
�
+ (1� p) exp

�
�1
2 (x� 4)

2
� dy

One can compute this in Maple R
 to get

E [yjx] = 4

1 + (p�1 � 1) exp(4x� 8) :

It has a form of a smooth transition regression function, and has horizontal asymptotes 4 and
0 as x! �1 and x! +1; respectively.
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4.3 Bernoulli regressor

Note that

E [yjx] =
�
�0; x = 0;
�1; x = 1;

= �0 (1� x) + �1x = �0 + (�1 � �0)x

and

E
�
y2jx

�
=

�
�20 + �

2
0; x = 0;

�21 + �
2
1; x = 1;

= �20 + �
2
0 +

�
�21 � �20 + �21 � �20

�
x:

These expectations are linear in x because the support of x has only two points, and one can always
draw a straight line through two points. The reason is not conditional normality!

4.4 Best polynomial approximation

The FOC are

2E
h�
E [yjx]� �0 � �1x� : : :� �kxk

�
(�1)

i
= 0;

2E
h�
E [yjx]� �0 � �1x� : : :� �kxk

�
(�x)

i
= 0;

...

2E
h�
E [yjx]� �0 � �1x� : : :� �kxk

��
�xk

�i
= 0;

or, using the LIME,

E
h
y � �0 � �1x� : : :� �kxk

i
= 0;

E
h�
y � �0 � �1x� : : :� �kxk

�
x
i
= 0;

...

E
h�
y � �0 � �1x� : : :� �kxk

�
xk
i
= 0;

from where

� = (�0; �1; : : : ; �k)
0 = E

�
zz0
��1 E [zy] ;

where z =
�
1; x; : : : ; xk

�0
: The best kth order polynomial approximation is then

BPAk [yjx] = z0� = z0E
�
zz0
��1 E [zy] :

The associated prediction error uk has the properties that follow from the FOC:

E [zuk] = 0;

i.e. it has zero mean and is uncorrelated with x; x2; : : : ; xk:
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4.5 Handling conditional expectations

1. By the LIME, E [yjx; z] = � + �x + 
z: Thus we know that in the linear prediction y =
�+ �x+ 
z + ey, the prediction error ey is uncorrelated with the predictors, i.e. C [ey; x] =
C [ey; z] = 0. Consider the linear prediction of z by x: z = � + �x + ez, C [ez; x] = 0. But
since C [z; x] = 0, we know that � = 0: Now, if we linearly predict y only by x, we will have
y = � + �x + 
 (� + ez) + ey = � + 
� + �x + 
ez + ey: Here the composite error 
ez + ey
is uncorrelated with x and thus is the best linear prediction error. As a result, the OLS
estimator of � is consistent.
Checking the properties of the second option is more involved. Notice that the OLS coe¢ cients
in the linear prediction of y by x and w converge in probability to

plim

�
�̂

!̂

�
=

�
�2x �xw
�xw �2w

��1�
�xy
�wy

�
=

�
�2x �xw
�xw �2w

��1�
��2x

��xw + 
�wz

�
;

so we can see that
plim �̂ = � +

�xw�wz
�2x�

2
w � �2xw


:

Thus in general the second option gives an inconsistent estimator.

2. Because Ê [xjz] = g(z) is a strictly increasing and continuous function, g�1(�) exists and
E [xjz] = 
 is equivalent to z = g�1(
): If Ê[yjz] = f(z); then Ê [yjE [xjz] = 
] = f(g�1(
)):
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5. LINEAR REGRESSION AND OLS

5.1 Fixed and random regressors

1. It simpli�es a lot. First, we can use simpler versions of LLNs and CLTs; second, we do
not need additional conditions apart from existence of some moments. For example, for
consistency of the OLS estimator in the linear mean regression model y = x�+ e; E [ejx] = 0;
only existence of moments is needed, while in the case of �xed regressors we (i) have to use the
LLN for heterogeneous sequences, (ii) have to add the condition 1

n

Pn
i=1 x

2
i !M as n!1.

2. The economist is probably right about treating the regressors as random if he/she has a
random sampling experiment. But the reasoning is ridiculous. For a sampled individual,
his/her characteristics (whether true or false) are �xed; randomness arises from the fact that
this individual is randomly selected.

3. The OLS estimator is unbiased conditional on the whole sample of x-variables, irrespective
of how x�s are generated. The conditional unbiasedness property implies unbiasedness.

5.2 Consistency of OLS under serially correlated errors

1. Indeed,

E[ut] = E[yt � �yt�1] = E[yt]� �E[yt�1] = 0� � � 0 = 0
and

C [ut; yt�1] = C [yt � �yt�1; yt�1] = C [yt; yt�1]� �V [yt�1] = 0:

(ii) Now let us show that �̂ is consistent. Because E[yt] = 0, it immediately follows that

�̂ =
T�1

PT
t=2 ytyt�1

T�1
PT

t=2 y
2
t�1

= � +
T�1

PT
t=2 utyt�1

T�1
PT

t=2 y
2
t�1

p! � +
E [utyt�1]
E
�
y2t
� = �:

(iii) To show that ut is serially correlated, consider

C[ut; ut�1] = C [yt � �yt�1; yt�1 � �yt�2] = � (�C [yt; yt�1]� C [yt; yt�2]) ;

which is generally not zero unless � = 0 or � =
C [yt; yt�2]
C [yt; yt�1]

: As an example of a serially

correlated ut take the AR(2) process

yt = �yt�2 + "t;

where "t is a strict white noise. Then � = 0 and thus ut = yt; serially correlated.

(iv) The OLS estimator is inconsistent if the error term is correlated with the right-hand-side
variables. This is not the same as serial correlatedness of the error term.
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5.3 Estimation of linear combination

1. Consider the class of linear estimators, i.e. one having the form ~� = AY; where A depends
only on data X =((1; x1; z1)

0 : : : (1; xn; zn)0)
0 : The conditional unbiasedness requirement yields

the condition AX = (1; cx; cz)�; where � = (�; �; 
)0: The best linear unbiased estimator is
�̂ = (1; cx; cz)�̂; where �̂ is the OLS estimator. Indeed, this estimator belongs to the class
considered, since �̂ = (1; cx; cz) (X 0X )�1X 0Y = A�Y for A� = (1; cx; cz) (X 0X )�1X 0 and
A�X = (1; cx; cz): Besides,

V
h
�̂jX

i
= �2(1; cx; cz)

�
X 0X

��1
(1; cx; cz)

0

and is minimal in the class because the key relationship (A�A�)A� = 0 holds.

2. Observe that
p
n
�
�̂ � �

�
= (1; cx; cz)

p
n
�
�̂ � �

�
d! N

�
0; V�̂

�
; where

V�̂ = �2
�
1 +

�2x + �
2
z � 2��x�z
1� �2

�
;

�x = (E[x]� cx) =
p
V[x]; �z = (E[z]� cz) =

p
V[z]; and � is the correlation coe¢ cient between

x and z:

3. Minimization of V�̂ with respect to � yields

�opt =

8>><>>:
�x
�z

if

�����x�z
���� < 1;

�z
�x

if

�����x�z
���� � 1:

4. Multicollinearity between x and z means that � = 1 and � and � are unidenti�ed. An
implication is that the asymptotic variance of �̂ is in�nite.

5.4 Incomplete regression

1. Note that
y = x0� + z0
 + �:

We know that E [�jz] = 0; so E [z�] = 0: However, E [x�] 6= 0 unless 
 = 0; because 0 =
E[xe] = E [x (z0
 + �)] = E [xz0] 
 +E [x�] ; and we know that E [xz0] 6= 0: The regression of y
on x and z yields the OLS estimates with the probability limit

p lim

�
�̂


̂

�
=

�
�




�
+Q�1

�
E [x�]
0

�
;

where

Q =

�
E[xx0] E[xz0]
E[zx0] E[zz0]

�
:

We can see that the estimators �̂ and 
̂ are in general inconsistent. To be more precise, the
inconsistency of both �̂ and 
̂ is proportional to E [x�] ; so that unless 
 = 0 (or, more subtly,
unless 
 lies in the null space of E [xz0]), the estimators are inconsistent.
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2. The �rst step yields a consistent OLS estimate �̂ of � because the OLS estimator is consistent
in a linear mean regression. At the second step, we get the OLS estimate


̂ =
�X

ziz
0
i

��1X
ziêi =

�X
ziz

0
i

��1 �X
ziei �

X
zix

0
i

�
�̂ � �

��
=

= 
 +
�
n�1

X
ziz

0
i

��1 �
n�1

X
zi�i � n�1

X
zix

0
i

�
�̂ � �

��
:

Since n�1
P
ziz

0
i
p! E [zz0] ; n�1

P
zix

0
i
p! E [zx0] ; n�1

P
zi�i

p! E [z�] = 0; �̂ � �
p! 0; we

have that 
̂ is consistent for 
:

Therefore, from the point of view of consistency of �̂ and 
̂; we recommend the second method.
The limiting distribution of

p
n (
̂ � 
) can be deduced by using the Delta-method. Observe that

p
n (
̂ � 
) =

 
n�1

X
i

ziz
0
i

!�10@n�1=2X
i

zi�i � n�1
X
i

zix
0
i

 
n�1

X
i

xix
0
i

!�1
n�1=2

X
i

xiei

1A
and

1p
n

X
i

�
zi�i
xiei

�
d! N

��
0
0

�
;

�
E[zz0�2] E[zx0�e]
E[xz0�e] �2E[xx0]

��
:

Having applied the Delta-method and the Continuous Mapping Theorems, we get

p
n (
̂ � 
) d! N

�
0;
�
E[zz0]

��1
V
�
E[zz0]

��1�
;

where

V = E[zz0�2] + �2E[zx0]
�
E[xx0]

��1 E[xz0]
�E[zx0]

�
E[xx0]

��1 E[xz0�e]� E[zx0�e] �E[xx0]��1 E[xz0]:

5.5 Generated coe¢ cient

Observe that

p
n
�
�̂ � �

�
=

 
1

n

nX
i=1

x2i

!�1 
1p
n

nX
i=1

xiui �
p
n (�̂� �) � 1

n

nX
i=1

xizi

!
:

Now,
1

n

nX
i=1

x2i
p! 
2x;

1

n

nX
i=1

xizi
p! 
xz

by the LLN, and � 1p
n

nX
i=1

xiui

p
n (�̂� �)

�
d! N

��
0

0

�
;

�

2x 0
0 1

��
by the CLT. We can assert that the convergence here is joint (i.e., as of a vector sequence) because
of independence of the components. Because of their independence, their joint CDF is just a
product of marginal CDFs, and pointwise convergence of these marginal CDFs implies pointwise
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convergence of the joint CDF. This is important, since generally weak convergence of components
of a vector sequence separately does not imply joint weak convergence.

Now, by the Slutsky theorem,

1p
n

nX
i=1

xiui �
p
n (�̂� �) � 1

n

nX
i=1

xizi
d! N

�
0; 
2x + 


2
xz

�
:

Applying the Slutsky theorem again, we �nd:

p
n
�
�̂ � �

�
d!
�

2x
��1N �0; 
2x + 
2xz� = N �0; 1
2x + 
2xz


4x

�
:

Note how the preliminary estimation step a¤ects the precision in estimation of other parameters:
the asymptotic variance is blown up. The implication is that sequential estimation makes �naive�
(i.e. which ignore preliminary estimation steps) standard errors invalid.

5.6 OLS in nonlinear model

Observe that E [yjx] = � + �x; V [yjx] = (� + �x)2: Consequently, we can use the usual OLS
estimator and White�s standard errors. By the way, the model y = (� + �x)e can be viewed as
y = �+ �x+ u; where u = (�+ �x)(e� 1); E [ujx] = 0; V [ujx] = (�+ �x)2:

5.7 Long and short regressions

Let us denote this estimator by ��1: We have

��1 =
�
X 01X1

��1X 01Y = �X 01X1��1X 01 (X1�1 + X2�2 + E) =
= �1 +

�
1

n
X 01X1

��1� 1
n
X 01X2

�
�2 +

�
1

n
X 01X1

��1� 1
n
X 01E

�
:

Since E [ex1] = 0; we have that n�1X 01E
p! 0 by the LLN. Also, by the LLN, n�1X 01X1

p! E [x1ix01i]
and n�1X 01X2

p! E [x1x02] : Therefore,

��1
p! �1 +

�
E
�
x1x

0
1

���1 E �x1x02��2:
So, in general, ��1 is inconsistent. It will be consistent if �2 lies in the null space of E [x1x02] : Two
special cases of this are: (1) when �2 = 0; i.e. when the true model is Y = X1�1 + e; (2) when
E [x1x02] = 0:

5.8 Ridge regression

1. There is conditional bias: E[~�jX ] = (X 0X +�Ik)�1X 0E [YjX ] = �� (X 0X +�Ik)�1��, unless
� = 0. Next, E[~�] = � � E[(X 0X + �Ik)

�1]�� 6= � unless � = 0: Therefore, estimator is in
general biased.
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2. Observe that

~� = (X 0X + �Ik)�1X 0X� + (X 0X + �Ik)�1X 0E

=

 
1

n

X
i

xix
0
i +

�

n
Ik

!�1
1

n

X
i

xix
0
i� +

 
1

n

X
i

xix
0
i +

�

n
Ik

!�1
1

n

X
i

xi"i:

Since n�1
P
xix

0
i
p! E [xx0] ; n�1

P
xi"i

p! E [x"] = 0; �=n! 0; we have:

~�
p!
�
E
�
xx0
���1 E �xx0�� + �E �xx0���1 0 = �;

that is, ~� is consistent.

3. The math is straightforward:

p
n(~� � �) =

 
1

n

X
i

xix
0
i +

�

n
Ik

!�1
| {z }

#p
(E [xx0])�1

��p
n|{z}
#
0

� +

 
1

n

X
i

xix
0
i +

�

n
Ik

!�1
| {z }

#p
(E [xx0])�1

1p
n

X
i

xi"i| {z }
#d

N
�
0;E

�
xx0"2

��
d! N

�
0; Q�1xxQxxe2Q

�1
xx

�
:

4. The conditional mean squared error criterion E
h
(~� � �)2jX

i
can be used. For the OLS

estimator,

E
h
(�̂ � �)2jX

i
= V[�̂] = (X 0X )�1X 0
X (X 0X )�1:

For the ridge estimator,

E
h
(~� � �)2jX

i
=
�
X 0X + �Ik

��1 �X 0
X + �2��0� �X 0X + �Ik��1 :
By the �rst order approximation, if � is small, (X 0X + �Ik)

�1 � (X 0X )�1(Ik � �(X 0X )�1).
Hence,

E
h
(~� � �)2jX

i
� (X 0X )�1(I � �(X 0X )�1)(X 0
X )(I � �(X 0X )�1)(X 0X )�1

� E[(�̂ � �)2]� �(X 0X )�1[X 0
X (X 0X )�1 + (X 0X )�1X 0
X ](X 0X )�1:

That is E
h
(�̂ � �)2jX

i
� E

h
(~� � �)2jX

i
= A; where A is positive de�nite (exercise: show

this). Thus for small �; ~� is a preferable estimator to �̂ according to the mean squared error
criterion, despite its biasedness.

5.9 Inconsistency under alternative

We are interesting in the question whether the t-statistics can be used to check H0 : � = 0: In order
to answer this question we have to investigate the asymptotic properties of �̂. First of all, under
the null

�̂
p! C[z; y]

V[z]
= �

V[x]
V[z]

= 0:
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It is straightforward to show that under the null the conventional standard error correctly estimates
(i.e. if correctly normalized, is consistent for) the asymptotic variance of �̂ . That is, under the
null

t�
d! N (0; 1) ;

which means that we can use the conventional t-statistics for testing H0.

5.10 Returns to schooling

1. There is nothing wrong in dividing insigni�cant estimates by each other. In fact, this is the
correct way to get a point estimate for the ratio of parameters, according to the Delta-method.
Of course, the Delta-method with

g

��
u1
u2

��
=
u1
u2

should be used in full to get an asymptotic con�dence interval for this ratio, if needed. But
the con�dence interval will necessarily be bounded and centered at 3 in this example.

2. The person from the audience is probably right in his feelings and intentions. But the sug-
gested way of implementing those ideas are full of mistakes. First, to compare coe¢ cients in
a separate regression, one needs to combine them into one regression using dummy variables.
But what is even more important �there is no place for the sup-Wald test here, because the
dummy variables are totally known (in di¤erent words, the threshold is known and need not
be estimates as in threshold regressions). Second, computing standard errors using the boot-
strap will not change the approximation principle because the person will still use asymptotic
critical values. So nothing will essentially change, unless full scale bootstrapping is used. To
say nothing about the fact that in practice hardly the signi�cance of many coe¢ cients will
change after switching from asymptotics to bootstrap.
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6. HETEROSKEDASTICITY AND GLS

6.1 Conditional variance estimation

In the OLS case, the method works not because each �2(xi) is estimated by ê2i ; but because

1

n
X 0
̂X =

1

n

nX
i=1

xix
0
iê
2
i

consistently estimates E[xx0e2] = E[xx0�2(x)]: In the GLS case, the same trick does not work:

1

n
X 0
̂�1X =

1

n

nX
i=1

xix
0
i

ê2i

can potentially consistently estimate E[xx0=e2]; but this is not the same as E[xx0=�2(x)]. Of course,

̂ cannot consistently estimate 
, econometrician B is right about this, but the trick in the OLS
case works for a completely di¤erent reason.

6.2 Exponential heteroskedasticity

1. At the �rst step, get �̂; a consistent estimate of � (for example, OLS). Then construct
�̂2i � exp(x0i�̂) for all i (we don�t need exp(�) since it is a multiplicative scalar that eventually
cancels out) and use these weights at the second step to construct a feasible GLS estimator
of �:

~� =

 
1

n

X
i

�̂�2i xix
0
i

!�1
1

n

X
i

�̂�2i xiyi:

2. The feasible GLS estimator is asymptotically e¢ cient, since it is asymptotically equivalent to
GLS. It is �nite-sample ine¢ cient, since we changed the weights from what GLS presumes.

6.3 OLS and GLS are identical

1. Evidently, E [YjX ] = X� and � = V [YjX ] = X�X 0 + �2In. Since the latter depends on X ,
we are in the heteroskedastic environment.

2. The OLS estimator is
�̂ =

�
X 0X

��1X 0Y;
and the GLS estimator is

~� =
�
X 0��1X

��1X 0��1Y:
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First,

X 0 bE = X 0 �Y � X �X 0X ��1X 0Y� = X 0Y � X 0X �X 0X ��1X 0Y = X 0Y � X 0Y = 0:
Premultiply this by X�:

X�X 0 bE = 0:
Add �2 bE to both sides and combine the terms on the left-hand side:�

X�X 0 + �2In
� bE � �bE = �2 bE :

Now predividing by matrix � gives bE = �2��1 bE :
Premultiply once again by X 0 to get

0 = X 0 bE = �2X 0��1 bE ;
or just X 0��1 bE = 0. Recall now what bE is:

X 0��1Y = X 0��1X
�
X 0X

��1X 0Y
which implies �̂ = ~�. The fact that the two estimators are identical implies that all the
statistics based on the two will be identical and thus have the same distribution.

3. Evidently, in this model the coincidence of the two estimators gives unambiguous superiority
of the OLS estimator. In spite of heteroskedasticity, it is e¢ cient in the class of linear unbiased
estimators, since it coincides with GLS. The GLS estimator is worse since its feasible version
requires estimation of �, while the OLS estimator does not. Additional estimation of � adds
noise which may spoil �nite sample performance of the GLS estimator. But all this is not
typical for ranking OLS and GLS estimators and is a result of a special form of matrix �.

6.4 OLS and GLS are equivalent

1. When �X = X�, we have X 0�X = X 0X� and ��1X = X��1, so that

V
h
�̂jX

i
=
�
X 0X

��1X 0�X �X 0X ��1 = � �X 0X ��1
and

V
h
~�jX

i
=
�
X 0��1X

��1
=
�
X 0X��1

��1
= �

�
X 0X

��1
:

2. In this example,

� = �2

26664
1 � : : : �
� 1 : : : �
...
...
. . .

...
� � : : : 1

37775 ;
and �X = �2(1 + �(n� 1)) � (1; 1; : : : ; 1)0 = X�; where

� = �2(1 + �(n� 1)):

Thus one does not need to use GLS but instead do OLS to achieve the same �nite-sample
e¢ ciency.
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6.5 Equicorrelated observations

This is essentially a repetition of the second part of the previous problem, from which it follows
that under the circumstances �xn the best linear conditionally (on a constant which is the same as
unconditionally) unbiased estimator of � because of coincidence of its variance with that of the GLS
estimator. Appealing to the case when j
j > 1 (which is tempting because then the variance of �xn
is larger than that of, say, x1) is invalid, because it is ruled out by the Cauchy�Schwartz inequality.

One cannot appeal to the usual LLNs because x is non-ergodic. The variance of �xn is V [�xn] =
1
n � 1 +

n�1
n � 
 ! 
 as n ! 1; so the estimator �xn is in general inconsistent (except in the case

when 
 = 0). For an example of inconsistent �xn, assume that 
 > 0 and consider the following
construct: ui = "+ & i; where & i � IID(0; 1� 
) and " � (0; 
) independent of & i for all i: Then the
correlation structure is exactly as in the problem, and 1

n

P
ui

p! "; a random nonzero limit.

6.6 Unbiasedness of certain FGLS estimators

(a) 0 = E [z � z] = E [z] + E [�z] = E [z] + E [z] = 2E [z]. It follows that E [z] = 0:

(b) E [q (")] = E [�q (�")] = E [�q (")] = �E [q (")] : It follows that E [q (")] = 0:

Consider
~�F � � =

�
X 0�̂�1X

��1
X 0�̂�1E :

Let �̂ be an estimate of � which is a function of products of least squares residuals, i.e.

�̂ = F
�
MEE 0M

�
= H

�
EE 0
�

for M = I � X (X 0X )�1X 0: Conditional on X , the expression
�
X 0�̂�1X

��1
X 0�̂�1E is odd in E ,

and E and �E have the same conditional distribution. Hence by (b),

E
h
~�F � �

i
= 0:
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7. VARIANCE ESTIMATION

7.1 White estimator

1. Yes, one should use the White formula, but not because �2Q�1xx does not make sense. It does
make sense, but is poorly related to the OLS asymptotic variance, which in general takes the
�sandwich� form. It is not true that �2 varies from observation to observation, if by �2 we
mean unconditional variance of the error term.

2. The �rst part of the claim is totally correct. But availability of the t or Wald statistics is not
enough to do inference. We need critical values for these statistics, and they can be obtained
only from some distribution theory, asymptotic in particular.

7.2 HAC estimation under homoskedasticity

Under conditional homoskedasticity,

E
�
xtx

0
t�jetet�j

�
= E

�
E
�
xtx

0
t�jetet�j jxt; xt�1; : : :

��
= E

�
xtx

0
t�jE [etet�j jxt; xt�1; : : :]

�
= 
jE

�
xtx

0
t�j
�
:

Using this, the long-run variance of xtet will be

+1X
j=�1

E
�
xtx

0
t�jetet�j

�
=

+1X
j=�1


jE
�
xtx

0
t�j
�
;

and its Newey�West-type HAC estimator will be

+mX
j=�m

�
1� jjj

m+ 1

�

̂j

\
E
h
xtx0t�j

i
;

where


̂j =
1

T

min(T;T+j)X
t=max(1;1+j)

�
yt � x0t�̂

��
yt�j � x0t�j �̂

�
;

\
E
h
xtx0t�j

i
=

1

T

min(T;T+j)X
t=max(1;1+j)

xtx
0
t�j :

It is not clear whether the estimate is positive de�nite.
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7.3 Expectations of White and Newey�West estimators in IID setting

The White formula (apart from the factor n) is

V̂�̂ =
�
X 0X

��1 nX
i=1

xix
0
iê
2
i

�
X 0X

��1
:

Because êi = ei � x0i(�̂ � �); we have ê2i = e2i � 2x0i(�̂ � �)ei + x0i(�̂ � �)(�̂ � �)0xi: Also recall that
�̂ � � = (X 0X )�1

Pn
j=1 xjej : Hence,

E

"
nX
i=1

xix
0
iê
2
i jX
#
= E

"
nX
i=1

xix
0
ie
2
i jX
#
� 2E

"
nX
i=1

xix
0
ix
0
i(�̂ � �)eijX

#

+E

"
nX
i=1

xix
0
ix
0
i(�̂ � �)(�̂ � �)0xijX

#

= �2
nX
i=1

xix
0
i

�
1� x0i

�
X 0X

��1
xi

�
;

because E[(�̂ � �)eijX ] = (X 0X )�1X 0E [eiEjX ] = �2 (X 0X )�1 xi and E[(�̂ � �)(�̂ � �)0jX ] =
�2 (X 0X )�1 : Finally,

E[V̂�̂ jX ] =
�
X 0X

��1 E" nX
i=1

xix
0
iê
2
i jX
# �
X 0X

��1
= �2

�
X 0X

��1 nX
i=1

xix
0
i

�
1� x0i

�
X 0X

��1
xi

� �
X 0X

��1
:

Let !j = 1 � jjj=(m + 1): The Newey�West estimator of the asymptotic variance matrix of �̂
with lag truncation parameter m is �V�̂ = (X

0X )�1 Ŝ (X 0X )�1 ; where

Ŝ =

+mX
j=�m

!j

min(n;n+j)X
i=max(1;1+j)

xix
0
i�j

�
ei � x0i(�̂ � �)

��
ei�j � x0i�j(�̂ � �)

�
:

Thus

E[ŜjX ] =
+mX
j=�m

!j

min(n;n+j)X
i=max(1;1+j)

xix
0
i�jE

h�
ei � x0i(�̂ � �)

��
ei�j � x0i�j(�̂ � �)

�
jX
i

=
+mX
j=�m

!j

min(n;n+j)X
i=max(1;1+j)

xix
0
i�j

0@ �2Ifj=0g + x0iE
h
(�̂ � �)(�̂ � �)0jX

i
xi�j

�x0iE
h
(�̂ � �)ei�j jX

i
� x0i�jE

h
ei(�̂ � �)jX

i 1A
= �2X 0X � �2

+mX
j=�m

!j

min(n;n+j)X
i=max(1;1+j)

�
x0i
�
X 0X

��1
xi�j

�
xix

0
i�j :

Finally,

E[ �V�̂jX ] = �2
�
X 0X

��1 � �2 �X 0X ��1 +mX
j=�m

!j

min(n;n+j)X
i=max(1;1+j)

�
x0i
�
X 0X

��1
xi�j

�
xix

0
i�j
�
X 0X

��1
:
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8. NONLINEAR REGRESSION

8.1 Local and global identi�cation

The quasiregressor is g� = (1; 2�2x)
0 : The local ID condition that E[g�g0�] is of full rank is satis�ed

since it is equivalent to detE[g�g0�] = V [2�2x] 6= 0 which holds due to �2 6= 0 and V [x] 6= 0: But
the global ID condition fails because the sign of �2 is not identi�ed: together with the true pair
(�1; �2)

0 ; another pair (�1;��2)0 also minimizes the population least squares criterion.

8.2 Identi�cation when regressor is nonrandom

In the linear case, Qxx = E[x2]; a scalar. Its rank (i.e. it itself) equals zero if and only if Pr fx = 0g =
1; i.e. when a = 0; the identi�cation condition fails. When a 6= 0; the identi�cation condition is
satis�ed. Graphically, when all point lie on a vertical line, we can unambiguously draw a line from
the origin through them except when all points are lying on the ordinate axis.

In the nonlinear case, Qgg = E[g� (x; �) g� (x; �)0] = g� (a; �) g� (a; �)
0 ; a k � k matrix. This

matrix is a square of a vector having rank 1, hence its rank can be only one or zero. Hence, if k > 1
(there are more than one parameter), this matrix cannot be of full rank, and identi�cation fails.
Graphically, there are an in�nite number of curves passing through a set of points on a vertical line.
If k = 1 and g� (a; �) 6= 0; there is identi�cation; if k = 1 and g� (a; �) = 0; there is identi�cation
failure (see the linear case). Intuition in the case k = 1: if marginal changes in � shift the only
regression value g (a; �) ; it can be identi�ed; if they do not shift it, many values of � are consistent
with the same value of g (a; �).

8.3 Cobb�Douglas production function

1. This idea must have come from a temptation to take logs of the production function:

logQ� logL = log�+ � (logK � logL) + log ":

But the error in this equation, e = log " � E [log "], even after centering, may not have the
property E [ejK;L] = 0, or even E

�
(K;L)0 e

�
= 0. As a result, OLS will generally give an

inconsistent estimate for �.

2. Note that the regression function is E [QjK;L] = �K�L1��E ["jK;L] = �K�L1��: The re-
gression is nonlinear, but using the concentration method leads to the algorithm described in
the problem. Hence, this suggestion gives a consistent estimate for �: [Remark: in practice,
though, a researcher would probably include also an intercept to be more con�dent about
validity of speci�cation.]
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8.4 Exponential regression

The local IC is satis�ed: the matrix

Qgg = E

26664@ exp (�+ �x)
@

�
�

�

� @ exp (�+ �x)

@

�
�

�

�0
37775
�=0

= exp (�)2 E
��

1 x
x x2

��
= exp (2�) I2

is invertable. The asymptotic distribution is normal with variance matrix

VNLLS =
�2

exp (2�)
I2:

The concentration algorithm uses the grid on �: For each � on this grid, we can estimate exp (� (�))
by OLS from the regression of y on exp (�x) ; so the estimate and sum of squared residuals are

�̂ (�) = log

Pn
i=1 exp (�xi) yiPn
i=1 exp (2�xi)

;

SSR (�) =

nX
i=1

(yi � exp (�̂ (�) + �xi))2 :

Choose such �̂ that yields minimum value of SSR (�) on the grid. Set �̂ = �̂(�̂): The standard
errors se (�̂) and se(�̂) can be computed as square roots of the diagonal elements of

SSR
�
�̂
�

n

 
nX
i=1

exp
�
2�̂+ 2�̂xi

�� 1 xi
xi x2i

�!�1
:

Note that we cannot use the above expression for VNLLS since in practice we do not know the
distribution of x and that � = 0:

8.5 Power regression

Under H0 : � = 0; the parameter � is not identi�ed. Therefore, the Wald (or t) statistic does not
have a usual asymptotic distribution, and we should use the sup-Wald statistic

supW = sup
�
W(�);

where W(�) is the Wald statistic for � = 0 when the unidenti�ed parameter is �xed at value �.
The asymptotic distribution is non-standard and can be obtained via simulations.

8.6 Simple transition regression

1. The marginal in�uence is

@ (�1 + �2=(1 + �3x))

@x

����
x=0

=
��2�3

(1 + �3x)
2

����
x=0

= ��2�3:
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So the null is H0 : �2�3 + 1 = 0: The t-statistic is

t =
�̂2�̂3 + 1

se(�̂2�̂3)
;

where �̂2 and �̂3 are elements of the NLLS estimator, and se(�̂2�̂3) is a standard error for
�̂2�̂3 which can be computed from the NLLS asymptotics and Delta-method. The test rejects
when jtj > q

N(0;1)
1��=2 :

2. The regression function does not depend on x when, for example, H0 : �2 = 0: As under
H0 the parameter �̂3 is not identi�ed, inference is nonstandard. The Wald statistic for a
particular value of �3 is

W (�3) =

 
�̂2

se(�̂2)

!2
;

and the test statistic is
supW = sup

�3

W (�3) :

The test rejects when supW > qD1��; where the limiting distribution D is obtained via simu-
lations.

8.7 Nonlinear consumption function

1. When � = 0; the parameter 
 is not identi�ed, and when 
 = 0; the parameters � and � are
not separately identi�ed. A third situation occurs if the support of yt lies entirely above or
entirely below �; the parameters � and � are not separately identi�ed (note: a separation of
this into two �di¤erent�situations is unfair).

2. Run the concentration method with respect to the parameter 
: The quasi-regressor is�
1; I fyt�1 > �g ; y
t�1; �y



t�1 log yt�1

�0
:

When constructing the standard errors, beside using the quasiregressor we have to apply HAC
estimation of asymptotic variance, because the regression error does not have a martingale
di¤erence property. Indeed, note that the information yt�1; yt�2; yt�3; : : : does not include
ct�1; ct�2; ct�3; : : : and therefore, for j > 0 and et = ct � E [ctjyt�1; yt�2; yt�3; : : :]

E [etet�j ] = E [E [etet�j jyt�1; yt�2; yt�3; : : :]] 6= E [E [etjyt�1; yt�2; yt�3; : : :] et�j ] = 0;

as et�j is not necessarily measurable relative to yt�1; yt�2; yt�3; : : : :

3.

(a) Asymptotically,

t
̂=1 =

̂ � 1
se(
̂)

is distributed as N (0; 1). Thus, reject if t
̂=1 < q
N(0;1)
� ; or, equivalently, 
̂ < 1 +

se(
̂)q
N(0;1)
� :

(b) Bootstrap 
̂ � 1 whose bootstrap analog is 
̂� � 
̂; get the left �-quantile q��; and reject
if 
̂ < 1 + q��:
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9. EXTREMUM ESTIMATORS

9.1 Regression on constant

For the �rst estimator use standard LLN and CLT:

�̂1 =
1

n

nX
i=1

yi
p! E[y] = � (consistency),

p
n(�̂1 � �) =

1p
n

nX
i=1

ei
d! N (0;V[e]) = N

�
0; �2

�
(asymptotic normality).

Consider

�̂2 = argmin
b

(
log b2 +

1

nb2

nX
i=1

(yi � b)2
)
: (9.1)

Denote

�y =
1

n

nX
i=1

yi; y2 =
1

n

nX
i=1

y2i :

The FOC for this problem gives after rearrangement:

�̂
2
+ �̂�y � y2 = 0, �̂� = �

�y

2
�

q
�y2 + 4y2

2
:

The two values �̂� correspond to the two di¤erent solutions of a local minimization problem in
population:

E
�
log b2 +

1

b2
(y � b)2

�
! min

b
, b� = �

E[y]
2
�
p
E[y]2 + 4E[y2]

2
= �;�2�: (9.2)

Note that the SOC are satis�ed at both b�; so both are local minima. Direct comparison yields
that b+ = � is a global minimum. Hence, the extremum estimator �̂2 = �̂+ is consistent for
�. The asymptotics of �̂2 can be found using the theory of extremum estimators. For f(y; b) =
log b2 + b�2 (y � b)2 ;

@f(y; b)

@b
=
2

b
� 2(y � b)

2

b3
� 2(y � b)

b2
) E

"�
@f(y; �)

@b

�2#
=
4�

�6
;

@2f(y; b)

@b2
=
6(y � b)2

b4
+
8(y � b)
b3

) E
�
@2f(y; �)

@b2

�
=
6

�2
:

Consequently,
p
n(�̂2 � �)

d! N
�
0;

�

9�2

�
:

Consider now

�̂3 =
1

2
argmin

b

nX
i=1

f(yi; b);
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where
f(y; b) =

�y
b
� 1
�2
:

Note that
@f(y; b)

@b
= �2y

2

b3
+
2y

b2
;

@2f(y; b)

@b2
=
6y2

b4
� 4y
b3
:

The FOC is
nX
i=1

@f(yi; b̂)

@b
= 0;

which implies

b̂ =
y2

�y
;

and the estimate is

�̂3 =
b̂

2
=
1

2

y2

�y

p

! 1

2

E[y2]
E[y]

= �:

To �nd the asymptotic variance calculate

E

"�
@f(y; 2�)

@b

�2#
=
�� �4

16�6
; E

�
@2f(y; 2�)

@b2

�
=

1

4�2
:

The derivatives are taken at point b = 2� because 2�; and not �; is the solution of the extremum
problem minb E[f(y; b)]. As follows from our discussion,

p
n(b̂� 2�) d! N

�
0;
�� �4

�2

�
)

p
n(�̂3 � �)

d! N
�
0;
�� �4

4�2

�
:

A safer way to obtain this asymptotics is probably to change variable in the minimization problem
from the beginning:

�̂3 = argmin
b

nX
i=1

� y
2b
� 1
�2
;

and proceed as above.
No one of these estimators is a priori asymptotically better than the others. The idea behind

these estimators is: �̂1 is just the usual OLS estimator, �̂2 is the ML estimator using conditional
normality: yjx � N (�; �2): The third estimator may be thought of as the WNLLS estimator with
the conditional variance function �2(x; b) = b2; though it is not exactly that: one should divide by
�2(x; �) in the construction of WNLLS.

9.2 Quadratic regression

Note that we have conditional homoskedasticity. The regression function is g(x; �) = (�+x)2. The

estimator �̂ is NLLS, with
@g(x; �)

@�
= 2(� + x). Then Qgg = E

h
(@g(x; 0)=@�)2

i
= 28

3 . Therefore,
p
n�̂

d! N (0; 328�
2
0).

The estimator ~� is an extremum one, with

h(x; y; �) = � y

(� + x)2
� ln(� + x)2:
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First we check the identi�cation condition. Indeed,

@h(x; y; �)

@�
=

2y

(� + x)3
� 2

� + x
;

so the FOC to the population problem is

E
�
@h(x; y; �)

@�

�
= �2�E

�
� + 2x

(� + x)3

�
;

which equals zero if and only if � = 0. It can be veri�ed that the Hessian is negative on all B,
hence we have a global maximum. Note that the ID condition would not be satis�ed if the true
parameter was di¤erent from zero. Thus, ~� works only for �0 = 0.

Next,
@2h(x; y; �)

@�2
= � 6Y

(� + x)4
+

2

(� + x)2
:

Then

� = E

"�
2y

x3
� 2

x

�2#
=
31

40
�20; 
 = E

�
�6y
x4
+
2

x2

�
= �2:

Therefore,
p
n~�

d! N (0; 31160�
2
0).

We can see that �̂ asymptotically dominates ~�.

9.3 Nonlinearity at left hand side

1. The FOCs for the NLLS problem are

0 =
@
Pn

i=1

�
(yi + �̂)

2 � �̂xi
�2

@a
= 4

nX
i=1

�
(yi + �̂)

2 � �̂xi
�
(yi + �̂) ;

0 =
@
Pn

i=1

�
(yi + �̂)

2 � �̂xi
�2

@b
= �2

nX
i=1

�
(yi + �̂)

2 � �̂xi
�
xi:

Consider the �rst of these. The associated population analog is

0 = E [e (y + �)] ;

and it does not follow from the model structure. The model implies that any function of x
is uncorrelated with the error e; but y + � = �

p
�x+ e is generally correlated with e. The

invalidity of population conditions on which the estimator is based leads to inconsistency.
The model di¤ers from a nonlinear regression in that the derivative of e with respect to
parameters is not only a function of x; the conditioning variable, but also of y; while in a
nonlinear regression it is (it equals minus the quasi-regressor).

2. Let us select a just identifying set of instruments which one would use if the left hand side of
the equation was not squared. This corresponds to the use the following moment conditions
implied by the model:

0 = E
��

e

ex

��
:
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The corresponding CMM estimator results from applying the analogy principle:

0 =
nX
i=1

�
(yi + ~�)

2 � ~�xi�
(yi + ~�)

2 � ~�xi
�
xi

�
:

According to the GMM asymptotic theory, (~�; ~�)0 is consistent for (�; �)0 and asymptotically
normal with asymptotic variance

V = �2
�

2 (E [y] + �) �E [x]
2 (E [yx] + �E [x]) �E

�
x2
� ��1� 1 E [x]

E [x] E
�
x2
� �

�
�
2 (E [y] + �) 2 (E [yx] + �E [x])
�E [x] �E

�
x2
� ��1

:

9.4 Least fourth powers

Consider the population level objective function

E
h
(y � bx)4

i
= E

h
(e+ (� � b)x)4

i
= E

h
e4 + 4e3 (� � b)x+ 6e2 (� � b)2 x2 + 4e (� � b)3 x3 + (� � b)4 x4

i
= E

�
e4
�
+ 6 (� � b)2 E

�
e2x2

�
+ (� � b)4 E

�
x4
�
;

where some of the terms disappear because of the independence of x and e and symmetry of the
distribution of e. The last two terms in the objective function are nonnegative, and are zero if and
only if (assuming that x has a nondegenerate distribution) b = �: Thus the (global) ID condition
is satis�ed.

The squared �score�and second derivative are0@ @ (y � bx)4

@b

�����
b=�

1A2 = 16e6x2; @2 (y � bx)4

@b2

�����
b=�

= 12e2x2;

with expectations 16E
�
e6
�
E
�
x2
�
and 12E

�
e2
�
E
�
x2
�
: According to the properties of extremum

estimators, �̂ is consistent and asymptotically normally distributed with asymptotic variance

V�̂ =
�
12E

�
e2
�
E
�
x2
���1 � 16E �e6�E �x2� � �12E �e2�E �x2���1 = 1

9

E
�
e6
�

(E [e2])2
1

E [x2]
:

When x and e are normally distributed,

V�̂ =
5

3

�2e
�2x
:

The OLS estimator is also consistent and asymptotically normally distributed with asymptotic
variance (note that there is conditional homoskedasticity)

VOLS =
E
�
e2
�

E [x2]
:

When x and e are normally distributed,

VOLS =
�2e
�2x
;

which is smaller than V�̂:
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9.5 Asymmetric loss

We �rst need to make sure that we are consistently estimating the right thing. Assume conveniently
that E [e] = 0 to �x the scale of �: Let F and f denote the CDF and PDF of e; respectively. Assume
that these are continuous. Note that�

y � a� x0b
�3

=
�
e+ �� a+ x0 (� � b)

�3
= e3 + 3e2

�
�� a+ x0 (� � b)

�
+3e

�
�� a+ x0 (� � b)

�2
+
�
�� a+ x0 (� � b)

�3
:

Now,

E
�
�
�
y � a� x0b

��
=

0@ 
E
h
(y � a� x0b)3 jy � a� x0b � 0

i
Prfy � a� x0b � 0g

�(1� 
)E
h
(y � a� x0b)3 jy � a� x0b < 0

i
Prfy � a� x0b < 0g

1A
= 


Z
dFx

Z
e+��a+x0(��b)�0

0@ e3 + 3e2 (�� a+ x0 (� � b))
+3e (�� a+ x0 (� � b))2

+(�� a+ x0 (� � b))3

1A dFejx

�
�
1� E

�
F
�
� (�� a)� x0 (� � b)

���
�(1� 
)

Z
dFx

Z
e+��a+x0(��b)<0

0@ e3 + 3e2 (�� a+ x0 (� � b))
+3e (�� a+ x0 (� � b))2

+(�� a+ x0 (� � b))3

1A dFejx

�E
�
F
�
� (�� a)� x0 (� � b)

��
:

Is this minimized at � and �? The question about global minimum is very hard to answer. Let us
restrict ourselves to the local optimum analysis. Take the derivatives and evaluate them at � and
�:

@E [� (y � a� x0b)]

@

�
a

b

�
��������
�;�

= 3
�
�
E

�
e2je � 0

�
(1� F (0)) + (1� 
)E

�
e2je < 0

�
F (0)

�� 1

E [x]

�
;

where we used that in�nitesimal change of a and b around � and � does not change the sign of

e+ �� a+ x0 (� � b) :

For consistency, we need these derivatives to be zero. This holds if the expression in round brackets
is zero, which is true when

E
�
e2je < 0

�
E [e2je � 0] =

1� F (0)
F (0)

� 


1� 
 :

When there is consistency, the asymptotic normality follows from the theory of extremum
estimators. Because

@�(u)=@u = 3u2
�

 from the right,
�(1� 
) from the left,

@2�(u)=@u2 = 6u

�

 from the right,
�(1� 
) from the left,
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the expected derivatives of the extremum function are

E
�
h�h

0
�

�
= E

26664@� (y � a� x0b)
@

�
a

b

� @� (y � a� x0b)

@

�
a

b

�0
37775
�;�

= 9
2E
�
e4
�
1

x

��
1

x

�0
je � 0

�
Prfe � 0g+ 9(1� 
)2E

�
e4
�
1

x

��
1

x

�0
je < 0

�
Prfe < 0g

= 9E
��
1

x

��
1

x

�0� �

2E

�
e4je � 0

�
(1� F (0)) + (1� 
)2E

�
e4je < 0

�
F (0)

�
;

E [h��] = E

26664@2� (y � a� x0b)
@

�
a

b

��
a

b

�0
37775
�;�

= 6
E
�
e

�
1

x

��
1

x

�0
je � 0

�
Prfe � 0g � 6(1� 
)E

�
e

�
1

x

��
1

x

�0
je < 0

�
Prfe < 0g

= 6E
��
1

x

��
1

x

�0�
(
E [eje � 0] (1� F (0))� (1� 
)E [eje < 0]F (0)) :

If the last expression in round brackets is non-zero, and no element of x is deterministically constant,
then the local ID condition is satis�ed. The formula for the asymptotic variance easily follows.
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10. MAXIMUM LIKELIHOOD ESTIMATION

10.1 Normal distribution

Since x1; : : : ; xn are from N (�; �2); the loglikelihood function is

`n = const� n ln j�j �
1

2�2

nX
i=1

(xi � �)2 = const� n ln j�j �
1

2�2

 
nX
i=1

x2i � 2�
nX
i=1

xi + n�
2

!
:

The equation for the ML estimator is �2 + �x� � x2 = 0. The equation has two solutions �1 > 0;
�2 < 0:

�1 =
1

2

�
��x+

q
�x2 + 4x2

�
; �2 =

1

2

�
��x�

q
�x2 + 4x2

�
:

Note that `n is a symmetric function of � except for the term ��1
Pn

i=1 xi: This term determines
the solution. If �x > 0 then the global maximum of `n will be at �1; otherwise at �2: That is, the
ML estimator is

�̂ML =
1

2

�
��x+ sgn(�x)

q
�x2 + 4x2

�
:

It is consistent because, if � 6= 0; sgn(�x) p! sgn(�) and

�̂ML
p! 1

2

�
�E [x] + sgn(E [x])

p
(E [x])2 + 4E [x2]

�
=
1

2

�
��+ sgn(�)

p
�2 + 8�2

�
= �:

10.2 Pareto distribution

The loglikelihood function is

`n = n ln�� (�+ 1)
nX
i=1

lnxi:

(a) The ML estimator �̂ of � is the solution of @`n=@� = 0. That is, �̂ML = 1=lnx; which

is consistent for �; because 1=lnx
p! 1=E [lnx] = �: The asymptotics is

p
n
�
�̂ML � �

�
d!

N
�
0; I�1

�
; where the information matrix is I = �E [@s=@�] = �E

�
�1=�2

�
= 1=�2:

(b) The Wald test for a simple hypothesis is

W = n(�̂� �)0I(�̂)(�̂� �) = n
(�̂� �0)2

�̂
2

d! �21:
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The Likelihood Ratio test statistic for a simple hypothesis is

LR = 2
�
`n(�̂)� `n(�0)

�
= 2

 
n ln �̂� (�̂+ 1)

nX
i=1

lnxi � n ln�0 + (�0 + 1)
nX
i=1

lnxi

!

= 2

 
n ln

�̂

�0
� (�̂� �0)

nX
i=1

lnxi

!
d! �21:

The Lagrange Multiplier test statistic for a simple hypothesis is

LM =
1

n

nX
i=1

s(xi; �0)
0I(�0)�1

nX
i=1

s(xi; �0) =
1

n

"
nX
i=1

�
1

�0
� lnxi

�#2
�20

= n
(�̂� �0)2

�̂
2

d! �21:

Observe that W and LM are numerically equal.

10.3 Comparison of ML tests

Recall that for the ML estimator �̂ and the simple hypothesis H0 : � = �0;

W = n(�̂� �0)0I(�̂)(�̂� �0)

and
LM =

1

n

X
i

s(xi; �0)
0I(�0)�1

X
i

s(xi; �0):

1. The density of a Poisson distribution with parameter � is

f(xj�) = �x

x!
e��;

so �̂ML = �x; I(�) = 1=�: For the simple hypothesis with �0 = 3 the test statistics are

W =
n(�x� 3)2

�x
; LM =

1

n

 X
i

xi
3
� n

!2
3 =

n(�x� 3)2
3

;

and W � LM for �x � 3 and W � LM for �x � 3.

2. The density of an exponential distribution with parameter � is

f(xj�) = 1

�
e�

x
� ;

so �̂ML = �x; I(�) = 1=�2: For the simple hypothesis with �0 = 3 the test statistics are

W =
n(�x� 3)2

�x2
; LM =

1

n

 X
i

xi
32
� n

3

!2
32 =

n(�x� 3)2
9

;

and W � LM for 0 < �x � 3 and W � LM for �x � 3.
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3. The density of a Bernoulli distribution with parameter � is

f(xj�) = �x(1� �)1�x;

so �̂ML = �x; I(�) = ��1(1 � �)�1: For the simple hypothesis with �0 = 1
2 the test statistics

are

W = n

�
�x� 1

2

�2
�x(1� �x) ; LM =

1

n

 P
i xi
1
2

� n�
P

i xi
1
2

!2
1

2

1

2
= 4n

�
�x� 1

2

�2
;

andW � LM (since �x(1��x) � 1=4). For the simple hypothesis with �0 = 2
3 the test statistics

are

W = n

�
�x� 2

3

�2
�x(1� �x) ; LM =

1

n

 P
i xi
2
3

� n�
P

i xi
1
3

!2
2

3

1

3
=
9

2
n

�
�x� 2

3

�2
;

therefore W � LM when 2=9 � �x(1� �x) and W � LM when 2=9 � �x(1� �x): Equivalently,
W � LM for 13 � �x �

2
3 and W � LM for 0 < �x � 1

3 or
2
3 � �x � 1:

10.4 Invariance of ML tests to reparameterizations of null

1. Denote by �0 the set of ��s that satisfy the null. Since f is one-to-one, �0 is the same under
both parameterizations of the null. Then the restricted and unrestricted ML estimators are
invariant to how H0 is formulated, and so is the LR statistic.

2. When f is linear, f(h(�))� f(0) = Fh(�)� F0 = Fh(�); and the matrix of derivatives of h
translates linearly into the matrix of derivatives of g: G = FH; where F = @f(x)=@x0 does
not depend on its argument x; and thus need not be estimated. Then

Wg = n

 
1

n

nX
i=1

g(�̂)

!0 �
GV̂�̂G

0
��1 1

n

nX
i=1

g(�̂)

!

= n

 
1

n

nX
i=1

Fh(�̂)

!0 �
FHV̂�̂H

0F 0
��1 1

n

nX
i=1

Fh(�̂)

!

= n

 
1

n

nX
i=1

h(�̂)

!0 �
HV̂�̂H

0
��1 1

n

nX
i=1

h(�̂)

!
=Wh;

but this sequence of equalities does not work when f is nonlinear.

3. The W statistic for the reparameterized null equals

W =

n

 
�̂1 � �
�̂2 � �

� 1
!2

0BBB@
1

�̂2 � �

� �̂1 � ��
�̂2 � �

�2
1CCCA
0�

i11 i12
i12 i22

��10BBB@
1

�̂2 � �

� �̂1 � ��
�̂2 � �

�2
1CCCA

=
n
�
�̂1 � �̂2

�2
i11 � 2i12 �̂1 � �

�̂2 � �
+ i22

 
�̂1 � �
�̂2 � �

!2 ;
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where bI = � i11 i12
i12 i22

�
; bI�1 = � i11 i12

i12 i22

�
:

By choosing � close to �̂2; we can make W as close to zero as desired. The value of � equal
to (�̂1 � �̂2i12=i22)=(1� i12=i22) gives the largest possible value to the W statistic equal to

n
�
�̂1 � �̂2

�2
i11 � (i12)2 =i22

:

10.5 Misspeci�ed maximum likelihood

1. Method 1. It is straightforward to derive the loglikelihood function and see that the problem
of its maximization implies minimization of the sum of squares of deviations of y from g (x; b)
over b; i.e. the NLLS problem. But we know that the NLLS estimator is consistent.
Method 2. It is straightforward to see that the population analog of the FOC for the ML
problem is that the expected product of quasi-regressor and deviation of y from g (x; �) equals
zero, but this system of moment conditions follows from the regression model.

2. By construction, it is an extremum estimator. It will be consistent for the value that solves
the analogous extremum problem in population:

�̂
p! �� � argmax

q2�
E [f(zjq)] ;

provided that this �� is unique (if it is not unique, no nice asymptotic properties are ex-
pected). It is unlikely that this limit will be at true �: As an extremum estimator, �̂ will be
asymptotically normal, although centered around wrong value of the parameter:

p
n
�
�̂ � ��

�
d! N

�
0; V�̂

�
:

3. The parameter vector is q = (b0; c0)0 ;where c enters the assumed form of �2t : The conditional
density is

log f (ytjIt�1; b; c) = �
1

2
log �2t (b; c)�

(yt � x0tb)
2

2�2t (b; c)
:

The conditional score is

s (ytjIt�1; b; c) =

0BBBB@
(yt � x0tb)xt
�2t (b; c)

+
1

2�2t (b; c)

 
(yt � x0tb)

2

�2t (b; c)
� 1
!
@�2t (b; c)

@b

1

2�2t (b; c)

 
(yt � x0tb)

2

�2t (b; c)
� 1
!
@�2t (b; c)

@c

1CCCCA :

The ML estimator will estimate such b and c that make E [s (ytjIt�1; b; c)] = 0: Will this b
be equal to true �? It is easy to see that if we evaluate the conditional score at b = �, its
expectation will be

E

0BB@
1

2�2t (�; c)

�
V [ytjIt�1]
�2t (�; c)

� 1
�
@�2t (�; c)

@b
1

2�2t (�; c)

�
V [ytjIt�1]
�2t (�; c)

� 1
�
@�2t (�; c)

@c

1CCA :
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This may not be zero when �2t (�; c) does not coincide with V [ytjIt�1] for any c; so it does not
necessarily follow that the ML estimator of � will be consistent. However, if �2t (�; c) does
not depend on �; it is clear that the �-part of this will be zero, and the c-part will be zero
too for some c (this condition will de�ne the probability limit of ĉ; the ML estimator of c).
In this case, the ML estimator of � will be consistent. In fact, it is easy to see that it will
equal to a weighted least squares estimator with weights �2t (ĉ)

�̂ =

 X
t

xtx
0
t

�2t (ĉ)

!�1X
t

xtyt
�2t (ĉ)

:

10.6 Individual e¤ects

The loglikelihood is

`n
�
�1; : : : ; �n; �

2
�
= const� n log(�2)� 1

2�2

nX
i=1

�
(xi � �i)2 + (yi � �i)2

	
:

FOC give

�̂iML =
xi + yi
2

; �2ML =
1

2n

nX
i=1

�
(xi � �̂iML)

2 + (yi � �̂iML)
2
	
;

so that

�̂2ML =
1

4n

nX
i=1

(xi � yi)2:

Because

�̂2ML =
1

4n

nX
i=1

�
(xi � �i)2 + (yi � �i)2 � 2(xi � �i)(yi � �i)

	 p! �2

4
+
�2

4
� 0 = �2

2
;

the ML estimator is inconsistent. Why? The maximum likelihood method presumes a parameter
vector of �xed dimension. In our case the dimension instead increases with the number of obser-
vations. The information from new observations goes to estimation of new parameters instead of
enhancing precision of the already existing ones. To construct a consistent estimator, just multiply
�̂2ML by 2. There are also other possibilities.

10.7 Irregular con�dence interval

The maximum likelihood estimator of � is

�̂ML = x(n) � maxfx1; : : : ; xng

whose asymptotic distribution is exponential:

Fn(�̂ML��)(t)! exp(t=�) � Ift�0g + Ift>0g:
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The most elegant way to proceed is by pivotizing this distribution �rst:

Fn(�̂ML��)=�(t)! exp(t) � Ift�0g + Ift>0g:

The left 5%-quantile for the limiting distribution is log(:05): Thus, with probability 95%, log(:05) �
n(�̂ML � �)=� � 0; so the con�dence interval for � is�

x(n); (1 + log(:05)=n)
�1x(n)

�
:

10.8 Trivial parameter space

Since the parameter space contains only one point, the latter is the optimizer. If �1 = �0; then the
estimator �̂ML = �1 is consistent for �0 and has in�nite rate of convergence. If �1 6= �0; then the
ML estimator is inconsistent.

10.9 Nuisance parameter in density

We need to apply the Taylor�s expansion twice, i.e. for both stages of estimation.
The FOC for the second stage of estimation is

1

n

nX
i=1

sc(yi; xi; ~
; �̂m) = 0;

where sc(y; x; 
; �) �
@ log fc(yjx; 
; �)

@

is the conditional score. Taylor�s expansion with respect to

the 
-argument around 
0 yields

1

n

nX
i=1

sc(yi; xi; 
0; �̂m) +
1

n

nX
i=1

@sc(yi; xi; 

�; �̂m)

@
0
(~
 � 
0) = 0;

where 
� lies between ~
 and 
0 componentwise.
Now Taylor-expand the �rst term around �0:

1

n

nX
i=1

sc(yi; xi; 
0; �̂m) =
1

n

nX
i=1

sc(yi; xi; 
0; �0) +
1

n

nX
i=1

@sc(yi; xi; 
0; �
�)

@�0
(�̂m � �0);

where �� lies between �̂m and �0 componentwise.
Combining the two pieces, we get:

p
n(~
 � 
0) = �

 
1

n

nX
i=1

@sc(yi; xi; 

�; �̂m)

@
0

!�1
�

�
 
1p
n

nX
i=1

sc(yi; xi; 
0; �0) +
1

n

nX
i=1

@sc(yi; xi; 
0; �
�)

@�0
p
n(�̂m � �0)

!
:

Now let n!1. Under ULLN for the second derivative of the log of the conditional density, the

�rst factor converges in probability to �(I

c )�1, where I

c � �E
�
@2 log fc(yjx; 
0; �0)

@
@
0

�
. There
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are two terms inside the brackets that have nontrivial distributions. We will compute asymptotic
variance of each and asymptotic covariance between them. The �rst term behaves as follows:

1p
n

nX
i=1

sc(yi; xi; 
0; �0)
d! N (0; I

c )

due to the CLT (recall that the score has zero expectation and the information matrix equal-

ity). Turn to the second term. Under the ULLN,
1

n

nP
i=1

@sc(yi; xi; 
0; �
�)

@�0
converges to �I
�c =

E
�
@2 log fc(yjx; 
0; �0)

@
@�0

�
. Next, we know from the MLE theory that

p
n(�̂m��0)

d! N
�
0; (I��m )�1

�
,

where I��m � �E
�
@2 log fm(xj�0)

@�@�0

�
. Finally, the asymptotic covariance term is zero because of the

�marginal/conditional�relationship between the two terms, the Law of Iterated Expectations and
zero expected score.

Collecting the pieces, we �nd:

p
n(~
 � 
0)

d! N
�
0; (I

c )

�1
�
I

c + I
�c (I��m )�1I
�c 0

�
(I

c )

�1
�
:

It is easy to see that the asymptotic variance is larger (in matrix sense) than (I

c )�1 that
would be the asymptotic variance if we new the nuisance parameter �0. But it is impossible to
compare to the asymptotic variance for 
̂c, which is not (I




c )

�1.

10.10 MLE versus OLS

1. Observe that �̂OLS = 1
n

Pn
i=1 yi; E [�̂OLS ] =

1
n

Pn
i=1 E [y] = �; so �̂OLS is unbiased. Next,

1
n

Pn
i=1 yi

p! E [y] = �, so �̂OLS is consistent. Yes, as we know from the theory, �̂OLS is
the best linear unbiased estimator. Note that the members of this class are allowed to be
of the form fAY s.t. AX = Ig ; where A is a constant matrix, since there are no regressors
beside the constant. There is no heteroskedasticity, since there are no regressors to condition
on (more precisely, we should condition on a constant, i.e. the trivial �-�eld, which gives
just an unconditional variance which is constant by the random sampling assumption). The
asymptotic distribution is

p
n(�̂OLS � �) =

1p
n

nX
i=1

ei
d! N

�
0; �2E

�
x2
��
;

since the variance of e is E
�
e2
�
= E

�
E
�
e2jx

��
= �2E

�
x2
�
:

2. The conditional likelihood function is

L(y1; : : : ; yn; x1; : : : ; xn; �; �2) =
nY
i=1

1q
2�x2i�

2
exp

�
�(yi � �)

2

2x2i�
2

�
:

The conditional loglikelihood is

`n(y1; : : : ; yn; x1; : : : ; xn; �; �
2) = const�

nX
i=1

(yi � �)2
2x2i�

2
� n

2
log �2 ! max

�;�2
:
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From the FOC
@`n
@�

=

nX
i=1

yi � �
x2i�

2
= 0;

the ML estimator is

�̂ML =

Pn
i=1 yi=x

2
iPn

i=1 1=x
2
i

:

Note: it as equal to the OLS estimator of � in

yi
xi
= �

1

xi
+
ei
xi
:

The asymptotic distribution is

p
n(�̂ML��) =

1p
n

Pn
i=1 ei=x

2
i

1
n

Pn
i=1 1=x

2
i

d!
�
E
�
1

x2

���1
N
�
0; �2E

�
1

x2

��
= N

 
0; �2

�
E
�
1

x2

���1!
:

Note that �̂ML is unbiased and more e¢ cient than �̂OLS since�
E
�
1

x2

���1
< E

�
x2
�
;

but it is not in the class of linear unbiased estimators, since the weights in AML depend on
extraneous x�s. The �̂ML is e¢ cient in a much larger class. Thus there is no contradiction.

10.11 MLE versus GLS

The feasible GLS estimator ~� is constructed by

~� =

 
nX
i=1

xix
0
i

(x0i�̂)
2

!�1 nX
i=1

xiyi

(x0i�̂)
2
:

The asymptotic variance matrix is

V~� = �2
�
E
�
xx0

(x0�)2

���1
:

The conditional logdensity is

`n
�
x; y; b; s2

�
= const� 1

2
log s2 � 1

2
log(x0b)2 � 1

2s2
(y � x0b)2
(x0b)2

;

so the conditional score is

s�
�
x; y; b; s2

�
= � x

x0b
+
y � x0b
(x0b)3

xy

s2
;

s�2
�
x; y; b; s2

�
= � 1

2s2
+

1

2s4
(y � x0b)2
(x0b)2

;
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whose derivatives are

s��
�
x; y; b; s2

�
=

xx0

(x0b)2
�
�
3y � 2x0b

� y

(x0b)4
xx0

s2
;

s��2
�
x; y; b; s2

�
= �y � x

0b

(x0b)3
xy

s4
;

s�2�2
�
x; y; b; s2

�
=

1

2s4
� 1

s6
(y � x0b)2
(x0b)2

:

After taking expectations, we �nd that the information matrix is

I�� =
2�2 + 1

�2
E
�
xx0

(x0�)2

�
; I��2 =

1

�2
E
�
x

x0�

�
; I�2�2 =

1

2�4
:

By inverting a partitioned matrix, we �nd that the asymptotic variance of the ML estimator of �
is

VML =
�
I�� � I��2I�1�2�2I

0
��2

��1
=

�
2�2 + 1

�2
E
�
xx0

(x0�)2

�
� 2E

�
x

x0�

�
E
�
x0

x0�

���1
:

Now,

V �1ML =
1

�2
E
�
xx0

(x0�)2

�
+ 2

�
E
�
xx0

(x0�)2

�
� E

�
x

x0�

�
E
�
x0

x0�

��
� 1

�2
E
�
xx0

(x0�)2

�
= V �1~� ;

where the inequality follows from E [aa0] � E [a]E [a0] = E
�
(a� E [a]) (a� E [a])0

�
� 0. Therefore,

V~� � VML; i.e. the GLS estimator is less asymptotically e¢ cient than the ML estimator. This is
because � �gures both into the conditional mean and conditional variance, but the GLS estimator
ignores this information.

10.12 MLE in heteroskedastic time series regression

Observe that the joint density factorizes:

f (yt; xt; yt�1; xt�1; yt�2; xt�2; : : :) = f c (ytjxt; yt�1; xt�1; yt�2; xt�2; : : :) fm (xtjyt�1; xt�1; yt�2; xt�2; : : :)
�f (yt�1; xt�1; yt�2; xt�2; : : :) :

Assume that data (yt; xt), t = 1; 2; : : : ; T; are stationary and ergodic and generated by

yt = �+ �xt + ut;

where utjxt; yt�1; xt�1; yt�2; : : : � N (0; �2t ) and xtjyt�1; xt�1; yt�2; xt�2; : : : � N (0; v): Explain,
without going into deep math,

Since the parameter v is not present the conditional density f c; it can be e¢ ciently estimated
from the marginal density fm; which yields

v̂ =
1

T

TX
t=1

x2t :

The standard error may be constructed via

V̂ =
1

T

TX
t=1

x4t � v̂2:
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1. If the entire function �2t = �2(xt) is fully known, the conditional ML estimator of � and � is
the same as the GLS estimator:�

�̂

�̂

�
ML

=

 
TX
t=1

1

�2t

�
1 xt
xt x2t

�!�1 TX
t=1

yt
�2t

�
1

xt

�
:

The standard errors may be constructed via

V̂ML = T

 
TX
t=1

1

�2t

�
1 xt
xt x2t

�!�1
:

2. If the values of �2t at t = 1; 2; : : : ; T are known, we can use the same procedure as in part 1,
since it does not use values of �2(xt) other than those at x1; x2; : : : ; xT :

3. If it is known that �2t = (� + �xt)
2; we have in addition parameters � and � to be estimated

jointly from the conditional distribution

ytjxt; yt�1; xt�1; yt�2; xt�2; : : : � N (�+ �xt; (� + �xt)2):

The loglikelihood function is

`n (�; �; �; �) = const�
1

2

TX
t=1

log(� + �xt)
2 � 1

2

TX
t=1

(yt � �� �xt)2

(� + �xt)2
;

and
�
�̂; �̂; �̂; �̂

�0
ML

= argmax
(�;�;�;�)

`n (�; �; �; �). Note that

�
�̂

�̂

�
ML

=

 
TX
t=1

1

(�̂ + �̂xt)2

�
1 xt
xt x2t

�!�1 TX
t=1

yt

(�̂ + �̂xt)2

�
1

xt

�
:

�The standard errors may be constructed via

V̂ML = T

0@ TX
t=1

@`n

�
�̂; �̂; �̂; �̂

�
@ (�; �; �; �)0

@`n

�
�̂; �̂; �̂; �̂

�
@ (�; �; �; �)

1A�1 :
4. Similarly to part 3, if it is known that �2t = �+ �u2t�1; we have in addition parameters � and
� to be estimated jointly from the conditional distribution

ytjxt; yt�1; xt�1; yt�2; xt�2; : : : � N
�
�+ �xt; � + �(yt�1 � �� �xt�1)2

�
:

5. If it is only known that �2t is stationary, conditional maximum likelihood function is unavail-
able, so we have to use sube¢ cient methods, for example, OLS estimation�

�̂

�̂

�
OLS

=

 
TX
t=1

�
1 xt
xt x2t

�!�1 TX
t=1

yt

�
1

xt

�
:

The standard errors may be constructed via

V̂OLS = T

 
TX
t=1

�
1 xt
xt x2t

�!�1
�
TX
t=1

�
1 xt
xt x2t

�
ê2t �

 
TX
t=1

�
1 xt
xt x2t

�!�1
;

where êt = yt � �̂OLS � �̂OLSxt:
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10.13 Does the link matter?

Let the x variable assume two di¤erent values x0 and x1, ua = �+�xa and nab = #fxi = xa; yi = bg;
for a; b = 0; 1 (i.e., na;b is the number of observations for which xi = xa; yi = b). The log-likelihood
function is

l(x1;::xn; y1; : : : ; yn;�; �) = log
�Qn

i=1 F (�+ �xi)
yi(1� F (�+ �xi))1�yi

�
=

= n01 logF (u
0) + n00 log(1� F (u0)) + n11 logF (u1) + n10 log(1� F (u1)):

(10.1)

The FOC for the problem of maximization of l(: : : ;�; �) w.r.t. � and � are:�
n01

F 0(û0)

F (û0)
� n00

F 0(û0)

1� F (û0)

�
+

�
n11

F 0(û1)

F (û1)
� n10

F 0(û1)

1� F (û1)

�
= 0;

x0
�
n01

F 0(û0)

F (û0)
� n00

F 0(û0)

1� F (û0)

�
+ x1

�
n11

F 0(û1)

F (û1)
� n10

F 0(û1)

1� F (û1)

�
= 0

As x0 6= x1; one obtains for a = 0; 1

na1
F (ûa)

� na0
1� F (ûa) = 0, F (ûa) =

na1
na1 + na0

, ûa � �̂+ �̂xa = F�1
�

na1
na1 + na0

�
(10.2)

under the assumption that F 0(ûa) 6= 0: Comparing (10.1) and (10.2) one sees that l(: : : ; �̂; �̂) does
not depend on the form of the link function F (�): The estimates �̂ and �̂ can be found from (10.2):

�̂ =
x1F�1

�
n01

n01+n00

�
� x0F�1

�
n11

n11+n10

�
x1 � x0 ; �̂ =

F�1
�

n11
n11+n10

�
� F�1

�
n01

n01+n00

�
x1 � x0 :

10.14 Maximum likelihood and binary variables

Since the parameters in the conditional and marginal densities do not overlap, we can separate the
problem. The conditional likelihood function is

L(y1; : : : ; yn; z1; : : : ; zn; 
) =
nY
i=1

�
e
zi

1 + e
zi

�yi �
1� e
zi

1 + e
zi

�1�yi
;

and the conditional loglikelihood �

`n(y1; : : : ; yn; z1; : : : ; zn; 
) =
nX
i=1

fyi
zi � ln(1 + e
zi)g :

The �rst order condition
@`n
@


=

nX
i=1

�
yizi �

zie

zi

1 + e
zi

�
= 0

gives the solution 
̂ = log n11n10
; where n11 = #fzi = 1; yi = 1g; n10 = #fzi = 1; yi = 0g:

The marginal likelihood function is

L(z1; : : : ; zn; �) =
nY
i=1

�zi(1� �)1�zi ;
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and the marginal loglikelihood �

`n(z1; : : : ; zn; �) =

nX
i=1

fzi ln�+ (1� zi) ln(1� �)g :

The �rst order condition
@`n
@�

=

Pn
i=1 zi
�

�
Pn

i=1(1� zi)
1� � = 0

gives the solution �̂ = 1
n

Pn
i=1 zi: From the asymptotic theory for ML,

p
n

��
�̂


̂

�
�
�
�




��
d! N

0@�0
0

�
;

0@ �(1� �) 0

0
(1 + e
)2

�e


1A1A :

10.15 Maximum likelihood and binary dependent variable

1. The conditional ML estimator is


̂ML = argmax
c

nX
i=1

�
yi log

ecxi

1 + ecxi
+ (1� yi) log

1

1 + ecxi

�

= argmax
c

nX
i=1

fcyixi � log (1 + ecxi)g :

The score is

s(y; x; 
) =
@

@

(
yx� log (1 + e
x)) =

�
y � e
x

1 + e
x

�
x;

and the information matrix is

I = �E
�
@s(y; x; 
)

@


�
= E

�
e
x

(1 + e
x)2
x2
�
;

so the asymptotic distribution of 
̂ML is N
�
0; I�1

�
.

2. The regression is E [yjx] = 1 � Pfy = 1jxg+ 0 � Pfy = 0jxg = e
x

1 + e
x
: The NLLS estimator is


̂NLLS = argminc

nX
i=1

�
yi �

ecxi

1 + ecxi

�2
:

The asymptotic distribution of 
̂NLLS isN
�
0; Q�1gg Qgge2Q

�1
gg

�
. Now, since E

�
e2jx

�
= V [yjx] =

e
x

(1 + e
x)2
; we have

Qgg = E
�

e2
x

(1 + e
x)4
x2
�
; Qgge2 = E

�
e2
x

(1 + e
x)4
x2E

�
e2jx

��
= E

�
e3
x

(1 + e
x)6
x2
�
:

3. We know that V [yjx] = e
x

(1 + e
x)2
; which is a function of x: The WNLLS estimator of 
 is


̂WNLLS = argminc

nX
i=1

(1 + e
xi)2

e
xi

�
yi �

ecxi

1 + ecxi

�2
:
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Note that there should be the true 
 in the weighting function (or its consistent estimate
in a feasible version), but not the parameter of choice c! The asymptotic distribution is

N
�
0; Q�1

gg=�2

�
; where

Qgg=�2 = E
�

1

V [yjx]
e2
x

(1 + e
x)4
x2
�
=

�
e
x

(1 + e
x)2
x2
�
:

4. For the ML problem, the moment condition is �zero expected score�

E
��
y � e
x

1 + e
x

�
x

�
= 0:

For the NLLS problem, the moment condition is the FOC (or �no correlation between the
error and the quasiregressor�)

E
��
y � e
x

1 + e
x

�
e
x

(1 + e
x)2
x

�
= 0:

For the WNLLS problem, the moment condition is similar:

E
��
y � e
x

1 + e
x

�
x

�
= 0;

which is magically the same as for the ML problem. No wonder that the two estimators are
asymptotically equivalent (see part 5).

5. Of course, from the general theory we have VMLE � VWNLLS � VNLLS . We see a strict
inequality VWNLLS < VNLLS ; except maybe for special cases of the distribution of x, and this
is not surprising. Surprising may seem the fact that VMLE = VWNLLS : It may be surprising
because usually the MLE uses distributional assumptions, and the NLLSE does not, so usually
we have VMLE < VWNLLS : In this problem, however, the distributional information is used by
all estimators, that is, it is not an additional assumption made exclusively for ML estimation.

10.16 Poisson regression

1. The conditional logdensity is

log f(yjx; �; �) = ��(x; �; �) + y log �(x; �; �)� log y!
= const� exp (�+ �x) + y (�+ �x) ;

where const does not depend on parameters. Therefore, the unrestricted ML estimator is
(�̂; �̂) solving

(�̂; �̂) = argmax
(a;b)

nX
i=1

fyi (a+ bxi)� exp (a+ bxi)g ;

or equivalently solving the system

nX
i=1

yi �
nX
i=1

exp
�
�̂+ �̂xi

�
= 0;

nX
i=1

xiyi �
nX
i=1

xi exp
�
�̂+ �̂xi

�
= 0:
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The loglikelihood function value is

`n =

nX
i=1

n
const� exp

�
�̂+ �̂xi

�
+ yi

�
�̂+ �̂xi

�o
= nconst + (�̂� 1)n�y + �̂nxy:

The restricted MLE estimator is (�̂R; 0) where

�̂R = argmax
a

nX
i=1

fyia� exp (a)g = log �y;

with the loglikelihood function value

`Rn =
nX
i=1

�
const� exp

�
�̂R
�
+ yi�̂

R
	
= nconst + n�y (log �y � 1) :

On this basis,

LR = 2
�
`n � `Rn

�
= 2

�
(�̂� log �y)n�y + �̂nxy

�
:

Now, the conditional score is

s(y; x; �; �) =

�
@ log f(yjx; �; �)=@�
@ log f(yjx; �; �)=@�

�
= (y � exp (�+ �x))

�
1

x

�
;

and the true Information matrix is

I = E
�
exp (�+ �x)

�
1

x

��
1

x

�0�
;

consistently estimated by (most easily, albeit not quite in line with prescriptions of the theory)

bI = �y� 1 �x

�x x2

�
;

then bI�1 = 1

�y
�
x2 � �x2

� � x2 ��x
��x 1

�
;

Therefore,

W = n�̂
2
�y
�
x2 � �x2

�
:

If we used unconstrained estimated in bI (in line with prescriptions of the theory), this would
be more complex. Finally,

LM =
1

n

 
nX
i=1

�
0

xi (yi � �y)

�!0
1

�y
�
x2 � �x2

� � x2 ��x
��x 1

� nX
i=1

�
0

xi (yi � �y)

�!

= n
(xy � �x�y)2

�y
�
x2 � �x2

� :
2. The logdensity is

log f(yjx; �; �) = const� �� exp (�x) + y log (�+ exp (�x)) :
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Therefore, the estimator used by the researcher is an extremum one with

h(y; x; �; �) = ��� exp (�x) + y log (�+ exp (�x)) :

The (misspeci�ed) conditional score is

h�(y; x; a; b) =
�
y (a+ exp (bx))�1 � 1

�� 1

exp (bx)x

�
:

This extremum estimator will provide consistent estimation of (��; �) only if�
0

0

�
= E [h�(y; x; ��; �)] :

Here �� may be any because we care only about consistency of estimate of �: But, using the
law of iterated expectations,

E [h�(y; x; ��; �)] = E
��
y (�� + exp (�x))�1 � 1

�� 1

exp (�x)x

��
= E

��
(exp (�)� 1) exp (�x)� ��

�� + exp (�x)

��
1

exp (�x)x

��
;

which is not likely to be zero. This illustrates that misspeci�cation of the conditional mean
leads to wrong inference.

10.17 Bootstrapping ML tests

1. In the bootstrap world, the constraint is g(q) = g(�̂ML); so

LR� = 2
 
max
q2�

`�n(q)� max
q2�; g(q)=g(�̂ML)

`�n(q)

!
;

where `�n is the loglikelihood calculated from the bootstrap sample.

2. In the bootstrap world, the constraint is g(q) = g(�̂ML); so

LM� = n

 
1

n

nX
i=1

s(z�i ; �̂
�R
ML)

!0 �bI���1 1
n

nX
i=1

s(z�i ; �̂
�R
ML)

!
;

where �̂
�R
ML is the restricted (subject to g(q) = g(�̂ML)) ML bootstrap estimate and bI� is the

bootstrap estimate of the information matrix, both calculated from the bootstrap sample.
No additional recentering is needed because the zero expected score rule is exactly satis�ed
at the sample.
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11. INSTRUMENTAL VARIABLES

11.1 Invalid 2SLS

1. Since E[u] = 0, we have E [y] = �E
�
z2
�
, so � is identi�ed as long as z is not deterministic

zero. The analog estimator is

�̂ =

 
1

n

X
i

z2i

!�1
1

n

X
i

yi:

Since E[v] = 0, we have E[z] = �E[x], so � is identi�ed as long as x is not centered around
zero. The analog estimator is

�̂ =

 
1

n

X
i

xi

!�1
1

n

X
i

zi:

Since � does not depend on x, we have � = V
��
u

v

��
, so � is identi�ed. The analog estimator

is

�̂ =
1

n

nX
i=1

�
ûi
v̂i

��
ûi
v̂i

�0
;

where ûi = yi � �̂z2i and v̂i = zi � �̂xi.

2. The estimator satis�es

~� =

 
1

n

X
i

ẑ4i

!�1
1

n

X
i

ẑ2i yi =

 
�̂4
1

n

X
i

x4i

!�1
�̂2
1

n

X
i

x2i yi:

We know that 1
n

P
i x
4
i

p! E
�
x4
�
, 1n
P

i x
2
i yi = ��2 1n

P
i x
4
i + 2��

1
n

P
i x
3
i vi + � 1n

P
i x
2
i v
2
i +

1
n

P
i x
2
iui

p! ��2E
�
x4
�
+ �E

�
x2v2

�
, and �̂

p! �. Therefore,

~�
p! �+

�

�2
E
�
x2v2

�
E [x4]

6= �:

3. Evidently, we should �t the estimate of the square of zi, instead of the square of the estimate.
To do this, note that the second equation and properties of the model imply

E
�
z2jx

�
= E

�
(�x+ v)2jx

�
= �2x2 + 2E [�xvjx] + E

�
v2jx

�
= �2x2 + �2v:

That is, we have a linear mean regression of z2 on x2 and a constant. Therefore, in the �rst
stage we should regress z2 on x2 and a constant and construct ẑ2i = �̂2x2i + �̂2v, and in the
second stage, we should regress y on ẑ2. Consistency of this estimator follows from the theory
of 2SLS, when we treat z2 as a right hand side variable, not z.
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11.2 Consumption function

The data are generated by

Ct =
�

1� � +
�

1� �At +
1

1� �et; (11.1)

Yt =
�

1� � +
1

1� �At +
1

1� �et; (11.2)

where At = It+Gt is exogenous and thus uncorrelated with et: Denote �2e = V [et] and �2A = V [At] :

1. The probability limit of the OLS estimator of � is

p lim �̂ =
C [Yt; Ct]
V [Yt]

= �+
C [Yt; et]
V [Yt]

= �+
1
1���

2
e�

1
1��

�2
�2A +

�
1
1��

�2
�2e

= �+ (1� �) �2e
�2A + �

2
e

:

The amount of inconsistency is (1� �)�2e=
�
�2A + �

2
e

�
: Since the MPC lies between zero and

one, the OLS estimator of � is biased upward.

2. Econometrician B is correct in one sense, but incorrect in another. Both instrumental vectors
will give rise to estimators that have identical asymptotic properties. This can be seen by
noting that in population the projections of the right hand side variable Yt on both instruments
�z; where � = E[xz0] (E [zz0])�1, are identical. Indeed, because in (11.2) the It and Gt enter
through their sum only, projecting on (1; It; Gt)

0 and on (1; At)
0 gives identical �tted values

�

1� � +
1

1� �At:

Consequently, the matrix QxzQ�1zz Q
0
xz that �gures into the asymptotic variance will be the

same since it equals E
�
�z (�z)0

�
which is the same across the two instrumental vectors.

However, this does not mean that the numerical values of the two estimates of (�; �)0 will be
the same. Indeed, the in-sample predicted values (that are used as regressors or instruments
at the second stage of the 2SLS �procedure�) are x̂i = �̂zi = X 0Z (Z 0Z)�1 zi; and these values
need not be the same for the �long�and �short�instrumental vectors.1

3. Econometrician C estimates the linear projection of Yt on 1 and Ct; so the coe¢ cient at Ct
estimated by �̂C is

p lim �̂C =
C [Yt; Ct]
V [Ct]

=

�
1��

1
1���

2
A +

�
1
1��

�2
�2e�

�
1��

�2
�2A +

�
1
1��

�2
�2e

=
��2A + �

2
e

�2�2A + �
2
e

:

Econometrician D estimates the linear projection of Yt on 1; Ct; It; and Gt; so the coe¢ cient at
Ct estimated by �̂C is 1 because of the perfect �t in the equation Yt = 0�1+1�Ct+1�It+1�Gt:
Moreover, because of the perfect �t, the numerical value of (�̂0; �̂C ; �̂I ; �̂G)

0 will be exactly
(0; 1; 1; 1)0:

1There exist a special case, however, when the numerical values will be equal (which is not the case in the problem
at hand) �when the �t at the �rst stage is perfect.
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11.3 Optimal combination of instruments

1. The necessary properties are validity and relevance: E [ze] = E [�e] = 0 and E [zx] 6= 0;
E [�x] 6= 0: The asymptotic distributions of �̂z and �̂� are

p
n

 �
�̂z
�̂�

�
�
�
�

�

�!
d! N

�
0;

�
E [zx]�2 E

�
z2e2

�
E [xz]�1 E [x�]�1 E

�
z�e2

�
E [xz]�1 E [x�]�1 E

�
z�e2

�
E [�x]�2 E

�
�2e2

� ��

(we will need joint distribution in part 3).

2. The optimal instrument can be derived from the FOC for the GMM problem for the moment
conditions

E [m (y; x; z; �; �)] = E
��
z

�

�
(y � �x)

�
= 0:

Then

Qmm = E
��
z

�

��
z

�

�0
e2
�
; Q@m = �E

�
x

�
z

�

��
:

From the FOC for the (infeasible) e¢ cient GMM in population, the optimal weighing of
moment conditions and thus of instruments is then

Q0@mQ
�1
mm _ E

�
x

�
z

�

�0�
E
��
z

�

��
z

�

�0
e2
��1

_ E
�
x

�
z

�

�0�
E
��

�

�z

��
�

�z

�0
e2
�

_
�
E [xz]E

�
�2e2

�
� E [x�]E

�
z�e2

�
E [x�]E [z2e2]� E [xz]E [z�e2]

�0
:

That is, the optimal instrument is�
E [xz]E

�
�2e2

�
� E [x�]E

�
z�e2

��
z +

�
E [x�]E

�
z2e2

�
� E [xz]E

�
z�e2

��
� � 
zz + 
��:

This means that the optimally combined moment conditions imply

E
��

zz + 
��

�
(y � �x)

�
= 0 ,

� = E
��

zz + 
��

�
x
��1 E ��
zz + 
��� y�

= E
��

zz + 
��

�
x
��1 �


zE [zx]�z + 
�E [�x]��
�
;

where �z and �� are determined from the instruments separately. Thus the optimal IV

estimator is the following linear combination of �̂z and �̂� :

E [xz]
E [xz]E

�
�2e2

�
� E [x�]E

�
z�e2

�
E [xz]2 E

�
�2e2

�
� 2E [xz]E [x�]E [z�e2] + E [x�]2 E [z2e2]

�̂z

+E [x�]
E [x�]E

�
z2e2

�
� E [xz]E

�
z�e2

�
E [xz]2 E

�
�2e2

�
� 2E [xz]E [x�]E [z�e2] + E [x�]2 E [z2e2]

�̂� :
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3. Because of the joint convergence in part 1, the t-type test statistic can be constructed as

T =

p
n
�
�̂z � �̂�

�
qbE [xz]�2 bE ��2e2�� 2bE [xz]�1 bE [x�]�1 bE [z�e2] + bE [x�]�2 bE [z2e2] ;

where bE denoted a sample analog of an expectation. The test rejects if jT j exceeds an
appropriate quantile of the standard normal distribution. If the test rejects, one or both of z
and � may not be valid.

11.4 Trade and growth

1. The economic rationale for uncorrelatedness is that the variables P and S are exogenous
and are una¤ected by what�s going on in the economy, and on the other hand, hardly can
they a¤ect the income in other ways than through the trade. To estimate (11.3), we can use
just-identifying IV estimation, where the vector of right-hand-side variables is x = (1; T;W )0

and the instrument vector is z = (1; P; S)0:

2. When data on within-country trade are not available, none of the coe¢ cients in (11.3) is
identi�able without further assumptions. In general, neither of the available variables can
serve as instruments for T in (11.3) where the composite error term is 
Wi + "i:

3. We can exploit the assumption that P is uncorrelated with the error term in (11.5). Substitute
(11.5) into (11.3) to get

log Y = (�+ 
�) + �T + 
�S + (
� + ") :

Now we see that S and P are uncorrelated with the composite error term 
� + " due to
their exogeneity and due to their uncorrelatedness with � which follows from the additional
assumption and because � is the best linear prediction error in (11.5). As for the coe¢ cients
of (11.3), only � will be consistently estimated, but not � or 
:

4. In general, for this model the OLS is inconsistent, and the IV method is consistent. Thus, the
discrepancy may be due to the di¤erent probability limits of the two estimators. Let �IV

p! �
and �OLS

p! � + a; a < 0: Then for large samples, �IV � � and �OLS � � + a: The di¤erence
is a which is (E [xx0])�1 E[xe]: Since (E [xx0])�1 is positive de�nite, a < 0 means that the
regressors tend to be negatively correlated with the error term. In the present context this
means that the trade variables are negatively correlated with other in�uences on income.
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12. GENERALIZED METHOD OF MOMENTS

12.1 Nonlinear simultaneous equations

1. Since E[u] = E[v] = 0, m(w; �) =
�
y � �x
x� 
y2

�
, where w =

�
x

y

�
; � =

�
�




�
; can be used as

a moment function. The true � and 
 solve E[m(w; �)] = 0; therefore E[y] = �E[x] and
E[x] = 
E

�
y2
�
, and they are identi�ed as long as E[x] 6= 0 and E

�
y2
�
6= 0: The analog of the

population mean is the sample mean, so the analog estimators are

�̂ =

P
i yiP
i xi

; 
̂ =

P
i xiP
i y
2
i

:

2. If we add E [uv] = 0, the moment function is

m(w; �) =

0@ y � �x
x� 
y2

(y � �x)(x� 
y2)

1A
and GMM can be used. The feasible e¢ cient GMM estimator is

�̂GMM = argmin
q2�

 
1

n

nX
i=1

m(wi; q)

!0
Q̂�1mm

 
1

n

nX
i=1

m(wi; q)

!
;

where Q̂mm = n�1
Pn

i=1m(wi; �̂)m(wi; �̂)
0 and �̂ is consistent estimator of � that can be taken

from part 1. The asymptotic distribution of this estimator is

p
n(�̂GMM � �) d�! N (0; VGMM );

where VGMM = (Q0@mQ
�1
mmQ@m)

�1: The complete answer presumes expressing this matrix in
terms of moments of observable variables.

12.2 Improved GMM

The �rst moment restriction gives GMM estimator �̂ = �x with asymptotic variance VCMM = V [x] :
The GMM estimation of the full set of moment conditions gives estimator �̂GMM with asymptotic
variance VGMM = (Q0@mQ

�1
mmQ@m)

�1; where Q@m = E [@m(x; y; �)=@q] = (�1; 0)0 and

Qmm = E
�
m(x; y; �)m(x; y; �)0

�
=

�
V(x) C(x; y)
C(x; y) V(y)

�
:

Hence,

VGMM = V [x]� (C [x; y])
2

V [y]
and thus e¢ cient GMM estimation reduces the asymptotic variance when C [x; y] 6= 0:
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12.3 Minimum Distance estimation

1. Since the equation �0 � s(
0) = 0 can be uniquely solved for 
0; we have


0 = argmin

2�

(�0 � s(
))0W (�0 � s(
)) :

For large n, �̂ is concentrated around �0, and Ŵ is concentrated around W: Therefore, 
̂MD

will be concentrated around 
0: To derive the asymptotic distribution of 
̂MD; let us take the
�rst order Taylor expansion of the last factor in the normalized sample FOC

0 = S(
̂MD)
0Ŵ
p
n
�
�̂ � s(
̂MD)

�
around 
0:

0 = S(
̂MD)
0Ŵ
p
n
�
�̂ � �0

�
� S(
̂MD)

0ŴS(�
)
p
n (
̂MD � 
0) ;

where �
 lies between 
̂MD and 
0 componentwise, hence �

p! 
0: Then

p
n (
̂MD � 
0) =

�
S(
̂MD)

0ŴS(�
)
��1

S(
̂MD)
0Ŵ
p
n
�
�̂ � �0

�
d!
�
S(
0)

0WS(
0)
��1

S(
0)
0WN

�
0; V�̂

�
= N

�
0;
�
S(
0)

0WS(
0)
��1

S(
0)
0WV�̂WS(
0)

�
S(
0)

0WS(
0)
��1�

:

2. By analogy with e¢ cient GMM estimation, the optimal choice for the weight matrix W is
V �1
�̂
: Then

p
n (
̂MD � 
0)

d! N
�
0;
�
S(
0)

0V �1
�̂
S(
0)

��1�
:

The obvious consistent estimator is V̂ �1
�̂
. Note that it may be freely renormalized by a

constant and this will not a¤ect the result numerically.

3. Under H0; the sample objective function is close to zero for large n; while under the alter-
native, it is far from zero. Let us take the �rst order Taylor expansion of the �root�of the
optimal (i.e., when W = V �1

�̂
) sample objective function normalized by n around 
0:

n
�
�̂ � s(
̂MD)

�0
Ŵ
�
�̂ � s(
̂MD)

�
= �0�; � �

p
nŴ 1=2

�
�̂ � s(
̂MD)

�
;

� =
p
nŴ 1=2

�
�̂ � �0

�
�
p
nŴ 1=2S(�
) (
̂MD � 
0)

A
=

�
I` � V �1=2�̂

S(
0)
�
S(
0)

0V �1
�̂
S(
0)

��1
S(
0)

0V
�1=2
�̂

�
V
�1=2
�̂

p
n
�
�̂ � �0

�
A
=

�
I` � V �1=2�̂

S(
0)
�
S(
0)

0V �1
�̂
S(
0)

��1
S(
0)

0V
�1=2
�̂

�
N (0; I`) :

Thus under H0

n
�
�̂ � s(
̂MD)

�0
Ŵ
�
�̂ � s(
̂MD)

�
d! �2`�k:
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4. The parameter of interest � is implicitly de�ned by the system�
�1
�2

�
=

�
2�

��2

�
� s (�) :

The matrix of derivatives is

S(�) � @s(�)

@�
= 2

�
1

��

�
:

The OLS estimator of (�1; �2)0 is consistent and asymptotically normal with asymptotic vari-
ance matrix

V�̂ = �2
�

E
�
y2t
�

E [ytyt�1]
E [ytyt�1] E

�
y2t
� ��1

=
1� �4
1 + �2

�
1 + �2 �2�
�2� 1 + �2

�
;

because

E
�
y2t
�
= �2

1 + �2

(1� �2)3
;

E [ytyt�1]
E
�
y2t
� =

2�

1 + �2
:

An optimal MD estimator of � is

�̂MD = arg min
�:j�j<1

 �
�̂1
�̂2

�
�
�
2�

��2

�!0
�
nX
t=2

�
y2t ytyt�1

ytyt�1 y2t

�
�
 �

�̂1
�̂2

�
�
�
2�

��2

�!
and is consistent and asymptotically normal with asymptotic variance

V�̂MD
=

�
2

�
1

��

�0 1 + �2
(1� �2)3

1

1 + �2

�
1 2�
2� 1

�
2

�
1

��

���1
=
1� �2
4

:

To verify that both autoregressive roots are indeed equal, we can test the hypothesis of correct
speci�cation. Let �̂2 be the estimated residual variance. The test statistic is

1

�̂2

 �
�̂1
�̂2

�
�
�
2�̂MD

��̂2MD

�!0
�
nX
t=2

�
y2t ytyt�1

ytyt�1 y2t

�
�
 �

�̂1
�̂2

�
�
�
2�̂MD

��̂2MD

�!

and is asymptotically distributed as �21:

12.4 Formation of moment conditions

1. We know that E [w] = � and E[(w � �)4] = 3
�
E[(w � �)2]

�2
: It is trivial to take care of

the former. To take care of the latter, introduce a constant �2 = E[(w � �)2]; then we have
E[(w � �)4] = 3

�
�2
�2
: Together, the system of moment conditions is

E

240@ w � �
(w � �)2 � �2

(w � �)4 � 3
�
�2
�2
1A35 = 0:

2. To have overidenti�cation, we need to arrive at least at 4 moment conditions (which must
be informative about parameters!). Let, for example, zt =

�
1; yt�1; y2t�1; yt�2; y

2
t�2
�0
: The

moment conditions are

E
�
zt 


�
yt � �yt�1

(yt � �yt�1)2 � ! � 
 (yt�1 � �yt�2)2
��

= 0:
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A much better way is to think and to use di¤erent instruments for the mean and variance
equations. For example, let z1t = (yt�1; yt�2)

0 ; z2t =
�
1; y2t�1; y

2
t�2
�0 so that the moment

conditions are

E

24� z1t (yt � �yt�1)
z2t

�
(yt � �yt�1)2 � ! � 
 (yt�1 � �yt�2)2

��35 = 0:

12.5 What CMM estimates

The population analog of
nX
i=1

g(z; q) = 0

is E [g(z; q)] = 0: Thus, if the latter equation has a unique solution �; it is a probability limit of �̂:
The asymptotic distribution of �̂ is that of the CMM estimator of � based on the moment condition
E [g(z; �)] = 0:

p
n
�
�̂ � �

�
d! N

�
0;
�
E
�
@g(z; �)=@�0

���1 E �g(z; �)g(z; �)0� �E �@g(z; �)0=@����1� :

12.6 Trinity for GMM

The Wald test is the same up to a change in the variance matrix:

W = nh(�̂GMM )
0
h
H(�̂GMM )(Q̂

0
@mQ̂

�1
mmQ̂@m)

�1H(�̂GMM )
0
i�1

h(�̂GMM )
d! �2q ;

where �̂GMM is the unrestricted GMM estimator, Q̂@m and Q̂mm are consistent estimators of Q@m
and Qmm, relatively, and H(�) = @h(�)=@�0.

The Distance Di¤erence test is similar to LR, but without factor 2, as @2Q̂n=@�@�0
p! 2Q0@mQ

�1
mmQ@m:

DD = n
h
Qn(�̂

R

GMM )�Qn(�̂GMM )
i

d! �2q :

The LM test is a little bit harder, since the analog of the average score is

�(�) = 2

 
1

n

nX
i=1

@m(zi; �)

@�0

!0
�̂�1

 
1

n

nX
i=1

m(zi; �)

!
:

It is straightforward to �nd that

LM =
n

4
�(�̂

R

GMM )
0(Q̂0@mQ̂

�1
mmQ̂@m)

�1�(�̂
R

GMM )
d! �2q :

In the middle one may use either restricted or unrestricted estimators of Q@m and Qmm.
A more detailed derivation can be found, for example, in section 7.4 of �Econometrics� by

Fumio Hayashi (2000, Princeton University Press).
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12.7 All about J

1. For the system of moment conditions E [m (z; �)] = 0; the J-test statistic is

J = n �m(z; �̂)0Q̂�1mm �m(z; �̂):

Observe that
p
n �m(z; �̂) =

p
n

 
�m (z; ��) +

@ �m(z; ~�)

@q0
(�̂ � ��)

!
;

where �� = p lim �̂: By the CLT,
p
n ( �m (z; ��)� E [m (z; ��)]) converges to the normal distri-

bution. However, this means that
p
n �m (z; ��) =

p
n ( �m (z; ��)� E [m (z; ��)]) +

p
nE [m (z; ��)]

converges to in�nity because of the second term which does not equal to zero (the system of
moment conditions is misspeci�ed). Hence, J is a quadratic form of something diverging to
in�nity, and thus diverges to in�nity too.

2. Let the moment function be just x so that ` = 1 and k = 0: Then the J-test statistic corre-
sponding to weight �matrix� ŵ equals J = nŵ�x2: Of course, when ŵ

p! V [x]�1 corresponds
to e¢ cient weighting, we have J d! �21; but when ŵ

p! w 6= V [x]�1 ; we have

J
d! wV [x]�21 6= �21:

3. The argument would be valid if the model for the conditional mean was known to be correctly
speci�ed. Then one could blame instruments for a high value of the J -statistic. But in our
time series regression of the type Et [yt+1] = g(xt); if this regression was correctly speci�ed,
then the variables from time t information set must be valid instruments! The failure of
the model may be associated with incorrect functional form of g(�); or with speci�cation of
conditional information. Lastly, asymptotic theory may give a poor approximation to exact
distribution of the J -statistic.

12.8 Interest rates and future in�ation

1. The conventional econometric model that tests the hypothesis of conditional unbiasedness of
interest rates as predictors of in�ation, is

�kt = �k + �ki
k
t + �

k
t ; Et

h
�kt

i
= 0:

Under the null, �k = 0; �k = 1: Setting k = m in one case, k = n in the other case, and
subtracting one equation from another, we can get

�mt � �nt = �m � �n + �mimt � �nint + �nt � �mt ; Et [�nt � �mt ] = 0:

Under the null �m = �n = 0; �m = �n = 1, this speci�cation coincides with Mishkin�s
under the null �m;n = 0; �m;n = 1. The restriction �m;n = 0 implies that the term structure
provides no information about future shifts in in�ation. The prediction error �m;nt is serially
correlated of the order that is the farthest prediction horizon, i.e., max(m;n).
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2. Selection of instruments: there is a variety of choices, for instance,�
1; imt � int ; imt�1 � int�1; imt�2 � int�2; �mt�max(m;n) � �

n
t�max(m;n)

�0
;

or �
1; imt ; i

n
t ; i

m
t�1; i

n
t�1; �

m
t�max(m;n); �

n
t�max(m;n)

�0
;

etc. Construction of the optimal weighting matrix demands a HAC procedure, and so does
estimation of asymptotic variance. The rest is more or less standard.

3. Most interesting are the results of the test �m;n = 0 which tell us that there is no information
in the term structure about future path of in�ation. Testing �m;n = 1 then seems excessive.
This hypothesis would correspond to the conditional bias containing only a systematic com-
ponent (i.e. a constant unpredictable by the term structure). It also looks like there is no
systematic component in in�ation (the hypothesis �m;n = 0 can be accepted).

12.9 Spot and forward exchange rates

1. This is not the only way to proceed, but it is straightforward. The OLS estimator uses
the instrument zOLSt = (1 xt)

0 ; where xt = ft � st: The additional moment condition adds
ft�1�st�1 to the list of instruments: zt = (1 xt xt�1)0 : Let us look at the optimal instrument.
If it is proportional to zOLSt ; then the instrument xt�1; and hence the additional moment
condition, is redundant. The optimal instrument takes the form �t = Q0@mQ

�1
mmzt: But

Q@m = �

0@ 1 E[xt]
E[xt] E[x2t ]
E[xt�1] E[xtxt�1]

1A ; Qmm = �2

0@ 1 E[xt] E[xt�1]
E[xt] E[x2t ] E[xtxt�1]
E[xt�1] E[xtxt�1] E[x2t�1]

1A :

It is easy to see that

Q0@mQ
�1
mm = ��2

�
1 0 0
0 1 0

�
;

which can veri�ed by postmultiplying this equation by Qmm. Hence, �t = ��2zOLSt : But the
most elegant way to solve this problem goes as follows. Under conditional homoskedasticity,
the GMM estimator is asymptotically equivalent to the 2SLS estimator, if both use the same
vector of instruments. But if the instrumental vector includes the regressors (zt does include
zOLSt ), the 2SLS estimator is identical to the OLS estimator. In total, GMM is asymptotically
equivalent to OLS and thus the additional moment condition is redundant.

2. We can expect asymptotic equivalence of the OLS and e¢ cient GMM estimators when the
additional moment function is uncorrelated with the main moment function. Indeed, let
us compare the 2 � 2 northwestern block of VGMM =

�
Q0@mQ

�1
mmQ@m

��1 with asymptotic
variance of the OLS estimator

VOLS = �2
�

1 E[xt]
E[xt] E[x2t ]

��1
:

Denote �ft+1 = ft+1 � ft: For the full set of moment conditions,

Q@m = �

0@ 1 E[xt]
E[xt] E[x2t ]
0 0

1A ; Qmm =

0@ �2 �2E[xt] E[xtet+1�ft+1]
�2E[xt] �2E[x2t ] E[x2t et+1�ft+1]

E[xtet+1�ft+1] E[x2t et+1�ft+1] E[x2t (�ft+1)2]

1A :
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It is easy to see that when E[xtet+1�ft+1] = E[x2t et+1�ft+1] = 0; Qmm is block-diagonal and
the 2� 2 northwest block of VGMM is the same as VOLS : A su¢ cient condition for these two
equalities is E[et+1�ft+1jIt] = 0, i. e. that conditionally on the past, unexpected movements
in spot rates are uncorrelated with unexpected movements in forward rates. This is hardly
satis�ed in practice.

12.10 Returns from �nancial market

Let us denote yt = rt+1� rt; � = (�0; �1; �2; �3)0 and xt =
�
1; rt; r

2
t ; r

�1
t

�0
: Then the model may be

rewritten as
yt = x0t� + "t+1:

1. The OLS moment condition is E[(yt � x0t�)xt] = 0; with the OLS asymptotic distribution

N
�
0; �2E

�
xtx

0
t

��1 E[xtx0tr2
t ]E �xtx0t��1� :
The GLS moment condition is E[(yt � x0t�)xtr

�2

t ] = 0; with the GLS asymptotic distribution

N
�
0; �2E[xtx0tr

�2

t ]�1

�
:

2. The parameter vector is � =
�
�0; �2; 


�0
: The conditional logdensity is

log f
�
ytjIt; �; �2; 


�
= �1

2
log �2 � 


2
log r2t �

(yt � x0t�)
2

2�2r2
t

(note that it is illegitimate to take a log of rt) The conditional score is

s
�
ytjIt; �; �2; 


�
=

0BBBBBBBB@

(yt � x0t�)xt
�2r2
t

1

2�2

 
(yt � x0t�)

2

�2r2
t
� 1
!

1

2

 
(yt � x0t�)

2

�2r2
t
� 1
!
log r2t

1CCCCCCCCA
:

Hence, the ML moment condition is

E

0BBBBBBBB@

(yt � x0t�)xt
r2
t

(yt � x0t�)
2

�2r2
t
� 1 

(yt � x0t�)
2

�2r2
t
� 1
!
log r2t

1CCCCCCCCA
= 0:

Note that its �rst part is the GLS moment condition. The information matrix is

I =

0BBBBB@
1

�2
E

"
xtx

0
t

r2
t

#
0 0

0
1

2�4
1

2�2
E
�
log r2t

�
0

1

2�2
E
�
log r2t

� 1

2
E
�
log2 r2t

�

1CCCCCA :
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The asymptotic distribution for the ML estimates of the regression parameters is

N
�
0; �2E[xtx0tr

�2

t ]�1

�
;

and for the ML estimates of �2 and 
 it is independent of the former, and is

N
 
0;

2�2

V
�
log r2t

� � �2E
�
log2 r2t

�
�E

�
log r2t

�
�E

�
log r2t

�
��2

�!
:

3. The method of moments will use the moment conditions

E

0BB@
(yt � x0t�)xt�

(yt � x0t�)
2 � �2r2
t

�
r2
t�

(yt � x0t�)
2 � �2r2
t

�
�2r2
t log r2t

1CCA = 0;

where the former one is from Part 1, while the second and the third are the expected products
of the error and quasi-regressors in the skedastic regression. Note that the resulting CMM
estimator will have the usual OLS estimator for the �-part because of exact identi�cation.
Therefore, the �-part will have the same asymptotic distribution:

N
�
0; �2E

�
xtx

0
t

��1 E[xtx0tr2
t ]E �xtx0t��1� :
As for the other two parts, it is more messy. Indeed,

Q@m = �

0@ E[xtx0t] 0 0

0 E[r4
t ] �2E[r4
t log r2t ]

0 �2E[r4
t log r2t ] �4E[r4
t log2 r2t ]

1A ;

Qmm =

0@ �2E[xtx0tr
2

t ] 0 0

0 2�4E[r8
t ] 2�6E[r8
t log r2t ]

0 2�6E[r8
t log r2t ] 2�8E[r8
t log2 r2t ]

1A :

The asymptotic variances follow from Q�1@mQmmQ
0�1
@m . The sandwich does not collapse, but

one can see that the pair
�
�̂2CMM ; 
̂CMM

�0
is asymptotically independent of �̂CMM :

4. We have already established that the OLS estimator is identical to the �-part of the CMM
estimator. From general principles, the GLS estimator is asymptotically more e¢ cient, and
is identical to the �-part of the ML estimator. As for the other two parameters, the ML
estimator is asymptotically e¢ cient, and hence is asymptotically more e¢ cient than the
appropriate part of the CMM estimator which, by construction, is the same as implied by
NLLS applied to the skedastic function. To summarize, for � we have OLS = CMM �
GLS =ML; while for �2 and 
 we have CMM �ML:

12.11 Instrumental variables in ARMA models

1. The instrument xt�j is scalar, the parameter is scalar, so there is exact identi�cation. The
instrument is obviously valid. The asymptotic variance of the just identifying IV estimator of
a scalar parameter under homoskedasticity is Vxt�j = �2Q�2xz Qzz: Let us calculate all pieces:

Qzz = E[x2t�j ] = V [xt] = �2
�
1� �2

��1
;

Qxz = E [xt�1xt�j ] = C [xt�1; xt�j ] = �j�1V [xt] = �2�j�1
�
1� �2

��1
:
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Thus, Vxt�j = �2�2j
�
1� �2

�
: It is monotonically declining in j; so this suggests that the

optimal instrument must be xt�1: Although this is not a proof of the fact, the optimal instru-
ment is indeed xt�1:: The result makes sense, since the last observation is most informative
and embeds all information in all the other instruments.

2. It is possible to use as instruments lags of yt starting from yt�2 back to the past. The regressor
yt�1 will not do as it is correlated with the error term through et�1: Among yt�2; yt�3; : : : the
�rst one deserves more attention, since, intuitively, it contains more information than older
values of yt:

12.12 Hausman may not work

1. Because the instruments include the regressors, �̂2SLS will be identical to �̂OLS ; because the
instrument vector contains x; the ��tted values� from the ��rst-stage projection� will be
equal to x. Hence, �̂OLS � �̂2SLS will be zero irrespective of validity of z; and so will be the
Hausman test statistic.

2. Under the null of conditional homoskedasticity both estimators are asymptotically equivalent
and hence equally asymptotically e¢ cient. Hence, the di¤erence in asymptotic variances is
identically zero. Note that here the estimators are not identical.

12.13 Testing moment conditions

Consider the unrestricted (�̂u) and restricted (�̂r) estimates of parameter � 2 Rk. The �rst is the
CMM estimate:

nX
i=1

xi(yi � x0i�̂u) = 0 ) �̂u =

 
1

n

nX
i=1

xix
0
i

!�1
1

n

nX
i=1

xiyi

The second is a feasible e¢ cient GMM estimate:

�̂r = argmin
b

 
1

n

nX
i=1

mi(b)

!0
Q̂�1mm

 
1

n

nX
i=1

mi(b)

!
; (12.1)

where m(b) =
�
xu(b)

xu(b)3

�
; u(b) = y � xb; u � u(�); and Q̂�1mm is a consistent estimator of

Qmm = E
�
m(�)m0(�)

�
= E

��
xx0u2 xx0u4

xx0u4 xx0u6

��
:

Denote also Q@m = E
�
@m(�)

@b0

�
= �E

��
xx0

3xx0u2

��
:Writing out the FOC for (12.1) and expanding

m(�̂r) around � gives after rearrangement

p
n(�̂r � �)

A
= �

�
Q0@mQ

�1
mmQ@m

��1
Q0@mQ

�1
mm

1p
n

nX
i=1

mi(�):
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Here A=means that we substitute the probability limits for their sample analogues. The last equation
holds under the null hypothesis H0 : E

�
xu3
�
= 0:

Note that the unrestricted estimate can be rewritten as

p
n(�̂u � �)

A
=
�
E
�
xx0
���1 �

Ik Ok
� 1p

n

nX
i=1

mi(�):

Therefore,

p
n(�̂u��r)

A
=
h�
E
�
xx0
���1 �

Ik Ok
�
+
�
Q0@mQ

�1
mmQ@m

��1
Q0@mQ

�1
mm

i 1p
n

nX
i=1

mi(�)
d! N (0; V );

where (after some algebra)

V =
�
E
�
xx0
���1 E �xx0u2� �E �xx0���1 � �Q0@mQ�1mmQ@m��1 :

Note that V is k � k: matrix. It can be shown that this matrix is non-degenerate (and thus has a
full rank k). Let V̂ be a consistent estimate of V: By the Slutsky and Mann�Wald theorems,

W � n(�̂u � �̂r)0V̂ �1(�̂u � �r)
d! �2k:

The test may be implemented as follows. First �nd the (consistent) estimate �̂u: Then compute
Q̂mm = n�1

Pn
i=1mi(�̂u)mi(�̂u)

0; use it to carry out feasible GMM and obtain �̂r: Use �̂u or �̂r to
compute V̂ ; the sample analog of V: Finally, compute the Wald statistic W, compare it with 95%
quantile of �2k distribution q0:95; and reject the null hypothesis if W > q0:95; or accept it otherwise.

12.14 Bootstrapping OLS

Indeed, we are supposed to recenter, but only when there is overidenti�cation. When the parameter
is just identi�ed, as in the case of the OLS estimator, the moment conditions hold exactly in the
sample, so the �center�is zero anyway.

12.15 Bootstrapping DD

Let �̂ denote the GMM estimator. Then the bootstrap DD test statistic is

DD� = n

"
min

q:h(q)=h(�̂)
Q�n(q)�minq Q�n(q)

#
;

where Q�n(q) is the bootstrap GMM objective function

Q�n(q) =
 
1

n

nX
i=1

m (z�i ; q)�
1

n

nX
i=1

m
�
zi; �̂

�!0
Q̂��1mm

 
1

n

nX
i=1

m (z�i ; q)�
1

n

nX
i=1

m
�
zi; �̂

�!
;

where Q̂�mm uses the formula for Q̂mm and the bootstrap sample. Note two instances of recentering.
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13. PANEL DATA

13.1 Alternating individual e¤ects

It is convenient to use three indices instead of two in indexing the data. Namely, let

t = 2(s� 1) + q; where q 2 f1; 2g; s 2 f1; : : : ; Tg:

Then q = 1 corresponds to odd periods, while q = 2 corresponds to even periods. The dummy
variables will have the form of the Kronecker product of three matrices, which is de�ned recursively
as A
B 
 C = A
 (B 
 C):

Part 1. (a) In this case we rearrange the data column as follows:

yisq = yit; yis =

�
yis1
yis2

�
; Yi =

0@ yi1
: : :
yiT

1A ; Y =

0@ Y1
: : :
Yn

1A ;

and � = (�O1 �
E
1 : : : �On �

E
n )
0: The regressors and errors are rearranged in the same manner as y�s.

Then the regression can be rewritten as

Y = D�+ X� + v; (13.1)

where D = In 
 iT 
 I2; and iT = (1 : : : 1)0 (T � 1 vector). Clearly,

D0D = In 
 i0T iT 
 I2 = T � I2n;

D(D0D)�1D0 =
1

T
In 
 iT i0T 
 I2 =

1

T
In 
 JT 
 I2;

where JT = iT i
0
T : In other words, D(D

0D)�1D0 is block-diagonal with n blocks of size 2T � 2T of
the form: 0BBBB@

1
T 0 : : : 1

T 0
0 1

T : : : 0 1
T

: : : : : : : : : : : : : : :
1
T 0 : : : 1

T 0
0 1

T : : : 0 1
T

1CCCCA :

The Q-matrix is then Q = I2nT � 1
T In 
 JT 
 I2: Note that Q is an orthogonal projection and

QD = 0: Thus we have from (13.1)
QY = QX� +Qv: (13.2)

Note that 1
T JT is the operator of taking the mean over the s-index (i.e. over odd or even periods

depending on the value of q). Therefore, the transformed regression is:

yisq � �yiq = (xisq � �xiq)0� + v�; (13.3)

where �yiq =
PT

s=1 yisq:
(b) This time the data are rearranged in the following manner:

yqis = yit; Yqi =

0@ yi1
: : :
yiT

1A ; Yq =
0@ Yq1

: : :
Yqn

1A ; Y = �Y1Y2
�
;
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� = (�O1 : : : �On �E1 : : : �En )
0: In matrix form the regression is again (13.1) with D = I2 
 In 
 iT ;

and
D(D0D)�1D0 =

1

T
I2 
 In 
 iT i0t =

1

T
I2 
 In 
 JT :

This matrix consists of 2n blocks on the main diagonal, each of them being 1
T JT : The Q-matrix is

Q = I2n�T � 1
T I2n 
 JT : The rest is as in part 1(b) with the transformed regression

yqis � �yqi = (xqis � �xqi)0� + v�; (13.4)

with �yqi =
PT

s=1 yqis; which is essentially the same as (13.3).
Part 2. Take the Q-matrix as in Part 1(b). The Within estimator is the OLS estimator in

(13.4), i.e. �̂ = (X 0QX )�1X 0QY; or

�̂ =

0@X
q;i;s

(xqis � �xqi)(xqis � �xqi)0
1A�1X

q;i;s

(xqis � �xqi)(yqis � �yqi):

Clearly, E[�̂] = �, �̂
p! � and �̂ is asymptotically normal as n ! 1; T �xed. For normally

distributed errors vqis the standard F-test for hypothesis

H0 : �
O
1 = �O2 = : : : = �On and �

E
1 = �E2 = : : : = �En

is

F =
(RSSR �RSSU )=(2n� 2)
RSSU=(2nT � 2n� k)

H0
~ F (2n� 2; 2nT � 2n� k)

(we have 2n � 2 restrictions in the hypothesis), where RSSU =
P

isq(yqis � �yqi � (xqis � �xqi)0�)2;
and RSSR is the sum of squared residuals in the restricted regression.

Part 3. Here we start with

yqis = x0qis� + uqis; uqis := �qi + vqis; (13.5)

where �1i = �Oi and �2i = �Ei ; E[�qi] = 0: Let �21 = �2O; �
2
2 = �2E : We have

E
�
uqisuq0i0s0

�
= E

�
(�qi + vqis)(�q0i0 + vq0i0s0)

�
= �2q�qq0�ii01ss0 + �

2
v�qq0�ii0�ss0 ;

where �aa0 = f1 if a = a0, and 0 if a 6= a0g, 1ss0 = 1 for all s, s0: Consequently,


 = E[uu0] =
�
�21 0
0 �22

�

 In 
 JT + �2vI2nT = (T�21 + �2v)

�
1 0
0 0

�

 In 


1

T
JT +

+(T�22 + �
2
v)

�
0 0
0 1

�

 In 


1

T
JT + �

2
vI2 
 In 
 (IT �

1

T
JT ):

The last expression is the spectral decomposition of 
 since all operators in it are idempotent
symmetric matrices (orthogonal projections), which are orthogonal to each other and give identity
in sum. Therefore,


�1=2 = (T�21 + �
2
v)
�1=2

�
1 0
0 0

�

 In 


1

T
JT + (T�

2
2 + �

2
v)
�1=2

�
0 0
0 1

�

 In 


1

T
JT +

+��1v I2 
 In 
 (IT �
1

T
JT ):

The GLS estimator of � is
�̂ = (X 0
�1X )�1X 0
�1Y:
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To put it di¤erently, �̂ is the OLS estimator in the transformed regression

�v

�1=2Y = �v


�1=2X� + u�:

The latter may be rewritten as

yqis � (1�
p
�q)�yqi = (xqis � (1�

p
�q)�xqi)

0� + u�;

where �q = �2v=(�
2
v + T�

2
q):

To make �̂ feasible, we should consistently estimate parameter �q: In the case �21 = �22 we may
apply the result obtained in class (we have 2n di¤erent objects and T observations for each of them
�see part 1(b)):

�̂ =
2n� k

2n(T � 1)� k + 1
û0Qû

û0Pû
;

where û are OLS-residuals for (13.4), and Q = I2n�T � 1
T I2n
JT ; P = I2nT �Q. Suppose now that

�21 6= �22: Using equations

E [uqis] = �2v + �
2
q ; E [�uis] =

1

T
�2v + �

2
q ;

and repeating what was done in class, we have

�̂q =
n� k

n(T � 1)� k + 1
û0Qqû

û0Pqû
;

withQ1 =
�
1 0
0 0

�

In
(IT� 1

T JT ); Q2 =

�
0 0
0 1

�

In
(IT� 1

T JT ); P1 =

�
1 0
0 0

�

In
 1

T JT ;

P2 =

�
0 0
0 1

�

 In 
 1

T JT :

13.2 Time invariant regressors

1. (a) Under �xed e¤ects, the zi variable is collinear with the dummy for �i: Thus, 
 is uniden-
ti�able.. The Within transformation wipes out the term zi
 together with individual e¤ects
�i; so the transformed equation looks exactly like it looks if no term zi
 is present in the
model. Under usual assumptions about independence of vit and X , the Within estimator of
� is e¢ cient.

(b) Under random e¤ects and mutual independence of �i and vit, as well as their independence
of X and Z; the GLS estimator is e¢ cient, and the feasible GLS estimator is asymptotically
e¢ cient as n!1:

2. Recall that the �rst-step �̂ is consistent but �̂i�s are inconsistent as T stays �xed and n!1:
However, the estimator of 
 so constructed is consistent under assumptions of random e¤ects
(see part 1(b)). Observe that �̂i = �yi� �x0i�̂: If we regress �̂i on zi; we get the OLS coe¢ cient


̂ =

Pn
i=1 zi�̂iPn
i=1 z

2
i

=

Pn
i=1 zi

�
�yi � �x0i�̂

�
Pn

i=1 z
2
i

=

Pn
i=1 zi

�
�x0i� + zi
 + �i + �vi � �x0i�̂

�
Pn

i=1 z
2
i

= 
 +
1
n

Pn
i=1 zi�i

1
n

Pn
i=1 z

2
i

+
1
n

Pn
i=1 zi�vi

1
n

Pn
i=1 z

2
i

+
1
n

Pn
i=1 zi�x

0
i

1
n

Pn
i=1 z

2
i

�
� � �̂

�
:
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Now, as n!1;

1

n

nX
i=1

z2i
p! E

�
z2i
�
6= 0; 1

n

nX
i=1

zi�i
p! E [zi�i] = E [zi]E [�i] = 0;

1

n

nX
i=1

zi�vi
p! E [zi�vi] = E [zi]E [�vi] = 0;

1

n

nX
i=1

zi�x
0
i
p! E

�
zi�x

0
i

�
; � � �̂ p! 0:

In total, 
̂
p! 
: However, so constructed estimator of 
 is asymptotically ine¢ cient. A better

estimator is the feasible GLS estimator of part 1(b).

13.3 Within and Between

Recall that �̂W � � = (X 0QX )�1X 0QU and �̂B � � = (X 0PX )�1X 0PU ; where U is a vector of
two-component errors, and that V [UjX ] = 
 = �QQ + �PP for certain weights �Q and �P that
depend on variance components. Then

C
h
�̂W ; �̂BjX

i
=

�
X 0QX

��1X 0QV [UjX ]PX �X 0PX ��1
=

�
X 0QX

��1X 0Q (�QQ+ �PP )PX �X 0PX ��1
= �Q

�
X 0QX

��1X 0QQPX �X 0PX ��1 + �P �X 0QX ��1X 0QPPX �X 0PX ��1
= 0;

because QP = PQ = 0: Using this result,

V
h
�̂W � �̂BjX

i
= V

h
�̂W jX

i
+ V

h
�̂BjX

i
=

�
X 0QX

��1X 0Q
QX �X 0QX ��1 + �X 0PX ��1X 0P
PX �X 0PX ��1
= �Q

�
X 0QX

��1
+ �P

�
X 0PX

��1
:

We know that under random e¤ects both �̂W and �̂B are consistent and asymptotically normal,
hence the test statistic

R =
�
�̂W � �̂B

�0 �
�̂Q
�
X 0QX

��1
+ �̂P

�
X 0PX

��1��1 �
�̂W � �̂B

�
is asymptotically chi-squared with k = dim(�) degrees of freedom under random e¤ects. Here, as
usual, �̂Q = RSSW = (nT � n� k) and �̂P = RSSB= (n� k) :When random e¤ects are inappropri-
ate, �̂W is still consistent but �̂B is inconsistent, so �̂W � �̂B converges to a non-zero limit, while
X 0QX and X 0PX diverge to in�nity, making R diverge to in�nity.

13.4 Panels and instruments

Stack the regressors into matrix X; the instruments �into matrix Z; the dependent variables �into
vector Y: The Between transformation is implied by the transformation matrix Q = In 
 T�1JT ;
where JT is a T � T matrix of ones, the Within transformation is implied by the transformation
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matrix Q = InT � P; the GLS transformation is implied by the transformation matrix 
�1=2 =
�QQ + �PP for certain weights �Q and �P that depend on variance components. Recall that P
and Q are mutually orthogonal symmetric idempotent matrices.

1. When in the Within regression QY = QX�+QU the original instruments Z are used, the IV
estimator is (Z 0QX )�1Z 0QY. When the Within-transformed instruments QZ are used, the
IV estimator is

�
(QZ)0QX

��1
(QZ)0QY = (Z 0QX )�1Z 0QY. These two are identical.

2. The same as in part 1, with P in place of Q everywhere.

3. When in the Between regression PY = PX� + PU the Within-transformed instruments QZ
are used, (QZ)0 PX= Z 0Q0PX= Z 00X= 0; a zero matrix. Such IV estimator does not exist.
The same result holds when one uses the Between-transformed instruments in the Within
regression.

4. When in the GLS-transformed regression 
�1=2Y = 
�1=2X� + 
�1=2U the original instru-
ments Z are used, the IV estimator is�

Z 0
�1=2X
��1

Z 0
�1=2Y:

When the GLS-transformed instruments 
�1=2Z are used, the IV estimator is��

�1=2Z

�0

�1=2X

��1 �

�1=2Z

�0

�1=2Y =

�
Z 0
�1X

��1Z 0
�1Y:
These two are di¤erent. The second one is more natural to do: when instruments coincide
with regressors, the e¢ cient GLS estimator results, while the former estimator is ine¢ cient
and weird.

5. When in the GLS-transformed regression the Within-transformed instruments are used, the
IV estimator is�

(QZ)0
�1=2X
��1

(QZ)0
�1=2Y =
�
Z 0Q0 (�QQ+ �PP )X

��1Z 0Q0 (�QQ+ �PP )Y
=

�
Z 0 (�QQ)X

��1Z 0 (�QQ)Y
=

�
Z 0QX

��1Z 0QY;
the estimator from part 1. Similarly, when in the GLS-transformed regression one uses the
Between-transformed instruments, the IV estimator is that of part 2.

13.5 Di¤erencing transformations

1. OLS on FD-transformed equations is unbiased and consistent as n!1 since the di¤erenced
error has mean zero conditional on the matrix of di¤erenced regressors under the standard FE
assumptions. However, OLS is ine¢ cient as the conditional variance matrix is not diagonal.
The e¢ cient estimator of structural parameters is the LSDV estimator, which is the OLS
estimator on Within-transformed equations.

2. The proposal leads to a consistent, but not very e¢ cient, GMM estimator. The resulting error
term vi;t � vi;2 is uncorrelated only with yi;1 among all yi;1; : : : ; yi;T so that for all equations
we can �nd much fewer instruments than in the FD approach, and the same is true for the
regular regressors if they are predetermined, but not strictly exogenous. As a result, we lose
e¢ ciency but get nothing in return.
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13.6 Nonlinear panel data model

The nonlinear one-way ECM with random e¤ects is

(yit + �)
2 = �xit + �i + vit; �i � IID(0; �2�); vit � IID(0; �2v);

where individual e¤ects �i and idiosyncratic shocks vit are mutually independent and independent
of xit: The latter assumption is unnecessarily strong and may be relaxed. The estimator of Problem
9.3 obtained from the pooled sample is ine¢ cient since it ignores nondiagonality of the variance
matrix of the error vector. We have to construct an analog of the GLS estimator in a linear one-
way ECM with random e¤ects. To get preliminary consistent estimates of variance components,
we run analogs of Within and Between regressions (we call the resulting estimators Within-CMM
and Between-CMM):

(yit + �)
2 � 1

T

TX
t=1

(yit + �)
2 = �

 
xit �

1

T

TX
t=1

xit

!
+ vit �

1

T

TX
t=1

vit

1

T

TX
t=1

(yit + �)
2 = �

1

T

TX
t=1

xit + �i +
1

T

TX
t=1

vit

Numerically estimates can be obtained by concentration as described in Problem 9.3. The estimated
variance components and the �GLS-CMM parameter�can be found from

�̂2v =
RSSW

Tn� n� 2 ; �̂2� +
1

T
�̂2v =

RSSB
T (n� 2) ) �̂ =

RSSW
RSSB

n� 2
Tn� n� 2 :

Note that RSSW and RSSB are sums of squared residuals in the Within-CMM and Between-CMM
systems, not the values of CMM objective functions. Then we consider the FGLS-transformed
system where the variance matrix of the error vector is (asymptotically) diagonalized:

(yit + �)
2 �

�
1�

p
�̂
� 1
T

TX
t=1

(yit + �)
2 = �

 
xit �

�
1�

p
�̂
� 1
T

TX
t=1

xit

!
+
error
term

:

13.7 Durbin�Watson statistic and panel data

1. In both regressions, the residuals consistently estimate corresponding regression errors. There-
fore, to �nd a probability limit of the Durbin�Watson statistic, it su¢ ces to compute the
variance and �rst-order autocovariance of the errors across the stacked equations:

p lim
n!1

DW = 2

�
1� %1

%0

�
;

where

%0 = p lim
n!1

1

nT

TX
t=1

nX
i=1

u2it; %1 = p lim
n!1

1

nT

TX
t=2

nX
i=1

uitui;t�1;

and uit�s denote regression errors. Note that the errors are uncorrelated where the index
i switches between individuals, hence summation from t = 2 in %1: Consider the original
regression

yit = x0it� + uit; i = 1; : : : ; n; t = 1; : : : ; T:

148 PANEL DATA



where uit = �i + vit: Then %0 = �2v + �
2
� and

%1 =
1

T

TX
t=2

p lim
n!1

1

n

nX
i=1

(�i + vit) (�i + vi;t�1) =
T � 1
T

�2�:

Thus

p lim
n!1

DWOLS = 2

 
1� T � 1

T

�2�
�2v + �

2
�

!
= 2

T�2v + �
2
�

T
�
�2v + �

2
�

� :
The GLS-transformation orthogonalizes the errors, therefore

p lim
n!1

DWGLS = 2:

2. Since all computed probability limits except that for DWOLS do not depend on the variance
components, the only way to construct an asymptotic test of H0 : �2� = 0 vs. HA : �

2
� > 0

is by using DWOLS : Under H0;
p
nT (DWOLS � 2)

d! N (0; 4) as n ! 1. Under HA;
p lim
n!1

DWOLS < 2: Hence a one-sided asymptotic test for �2� = 0 for a given level � is:

Reject if DWOLS < 2

�
1 +

z�p
nT

�
;

where z� is the �-quantile of the standard normal distribution.

13.8 Higher-order dynamic panel

The original system is

yit = �1yi;t�1 + �2yi;t�2 + �xit + �i + vit; i = 1; : : : ; n; t = 3; : : : ; T;

where �i � IID(0; �2�) and vi � IID(0; �2v) are independent of each other and of xi�s. The FD-
transformed system is

yit � yi;t�1 = �1 (yi;t�1 � yi;t�2) + �2 (yi;t�2 � yi;t�3) + � (xit � xi;t�1) + vit � vi;t�1;
i = 1; : : : ; n; t = 4; : : : ; T;

or in the matrix form,
�Y = �1�Y�1 + �2�Y�2 + ��X +�V;

where the vertical dimension is n (T � 3) : The GMM estimator of the 3-dimensional parameter
vector � = (�1; �2; �)

0 is

�̂GMM =
�
(�Y�1 �Y�2 �X )0W

�
W 0 (In 
G)W

��1W 0 (�Y�1 �Y�2 �X )
��1

� (�Y�1 �Y�2 �X )0W
�
W 0 (In 
G)W

��1W 0�Y;

where the (T � 3)� ((T + 1) (T � 3)) matrix of instruments fro the ith individual is

Wi = diag

26664
yi;1 yi;2 xi;1 xi;2 xi;3
yi;1 yi;2 yi;3 xi;1 xi;2 xi;3 xi;4

...
yi;1 : : : yi;T�2 xi;1 : : : xi;T�1

37775
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The standard errors can be computed using

dAV ��̂GMM

�
= �̂2v

�
(�Y�1 �Y�2 �X )0W

�
W 0 (In 
G)W

��1W 0 (�Y�1 �Y�2 �X )
��1

;

where, for example,

�̂2v =
1

2

1

n (T � 3)� 3

�d�V�0d�V;
andd�V are residuals from the FD-transformed system.
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14. NONPARAMETRIC ESTIMATION

14.1 Nonparametric regression with discrete regressor

Fix a(j); j = 1; : : : ; k: Observe that

g(a(j)) = E[yijxi = a(j)] =
E(yiI[xi = a(j)])

E(I[xi = a(j)])

because of the following equalities:

E
�
I
�
xi = a(j)

��
= 1 � Pfxi = a(j)g+ 0 � Pfxi 6= a(j)g = Pfxi = a(j)g;

E
�
yiI
�
xi = a(j)

��
= E

�
yiI
�
xi = a(j)

�
jxi = a(j)

�
� Pfxi = a(j)g = E

�
yijxi = a(j)

�
� Pfxi = a(j)g:

According to the analogy principle we can construct ĝ(a(j)) as

ĝ(a(j)) =

Pn
i=1 yiI

�
xi = a(j)

�Pn
i=1 I

�
xi = a(j)

� :
Now let us �nd its properties. First, according to the LLN,

ĝ(a(j)) =

Pn
i=1 yiI

�
xi = a(j)

�Pn
i=1 I

�
xi = a(j)

� p!
E
�
yiI[xi = a(j)]

�
E
�
I[xi = a(j)]

� = g(a(j)):

Second,
p
n
�
ĝ(a(j))� g(a(j))

�
=
p
n

Pn
i=1

�
yi � E

�
yijxi = a(j)

��
I
�
xi = a(j)

�Pn
i=1 I

�
xi = a(j)

� :

According to the CLT,

1p
n

nX
i=1

�
yi � E

�
yijxi = a(j)

��
I
�
xi = a(j)

� d! N (0; !) ;

where

! = V
��
yi � E

�
yijxi = a(j)

��
I
�
xi = a(j)

��
= E

h�
yi � E

�
yijxi = a(j)

��2 jxi = a(j)

i
Pfxi = a(j)g

= V
�
yijxi = a(j)

�
Pfxi = a(j)g:

Thus
p
n
�
ĝ(a(j))� g(a(j))

� d! N
 
0;
V
�
yijxi = a(j)

�
Pfxi = a(j)g

!
:

14.2 Nonparametric density estimation

(a) Use the hint that E [I [xi � x]] = F (x) to prove the unbiasedness of estimator:

E
h
F̂ (x)

i
= E

"
1

n

nX
i=1

I [xi � x]

#
=
1

n

nX
i=1

E [I [xi � x]] =
1

n

nX
i=1

F (x) = F (x):
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(b) Use the Taylor expansion F (x + h) = F (x) + hf(x) + 1
2h
2f 0(x) + o(h2) to see that the bias

of f̂1(x) is

E
h
f̂1(x)

i
� f(x) = h�1 (F (x+ h)� F (x))� f(x)

=
1

h
(F (x) + hf(x) +

1

2
h2f 0(x) + o(h2)� F (x))� f(x)

=
1

2
hf 0(x) + o(h):

Therefore, a = 1:

(c) Use the Taylor expansions F
�
x+ h

2

�
= F (x) + h

2f(x) +
1
2

�
h
2

�2
f 0(x) + 1

6

�
h
2

�3
f 00(x) + o(h3)

and F
�
x� h

2

�
= F (x) � h

2f(x) +
1
2

�
h
2

�2
f 0(x) � 1

6

�
h
2

�3
f 00(x) + o(h3) to see that the bias of

f̂2(x) is

E
h
f̂2(x)

i
� f(x) = h�1 (F (x+ h=2)� F (x� h=2))� f(x) = 1

24
h2f 00(x) + o(h2):

Therefore, b = 2:

14.3 Nadaraya�Watson density estimator

Recall that
p
n
�
f̂(x)� f(x)

�
=

1p
n

nX
i=1

(Kh (xi � x)� f(x)) :

It is easy to derive that
E [Kh (xi � x)� f(x)] = O(h2);

and it can similarly be shown that

V [Kh (xi � x)� f(x)] = E
h
Kh (xi � x)2

i
+ f(x)2 � 2f(x)E [Kh (xi � x)]� E [Kh (xi � x)� f(x)]2

= h�1
Z
K(u)2 (f(x) +O(h)) du+O(1)�O(h2)2

= h�1f(x)RK +O(1):

To get non-trivial asymptotic bias, we should work on the bias term further:

E [Kh (xi � x)� f(x)] =

Z
K(u)

�
f(x) + huf 0(x) +

1

2
(hu)2f 00(x) +O(h3)

�
du� f(x)

= h2
1

2
f 00(x)�2K +O(h

3):

Summarizing, by (some variant of) CLT we have, as n!1 and h! 0; nh!1, that

p
nh
�
f̂(x)� f(x)

�
d! N

�
1

2
�f 00(x)�2K ; f(x)RK

�
;

provided that � � lim
n!1

p
nh5 exists and is �nite.
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The asymptotic bias is proportional to f 00(x); the amount of which indicates how the density in
the neighborhood of x di¤ers from the density at x which is estimated. Note that the asymptotic
bias does not depend on f(x); i.e. how often observations fall into this region, and on f 0(x); i.e.
how density to the left and that to the right of x di¤er � indeed, both are equally irrelevant to
estimation of the density (unlike in the regression). The asymptotic variance is proportional to
f(x); the density at x; which may seem counterintuitive (the higher frequency of observations, the
poorer estimation quality). Recall, however, that we are estimating f(x); so its higher value implies
more dispersion of its estimate around that value, and this e¤ect prevails (the frequency e¤ect gives
_ f(x)�1; the scale e¤ect gives _ f(x)2).

14.4 First di¤erence transformation and nonparametric regression

1. Let us consider the following average that can be decomposed into three terms:

1

n� 1

nX
i=2

(yi � yi�1)2 =
1

n� 1

nX
i=2

(g(zi)� g(zi�1))2 +
1

n� 1

nX
i=2

(ei � ei�1)2

+
2

n� 1

nX
i=2

(g(zi)� g(zi�1))(ei � ei�1):

Since zi compose a uniform grid and are increasing in order, i.e. zi� zi�1 = 1
n�1 ; we can �nd

the limit of the �rst term using the Lipschitz condition:����� 1

n� 1

nX
i=2

(g(zi)� g(zi�1))2
����� � G2

n� 1

nX
i=2

(zi � zi�1)2 =
G2

(n� 1)2 !
n!1

0

Using the Lipschitz condition again we can �nd the probability limit of the third term:����� 2

n� 1

nX
i=2

(g(zi)� g(zi�1))(ei � ei�1)
����� � 2G

(n� 1)2
nX
i=2

jei � ei�1j

� 2G

n� 1
1

n� 1

nX
i=2

(jeij+ jei�1j)
p!

n!1
0

since 2Gn�1 !
n!1

0 and 1
n�1

Pn
i=2 (jeij+ jei�1j)

p!
n!1

2E jeij < 1. The second term has the

following probability limit:

1

n� 1

nX
i=2

(ei � ei�1)2 =
1

n� 1

nX
i=2

�
e2i � 2eiei�1 + e2i�1

� p!
n!1

2E
�
e2i
�
= 2�2:

Thus the estimator for �2 whose consistency is proved by previous manipulations is

�̂2 =
1

2

1

n� 1

nX
i=2

(yi � yi�1)2:

2. At the �rst step estimate � from the FD-regression. The FD-transformed regression is

yi � yi�1 = (xi � xi�1)0� + g(zi)� g(zi�1) + ei � ei�1;
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which can be rewritten as
�yi = �x

0
i� +�g(zi) + �ei:

The consistency of the following estimator for �

�̂ =

 
nX
i=2

�xi�x
0
i

!�1 nX
i=2

�xi�yi

!

can be proved in the standard way:

�̂ � � =
 

1

n� 1

nX
i=2

�xi�x
0
i

!�1 
1

n� 1

nX
i=2

�xi(�g(zi) + �ei)

!

Here 1
n�1

Pn
i=2�xi�x

0
i has some non-zero probability limit,

1
n�1

Pn
i=2�xi�ei

p!
n!1

0 since

E[eijxi; zi] = 0, and
��� 1
n�1

Pn
i=2�xi�g(zi)

��� � G
n�1

1
n�1

Pn
i=2 j�xij

p!
n!1

0. Now we can use

standard nonparametric tools for the �regression�

yi � x0i�̂ = g(zi) + e
�
i ;

where e�i = ei + x0i(� � �̂): Consider the following estimator (we use the uniform kernel for
algebraic simplicity): dg(z) = Pn

i=1(yi � x0i�̂)I [jzi � zj � h]Pn
i=1 I [jzi � zj � h]

:

It can be decomposed into three terms:

dg(z) = Pn
i=1

�
g(zi) + x

0
i(� � �̂) + ei

�
I [jzi � zj � h]Pn

i=1 I [jzi � zj � h]

The �rst term gives g(z) in the limit. To show this, use Lipschitz condition:����Pn
i=1(g(zi)� g(z))I [jzi � zj � h]Pn

i=1 I [jzi � zj � h]

���� � Gh;

and introduce the asymptotics for the smoothing parameter: h! 0. ThenPn
i=1 g(zi)I [jzi � zj � h]Pn

i=1 I [jzi � zj � h]
=

Pn
i=1(g(z) + g(zi)� g(z))I [jzi � zj � h]Pn

i=1 I [jzi � zj � h]
=

= g(z) +

Pn
i=1(g(zi)� g(z))I [jzi � zj � h]Pn

i=1 I [jzi � zj � h]
!

n!1
g(z):

The second and the third terms have zero probability limit if the condition nh!1 is satis�edPn
i=1 x

0
iI [jzi � zj � h]Pn

i=1 I [jzi � zj � h]| {z }
#p
E [x0i]

(� � �̂)| {z }
#p
0

p!
n!1

0

and Pn
i=1 eiI [jzi � zj � h]Pn
i=1 I [jzi � zj � h]

p!
n!1

E [ei] = 0:

Therefore, dg(z) is consistent when n!1; nh!1; h! 0:
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14.5 Unbiasedness of kernel estimates

Recall that

ĝ (x) =

Pn
i=1 yiKh (xi � x)Pn
i=1Kh (xi � x)

;

so

E [ĝ (x)] = E
�
E
�Pn

i=1 yiKh (xi � x)Pn
i=1Kh (xi � x)

jx1; : : : ; xn
��

= E
�Pn

i=1 E [yijxi]Kh (xi � x)Pn
i=1Kh (xi � x)

�
= E

�Pn
i=1 cKh (xi � x)Pn
i=1Kh (xi � x)

�
= c;

i.e. ĝ (x) is unbiased for c = g (x) : The reason is simple: all points in the sample are equally
relevant in estimation of this trivial conditional mean, so bias is not induced when points far from
x are used in estimation.

The local linear estimator will be unbiased if g (x) = a+ bx: Then all points in the sample are
equally relevant in estimation since it is a linear regression, albeit locally, is run. Indeed,

ĝ1 (x) = �y +

Pn
i=1 (yi � �y) (xi � �x)Kh (xi � x)Pn

i=1 (xi � �x)
2Kh (xi � x)

(x� �x) ;

so

E [ĝ1 (x)] = E [E [�yjx1; : : : ; xn]]

+E

"
E

"Pn
i=1 (yi � �y) (xi � �x)Kh (xi � x)Pn

i=1 (xi � �x)
2Kh (xi � x)

jx1; : : : ; xn

#
(x� �x)

#
= E [a+ b�x]

+E

"
E

"Pn
i=1 (a+ bxi � a� b�x) (xi � �x)Kh (xi � x)Pn

i=1 (xi � �x)
2Kh (xi � x)

jx1; : : : ; xn

#
(x� �x)

#
= E [a+ b�x+ b (x� �x)] = a+ bx:

As far as the density is concerned, unbiasedness is unlikely. Indeed, recall that

f̂ (x) =
1

n

nX
i=1

Kh (xi � x) ;

so

E
h
f̂ (x)

i
= E [Kh (xi � x)] =

1

h

Z
K

�
xi � x
h

�
f (x) dx:

This expectation heavily depends on the bandwidth and kernel function, and barely will it equal
f (x) ; except under special circumstances (e.g., uniform f (x), x far from boundaries, etc.).

14.6 Shape restriction

The CRS technology has the property that

f (l; k) = kf

�
l

k
; 1

�
:
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The regression in terms of the rescaled variables is

yi
ki
= f

�
li
ki
; 1

�
+
"i
ki
:

Therefore, we can construct the (one dimensional!) kernel estimate of f (l; k) as

f̂ (l; k) = k �

nP
i=1

yi
ki
Kh

�
li
ki
� l

k

�
nP
i=1

Kh

�
li
ki
� l

k

� :

In e¤ect, we are using the sample points giving higher weight to those that are close to the ray l=k:

14.7 Nonparametric hazard rate

(i) A simple nonparametric estimator for F (t) � Pr fz � tg is the sample frequency

F̂ (t) =
1

n

nX
j=1

I [zj � t] :

By the law of large numbers, it is consistent for F (t): By the central limit theorem, its rate
of convergence is

p
n: This will be helpful later.

(ii) We derived in class that

E
�
1

hn
k

�
zj � t
hn

�
� f(t)

�
= O

�
h2n
�

and

V
�
1

hn
k

�
zj � t
hn

��
=
1

hn
Rkf(t) +O (1) ;

where Rk =
R
k (u)2 du: By the central limit theorem applied to

p
nhn

�
f̂(t)� f(t)

�
=
p
hn

1p
n

nX
j=1

�
1

hn
k

�
zj � t
hn

�
� f(t)

�
;

we get p
nhn

�
f̂(t)� f(t)

�
d! N (0; Rkf(t)) :

(iii) By the analogy principle,

Ĥ(t) =
f̂(t)

1� F̂ (t)
:
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It is consistent for H(t) and

p
nhn

�
Ĥ(t)�H(t)

�
=

p
nhn

 
f̂(t)

1� F̂ (t)
� f(t)

1� F (t)

!

=
p
nhn

 
f̂(t)(1� F (t))� f(t)(1� F̂ (t))

(1� F̂ (t))(1� F (t))

!

=

p
nhn(f̂(t)� f(t))
1� F̂ (t)

+
p
hnf(t)

p
n(F̂ (t)� F (t))

(1� F̂ (t))(1� F (t))
d! 1

1� F (t)N (0; Rkf(t)) + 0

= N
�
0; Rk

f(t)

(1� F (t))2

�
:

The reason of the fact that uncertainty in F̂ (t) does not a¤ect the asymptotic distribution of
Ĥ(t) is that F̂ (t) converges with faster rate than f̂(t) does.

14.8 Nonparametrics and perfect �t

When the variance of the error is zero,

ĝ (x)� g(x) =
(nh)�1

Pn
i=1 (g(xi)� g(x))K

�
xi � x
h

�
(nh)�1

Pn
i=1K

�
xi � x
h

� :

There is no usual source of variance (regression errors), so the variance should come from the
variance of xi�s.

The denominator converges to f(x) when n ! 1; h ! 0: Consider the numerator, which we
denote by q̂(x); and which is an average of IID random variables, say �i. We derived in class that

E [q̂(x)] = h2B(x)f(x) + o(h2); V [q̂(x)] = o((nh)�1):

Now we need to look closer at the variance. Now,

E
�
�2i
�
= h�2

Z
(g(xi)� g(x))2K

�
xi � x
h

�2
f(xi)dxi

= h�1
Z
(g(x+ hu)� g(x))2K (u)2 f(x+ hu)du

= h�1
Z �

g0(x)hu+ o(h)
�2
K (u)2 (f(x) + o(h)) du

= hg0(x)2f(x)

Z
u2K (u)2 du+ o(h);

so

V [�i] = E
�
�2i
�
� E [�i]2 = hg0(x)2f(x)	2K + o(h);
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where 	2K =
R
u2K (u)2 du: Hence, by some CLT,

p
nh�1

 
(nh)�1

nX
i=1

(g(xi)� g(x))K
�
xi � x
h

�
� h2B(x)f(x) + o(h2)

!
d! N

�
0; g0(x)2f(x)	2K

�
:

Let � = lim
n!1;h!0

p
nh3; assuming � <1: Then,

p
nh�1 (ĝ (x)� g(x)) d! N

�
�B(x);

g0(x)2

f(x)
	2K

�
:

14.9 Nonparametrics and extreme observations

(a) When x1 is very big, we will have a big in�uence of this observation when estimating the
regression in the right region of the support. With bounded kernels, we may �nd that no
observations fall into the window. With unbounded kernels, the estimated regression line will
go almost through (x1;y1):

(b) When y1 is very big, the estimated regression line will have a hump in the region centered at
x1:
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15. CONDITIONALMOMENTRESTRICTIONS

15.1 Usefulness of skedastic function

Denote � =
�
�
�

�
and e = y � x0�: The moment function is

m(y; x; �) =

�
m1

m2

�
=

�
y � x0�

(y � x0�)2 � h(x; �; �)

�
The general theory for the conditional moment restriction E [m(w; �)jx] = 0 gives the optimal

restriction E
�
D(x)0
(x)�1m(w; �)

�
= 0; where D(x) = E

�
@m

@�0
jx
�
and 
(x) = E[mm0jx]: The

variance of the optimal estimator is V =
�
E
�
D(x)0
(x)�1D(x)

���1
: For the problem at hand,

D(x) = E
�
@m

@�0
jx
�
= �E

��
x0 0

2ex0 + h0� h0�

�
jx
�
= �

�
x0 0
h0� h0�

�
;


(x) = E[mm0jx] = E
��

e2 e(e2 � h)
e(e2 � h) (e2 � h)2

�
jx
�
= E

��
e2 e3

e3 (e2 � h)2
�
jx
�
;

since E[exjx] = 0 and E[ehjx] = 0:
Let �(x) � det
(x) = E[e2jx]E[(e2 � h)2jx]� (E[e3jx])2: The inverse of 
 is


(x)�1 =
1

�(x)
E
��

(e2 � h)2 �e3
�e3 e2

�
jx
�
;

and the asymptotic variance of the e¢ cient GMM estimator is

V �1 = E
�
D(x)0
(x)�1D(x)

�
=

�
A B0

B C

�
;

where

A = E

"
(e2 � h)2xx0 � e3(xh0� + h�x0) + e2h�h0�

�(x)

#
;

B = E

"
�e3h�x0 + e2h�h0�

�(x)

#
; C = E

�
e2h�h

0
�

�(x)

�
:

Using the formula for inversion of the partitioned matrices, �nd that

V =

�
(A�B0C�1B)�1 �

� �

�
;

where ��s denote submatrices which are not of interest.
To answer the problem we need to compare V11 = (A�B0C�1B)�1 with V0 =

�
E
�
xx0

h

���1
;

the variance of the optimal GMM estimator constructed with the use of m1 only. We need to show
that V11 � V0; or, alternatively, V �111 � V �10 : Note that

V �111 � V �10 = ~A�B0C�1B;
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where ~A = A� V �10 can be simpli�ed to

~A = E

"
1

�(x)

 
xx0
�
E
�
e3jx

��2
E [e2jx] � e3(xh0� + h�x0) + e2h�h0�

!#
:

Next, we can use the following representation:

~A�B0C�1B = E[ww0];

where

w =
E
�
e3jx

�
x� E

�
e2jx

�
h�p

E [e2jx]
p
�(x)

+B0C�1h�

s
E [e2jx]
�(x)

:

This representation concludes that V �111 � V �10 and gives the condition under which V11 = V0: This
condition is w(x) = 0 almost surely. It can be written as

E
�
e3jx

�
E [e2jx] x = h� �B0C�1h� almost surely.

Consider the special cases.

1. h� = 0. Then the condition modi�es to

E
�
e3jx

�
E [e2jx] x = �E

�
e3h�x

0

�(x)

�
E
�
e2h�h

0
�

�(x)

��1
h� almost surely.

2. h� = 0 and the distribution of e conditional on x is symmetric. Then the previous condition
is satis�ed automatically since E

�
e3jx

�
= 0:

15.2 Symmetric regression error

Part 1. The maintained hypothesis is E [ejx] = 0: We can use the null hypothesis H0 : E
�
e3jx

�
= 0

to test for the conditional symmetry. We could in addition use more conditional moment restrictions
(e.g., involving higher odd powers) to increase the power of the test, but in �nite samples that would
probably lead to more distorted test sizes. The alternative hypothesis is H1 : E

�
e3jx

�
6= 0:

An estimator that is consistent under both H0 and H1 is, for example, the OLS estimator
�̂OLS : The estimator that is consistent and asymptotically e¢ cient (in the same class where �̂OLS
belongs) under H0 and (hopefully) inconsistent under H1 is the instrumental variables (GMM)
estimator �̂OIV that uses the optimal instrument for the system E [ejx] = 0; E

�
e3jx

�
= 0. We

derived in class that the optimal unconditional moment restriction is

E
h
a1(x) (y � �x) + a2(x) (y � �x)3

i
= 0;

where �
a1(x)

a2(x)

�
=

x

�2(x)�6(x)� �4(x)2

�
�6(x)� 3�2(x)�4(x)
3�2(x)

2 � �4(x)

�
and �r(x) = E [(y � �x)r jx] ; r = 2; 4; 6. To construct a feasible �̂OIV ; one needs to �rst estimate
�r(x) at the points xi of the sample. This may be done nonparametrically using nearest neighbor,
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series expansion or other approaches. Denote the resulting estimates by �̂r(xi); i = 1; : : : ; n;
r = 2; 4; 6 and compute â1(xi) and â2(xi); i = 1; : : : ; n. Then �̂OIV is a solution of the equation

1

n

nX
i=1

�
â1(xi) (yi � �̂OIV xi) + â2(xi) (yi � �̂OIV xi)3

�
= 0;

which can be turned into an optimization problem, if convenient.
The Hausman test statistic is then

H = n
(�̂OLS � �̂OIV )2

V̂OLS � V̂OIV
d! �21;

where V̂OLS = n
�Pn

i=1 x
2
i

��2Pn
i=1 x

2
i (yi � �̂OLSxi)

2 and V̂OIV is a consistent estimate of the
e¢ ciency bound

VOIV =

�
E
�
x2(�6(x)� 6�2(x)�4(x) + 9�32(x))

�2(x)�6(x)� �24(x)

���1
:

Note that the constructed Hausman test will not work if �̂OLS is also asymptotically e¢ cient,
which may happen if the third-moment restriction is redundant and the error is conditionally
homoskedastic so that the optimal instrument reduces to the one implied by OLS. Also, the test
may be inconsistent (i.e., asymptotically have power less than 1) if �̂OIV happens to be consistent
under conditional non-symmetry too.

Part 2. Under the assumption that ejx � N (0; �2); irrespective of whether �2 is known or not,
the QML estimator �̂QML coincides with the OLS estimator and thus has the same asymptotic
distribution

p
n (�̂QML � �)

d! N

0@0; E
h
x2 (y � �x)2

i
(E [x2])2

1A :

15.3 Optimal instrumentation of consumption function

As the error has a martingale di¤erence structure, the optimal instrument is (up to a factor of
proportionality)

�t _
1

E
�
e2t jyt�1; ct�1; : : :

�
0@ 1

E [y
t jyt�1; ct�1; : : :]
E [y
t ln ytjyt�1; ct�1; : : :]

1A :

One could �rst estimate �; � and 
 using the instrument vector (for example) (1; yt�1; yt�2): Using
these, one could get feasible versions of e2t and y



t : Then one could do one�s best to parametrically �t

feasible e2t ; y


t and y



t ln yt to recent variables in fyt�1; ct�1; yt�2; ct�2; : : :g ; employing autoregressive

structures (e.g., fancy GARCH for e2t ). The �tted values then could be used to form feasible �t to
be eventually used to IV-estimate the parameters. Naturally, because auxiliary parameterizations
are used, such instrument will be only �nearly optimal�. In particular, the asymptotic variance has
to be computed in a �sandwich�form.
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15.4 Optimal instrument in AR-ARCH model

Let us for convenience view a typical element of Zt as
P1

i=1 !i"t�i; and let the optimal instrument
be �t =

P1
i=1 ai"t�i:The optimality condition is

E[vtxt�1] = E
�
vt�t"

2
t

�
for all vt 2 Zt:

Since it should hold for any vt 2 Zt; let us make it hold for vt = "t�j ; j = 1; 2; : : : : Then we get a
system of equations of the type

E["t�jxt�1] = E
h
"t�j

�X1

i=1
ai"t�i

�
"2t

i
:

The left-hand side is just �j�1 because xt�1 =
P1

i=1 �
i�1"t�i and because E["2t ] = 1: In the right-

hand side, all terms are zeros due to conditional symmetry of "t, except ajE
h
"2t�j"

2
t

i
: Therefore,

aj =
�j�1

1 + �j(�� 1) ;

where � = E
�
"4t
�
: This follows from the ARCH(1) structure:

E
�
"2t�j"

2
t

�
= E

�
"2t�jE["2t jIt�1]

�
= E

�
"2t�j

�
(1� �) + �"2t�1

��
= (1� �) + �E

�
"2t�j+1"

2
t

�
;

so that we can recursively obtain

E
�
"2t�j"

2
t

�
= 1� �j + �j�:

Thus the optimal instrument is

�t =
1X
i=1

�i�1

1 + �i(�� 1)"t�i =

=
xt�1

1 + �(�� 1) + (�� 1)(1� �)
1X
i=2

(��)i�1

(1 + �i(�� 1)) (1 + �i�1(�� 1))xt�i:

To construct a feasible estimator, set �̂ to be the OLS estimator of �, �̂ to be the OLS estimator
of � in the model "̂2t � 1 = �("̂2t�1 � 1) + �t; and compute �̂ = T�1

PT
t=2 "̂

4
t :

The optimal instrument based on E["tjIt�1] = 0 uses a large set of allowable instruments,
relative to which our Zt is extremely thin. Therefore, we can expect big losses in e¢ ciency in
comparison with what we could get. In fact, calculations for empirically relevant sets of parameter
values reveal that this intuition is correct. Weighting by the skedastic function is much more pow-
erful than trying to capture heteroskedasticity by using an in�nite history of the basic instrument
in a linear fashion.

15.5 Optimal instrument in AR with nonlinear error

1. We look for an optimal combination of "t�1; "t�2; : : : ; say

�t =
1X
i=1

��i "t�i;
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when the class of allowable instruments is

Zt =
(
&t =

1X
i=1

�i"t�i

)
:

The optimality condition for each "t�r; r � 1; is

8 r � 1 E ["t�rxt�1] = E
�
"t�r�t"

2
t

�
;

or

8 r � 1 �r�1 = E

"
"t�r

 1X
i=1

��i "t�i

!
"2t

#
:

When r > 1; this implies �r�1 = ��r ; while when r = 1; we have 1 = ��1E
�
�2t�1�

2
t�2�

2
t �
2
t�1
�
=

��1E
�
�4
�
: The optimal instrument then is

�t = E
�
�4
��1

"t�1 +
1X
i=2

�r�1"t�i =
�
E
�
�4
��1 � 1� "t�1 + 1X

i=1

�r�1"t�i

=
�
E
�
�4
��1 � 1� (xt�1 � �xt�2) + xt�1 = E ��4��1 xt�1 + �E ��4��1 � 1� �xt�2;

and employs only two lags of xt: To construct a feasible version, one needs to �rst consistently
estimate � (say, by OLS), and E

�
�4
�
(say, by a sample analog to E

�
"2t�1"

2
t

�
).

2. The optimal instrument based on this conditional moment restriction is Chamberlain�s one:

�t _
xt�1

E
�
"2t jIt�1

� ;
where

E
�
"2t jIt�1

�
= E

�
�2t �

2
t�1jxt�1; xt�2; : : :

�
= E

�
E
�
�2t j�t�1; xt�1; xt�2; : : :

�
�2t�1jxt�1; xt�2; : : :

�
= E

�
�2t�1jxt�1; xt�2; : : :

�
= E

�
"2t�1
�2t�2

jxt�1; xt�2; : : :
�
= : : : =

"2t�1"
2
t�3"

2
t�5 : : :

"2t�2"
2
t�4"

2
t�6 : : :

:

This, apparently, requires knowledge of all past errors, and not only of their �nite number.
Hence, it is problematic to construct a feasible version from a �nite sample.

15.6 Optimal IV estimation of a constant

From the DGP it follows that the moment function is conditionally (on yt�p�1; yt�p�2; : : :) ho-
moskedastic. Therefore, the optimal instrument is Hansen�s (1985)

�(L)�t = E
�
�(L�1)�11jyt�p�1; yt�p�2; : : :

�
;

or
�(L)�t = �(1)

�1:

This is a deterministic recursion. Since the instrument we are looking for should be stationary, �t
has to be a constant. Since the value of the constant does not matter, the optimal instrument may
be taken as unity.
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15.7 Negative binomial distribution and PML

Yes, it does. The density belongs to the linear exponential class, with C(m) = logm� log(a+m):
The form of the skedastic function is immaterial for the consistency property to hold.

15.8 Nesting and PML

Indeed, in the example, h (z; �; &) reduces to exponential distribution when & = 1; and the expo-
nential pseudodensity consistently estimates �0: When & is estimated, the vector of parameters is
(�; &)0 ; and the pseudoscore is

@ log h (z; �; &)

@ (�; &)0
=

@
�
log & + & log �

�
1 + &�1

�
� & log�+ (& � 1) log z �

�
�
�
1 + &�1

�
z=�

�&�
@ (�; &)0

=

���
�
�
1 + &�1

�
z=�

�& � 1� &=�
: : :

�
:

Observe that the pseudoscore for � has zero expectation if and only if E
��
�
�
1 + &�1

�
z=�

�&�
= 1:

This obviously holds when & = 1; but may not hold for other &: For instance, when & = 2; we know
that E

�
z2
�
= �2� (2:5) =� (1:5)2 = 1:5�2=� (1:5) ; which contradicts the zero expected pseudoscore.

The pseudotrue value &� of & can be obtained by solving the system of zero expected pseudoscore, but
it is very unlikely that it equals 1. The result can be explained by the presence of an extraneous
parameter whose pseudotrue value has nothing to do with the problem and whose estimation
adversely a¤ects estimation of the quantity of interest.

15.9 Misspeci�cation in variance

The log pseudodensity on which the proposed PML1 estimator relies has the form

log (y;m) = � log
p
2� � 1

2
logm2 +

(y �m)2

2m2
;

which does not belong to the linear exponential family of densities (the term y2=2m2 does not �t).
Therefore, the PML1 estimator is not consistent except by improbable chance.

The inconsistency can be shown directly. Consider a special case of no regressors and estimation
of mean:

y � N
�
�0; �

2
�
;

while the pseudodensity is
y � N

�
�; �2

�
:

Then the pseudotrue value of � is

�� = argmax
�
E

"
�1
2
log �2 � (y � �)

2

2�2

#
= argmax

�

(
�1
2
log �2 � �2 + (�0 � �)2

2�2

)
:

It is easy to see by di¤erentiating that �� is not �0 until by chance �20 = �2:
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15.10 Modi�ed Poisson regression and PML estimators

Part 1. The mean regression function is E[yjx] = E[E[yjx; "]jx] = E[exp(x0� + ")jx] = exp(x0�):
The skedastic function is V[yjx] = E[(y � E[yjx])2jx] = E[y2jx]� E[yjx]2: Because

E
�
y2jx

�
= E

�
E
�
y2jx; "

�
jx
�
= E

�
exp(2x0� + 2") + exp(x0� + ")jx

�
= exp(2x0�)E

�
(exp ")2jx

�
+ exp(x0�) = (�2 + 1) exp(2x0�) + exp(x0�);

we have V [yjx] = �2 exp(2x0�) + exp(x0�):

Part 2. Use the formula for asymptotic variance of NLLS estimator VNLLS = Q�1gg Qgge2Q
�1
gg ;

whereQgg = E
�
@g(x; �)=@� � @g(x; �)=@�0

�
andQgge2 = E

�
@g(x; �)=@� � @g(x; �)=@�0(y � g(x; �))2

�
:

In our problem g(x; �) = exp(x0�) and Qgg = E [xx0 exp(2x0�)] ;

Qgge2 = E
�
xx0 exp(2x0�)(y � exp(x0�))2

�
= E

�
xx0 exp(2x0�)V[yjx]

�
= E

�
xx0 exp(2x0�)(�2 exp(2x0�) + exp(x0�))

�
= E

�
xx0 exp(3x0�)

�
+ �2E

�
xx0 exp(4x0�)

�
:

To �nd the expectations we use the formula E[xx0 exp(nx0�)] = exp(n
2

2 �
0�)(I + n2��0): Now, we

have Qgg = exp(2�0�)(I + 4��0) and Qgge2 = exp(92�
0�)(I + 9��0) + �2 exp(8�0�)(I + 16��0):

Finally,

VNLLS = (I + 4��
0)�1

�
exp(

1

2
�0�)(I + 9��0) + �2 exp(4�0�)(I + 16��0)

�
(I + 4��0)�1:

The formula for asymptotic variance of WNLLS estimator is VWNLLS = Q�1
gg=�2

; where Qgg=�2 =

E
�
V[yjx]�1@g(x; �)=@� � @g(x; �)=@�0

�
: In this problem

Qgg=�2 = E
�
xx0 exp(2x0�)(�2 exp(2x0�) + exp(x0�))�1

�
;

which can be rearranged as

VWNLLS = �2
�
I � E

�
xx0

1 + �2 exp(x0�)

���1
:

Part 3. We use the formula for asymptotic variance of PML estimator: VPML = J �1IJ �1;
where

J = E

"
@C

@m

����
m(x;�0)

@m(x; �0)

@�

@m(x; �0)

@�0

#
;

I = E

24 @C

@m

����
m(x;�0)

!2
�2(x; �0)

@m(x; �0)

@�

@m(x; �0)

@�0

35 :
In this problem m(x; �) = exp(x0�) and �2(x; �) = �2 exp(2x0�) + exp(x0�):

(a) For the normal distribution C(m) = m; therefore @C=@m = 1 and VNPML = VNLLS :
(b) For the Poisson distribution C(m) = logm; therefore @C=@m = 1=m,

J = E[exp(�x0�)xx0 exp(2x0�)] = exp(1
2
�0�)(I + ��0);

I = E[exp(�2x0�)(�2 exp(2x0�) + exp(x0�))xx0 exp(2x0�)]

= exp(
1

2
�0�)(I + ��0) + �2 exp(2�0�)(I + 4��0):
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Finally,

VPPML = (I + ��
0)�1

�
exp(�1

2
�0�)(I + ��0) + �2 exp(�0�)(I + 4��0)

�
(I + ��0)�1:

(c) For the Gamma distribution C(m) = ��=m; therefore @C=@m = �=m2;

J = E[� exp(�2x0�)xx0 exp(2x0�)] = �I;

I = �2E[exp(�4x0�)(�2 exp(2x0�) + exp(x0�))xx0 exp(2x0�)]

= �2�2I + �2 exp(
1

2
�0�)(I + ��0):

Finally,

VGPML = �2I + exp(
1

2
�0�)(I + ��0):

Part 4. We have the following variances:

VNLLS = (I + 4��0)�1
�
exp(

1

2
�0�)(I + 9��0) + �2 exp(4�0�)(I + 16��0)

�
(I + 4��0)�1;

VWNLLS = �2
�
I � E

�
xx0

1 + �2 exp(x0�)

���1
;

VNPML = VNLLS ;

VPPML = (I + ��0)�1
�
exp(�1

2
�0�)(I + ��0) + �2 exp(�0�)(I + 4��0)

�
(I + ��0)�1;

VGPML = �2I + exp(
1

2
�0�)(I + ��0):

From the theory we know that VWNLLS � VNLLS : Next, we know that in the class of PML
estimators the e¢ ciency bound is achieved when @C=@mjm(x;�0) is proportional to �

�2(x; �0); then
the bound is

E
�
@m(x; �)

@�

@m(x; �)

@�0
1

V[yjx]

�
which is equal to VWNLLS in our case. So, we have VWNLLS � VPPML and VWNLLS � VGPML: The
comparison of other variances is not straightforward. Consider the one-dimensional case. Then we
have

VNLLS =
e�

2=2(1 + 9�2) + �2e4�
2
(1 + 16�2)

(1 + 4�2)2
;

VWNLLS = �2
�
1� E

�
x2

1 + �2 exp(x�)

���1
;

VNPML = VNLLS ;

VPPML =
e�

2=2(1 + �2) + �2e�
2
(1 + 4�2)

(1 + �2)2
;

VGPML = �2 + e�
2=2(1 + �2):

We can calculate these (except VWNLLS) for various parameter sets. For example, for �2 = 0:01
and �2 = 0:4 VNLLS < VPPML < VGPML; for �2 = 0:01 and �2 = 0:1 VPPML < VNLLS <
VGPML; for �2 = 1 and �2 = 0:4 VGPML < VPPML < VNLLS ; for �2 = 0:5 and �2 = 0:4
VPPML < VGPML < VNLLS : However, it appears impossible to make VNLLS < VGPML < VPPML

or VGPML < VNLLS < VPPML:
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15.11 Optimal instrument and regression on constant

Part 1. We have the following moment function: m(x; y; �) = (y � �; (y � �)2 � �2x2)0 with
� =

�
�; �2

�0. The optimal unconditional moment restriction is E[A�(x)m(x; y; �)] = 0; where
A�(x) = D0(x)
(x)�1; D(x) = E

�
@m(x; y; �)=@�0jx

�
; 
(x) = E[m(x; y; �)m(x; y; �)0jx]:

(a) For the �rst moment restriction m1(x; y; �) = y � � we have D(x) = �1 and 
(x) =
E
�
(y � �)2jx

�
= �2x2; therefore the optimal moment restriction is

E
�
y � �
x2

�
= 0:

(b) For the moment function m(x; y; �) we have

D(x) =

�
�1 0
0 �x2

�
; 
(x) =

�
�2x2 0
0 �4(x)� x4�4

�
;

where �4(x) = E
�
(y � �)4jx

�
: The optimal weighting matrix is

A�(x) =

0B@
1

�2x2
0

0
x2

�4(x)� x4�4

1CA :

The optimal moment restriction is

E

2664
0BB@

y � �
x2

(y � �)2 � �2x2
�4(x)� x4�4

x2

1CCA
3775 = 0:

Part 2. (a) The GMM estimator is the solution of

1

n

X
i

yi � �̂
x2i

= 0 ) �̂ =
X
i

yi
x2i

,X
i

1

x2i
:

The estimator for �2 can be drawn from the sample analog of the condition E
�
(y � �)2

�
= �2E

�
x2
�
:

~�2 =
X
i

(yi � �̂)2
,X

i

x2i :

(b) The GMM estimator is the solution of

X
i

0BBB@
yi � �̂
x2i

(yi � �̂)2 � �̂2x2i
�̂4(xi)� x4i �̂4

x2i

1CCCA = 0:

We have the same estimator for �:

�̂ =
X
i

yi
x2i

,X
i

1

x2i
;
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�̂2 is the solution of X
i

(yi � �̂)2 � �̂2x2i
�̂4(xi)� x4i �̂4

x2i = 0;

where �̂4(x) is non-parametric estimator for �4(x) = E
�
(y � �)4jx

�
; for example, a nearest neighbor

or a series estimator.

Part 3. The general formula for the variance of the optimal estimator is

V =
�
E
�
D0(x)
(x)�1D(x)

���1
:

(a) V�̂ = �2
�
E
�
x�2

���1
: Use standard asymptotic techniques to �nd

V~�2 =
E
�
(y � �)4

�
(E [x2])2

� �4:

(b)

V(�̂;�̂2) =

0B@E
264
0B@

1

�2x2
0

0
x4

�4(x)� x4�4

1CA
375
1CA
�1

=

0B@ �2
�
E
�
x�2

���1
0

0

�
E
�

x4

�4(x)� x4�4

���1
1CA :

When we use the optimal instrument, our estimator is more e¢ cient, therefore V~�2 > V�̂2 :
Estimators of asymptotic variance can be found through sample analogs:

V̂�̂ = �̂2

 
1

n

X
i

1

x2i

!�1
; V~�2 = n

P
i(yi � �̂)4�P

i x
2
i

�2 � ~�4; V�̂2 = n

 X
i

x4i
�̂4(xi)� x4i �̂4

!�1
:

Part 4. The normal distribution PML2 estimator is the solution of the following problem:

d� �
�2

�
PML2

= argmax
�;�2

(
const� n

2
log �2 � 1

�2

X
i

(yi � �)2
2x2i

)
:

Solving gives

�̂PML2 = �̂ =
X
i

yi
x2i

,X
i

1

x2i
; �̂2PML2 =

1

n

X
i

(yi � �̂)2
x2i

Since we have the same estimator for �, we have the same variance V�̂ = �2
�
E
�
x�2i

���1
. It can be

shown that

V�̂2 = E
�
�4(x)

x4

�
� �4:
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16. EMPIRICAL LIKELIHOOD

16.1 Common mean

1. We have the following moment function: m(x; y; �) = (x� �; y � �)0. The EL estimator is
the solution of the following optimization problem.X

i

log pi ! max
pi;�

subject to X
i

pim(xi; yi; �) = 0;
X
i

pi = 1:

Let � be a Lagrange multiplier for the restriction
P

i pim(xi; yi; �) = 0, then the solution of
the problem satis�es

pi =
1

n

1

1 + �0m(xi; yi; �)
;

0 =
1

n

X
i

1

1 + �0m(xi; yi; �)
m(xi; yi; �);

0 =
1

n

X
i

1

1 + �0m(xi; yi; �)

�
@m(xi; yi; �)

@�0

�0
�:

In our case, � = (�1; �2) ; and the system is

pi =
1

1 + �1(xi � �) + �2(yi � �)
;

0 =
1

n

X
i

1

1 + �1(xi � �) + �2(yi � �)

�
xi � �
yi � �

�
;

0 =
1

n

X
i

��1 � �2
1 + �1(xi � �) + �2(yi � �)

:

The asymptotic distribution of the estimators is

p
n(�̂EL � �)

d! N(0; V );
p
n

�
�1
�2

�
d! N (0; U);

where V =
�
Q0@mQ

�1
mmQ@m

��1
; U = Q�1mm �Q�1mmQ@mV Q0@mQ�1mm: In our case Q@m =

�
�1
�1

�
and Qmm =

�
�2x �xy
�xy �2y

�
; therefore

V =
�2x�

2
y � �2xy

�2y + �
2
x � 2�xy

; U =
1

�2y + �
2
x � 2�xy

�
1 �1
�1 1

�
:

Estimators for V and U based on consistent estimators for �2x, �
2
y and �xy can be constructed

from sample moments.
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2. The last equation of the system gives �1 = ��2 = �; so we have

pi =
1

1 + �(xi � yi)
; 0 =

1

n

X
i

1

1 + �(xi � yi)

�
xi � �
yi � �

�
:

The EL estimator is

�̂EL =
X
i

xi
1 + �EL(xi � yi)

=
X
i

yi
1 + �EL(xi � yi)

;

where �EL is the solution of X
i

xi � yi
1 + �(xi � yi)

= 0:

Consider the linearized EL estimator. Linearization with respect to � around 0 gives

pi = 1� �(xi � yi); 0 =
1

n

X
i

(1� �(xi � yi))
�
xi � �
yi � �

�
;

and helps to �nd an approximate but explicit solution

~�AEL =

P
i(xi � yi)P
i(xi � yi)2

; ~�AEL =

P
i(1� �(xi � yi))xiP
i(1� �(xi � yi))

=

P
i(1� �(xi � yi))yiP
i(1� �(xi � yi))

:

Observe that ~�AEL is a normalized distance between the sample means of x�s and y�s, ~�AEL
is a weighted sample mean. The weights are such that the weighted mean of x�s equals the
weighted mean of y�s. So, the moment restriction is satis�ed in the sample. Moreover, the
weight of observation i depends on the distance between xi and yi and on how the signs of
xi � yi and �x � �y relate to each other. If they have the same sign, then such observation
says against the hypothesis that the means are equal, thus the weight corresponding to this
observation is relatively small. If they have opposite signs, such observation supports the
hypothesis that means are equal, thus the weight corresponding to this observation is relatively
large.

3. The technique is the same as in the EL problem. The Lagrangian is

L = �
X
i

pi log pi + �

 X
i

pi � 1
!
+ �0

X
i

pim(xi; yi; �):

The �rst-order conditions are

� 1
n
(log pi + 1) + �+ �

0m(xi; yi; �) = 0; �0
X
i

pi
@m(xi; yi; �)

@�0
= 0:

The �rst equation together with the condition
P

i pi = 1 gives

pi =
e�

0m(xi;yi;�)P
i e
�0m(xi;yi;�)

:

Also, we have

0 =
X
i

pim(xi; yi; �); 0 =
X
i

pi

�
@m(xi; yi; �)

@�0

�0
�:

The system for � and � that gives the ET estimator is

0 =
X
i

e�
0m(xi;yi;�)m(xi; yi; �); 0 =

X
i

e�
0m(xi;yi;�)

�
@m(xi; yi; �)

@�0

�0
�:
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In our simple case, this system is

0 =
X
i

e�1(xi��)+�2(yi��)
�
xi � �
yi � �

�
; 0 =

X
i

e�1(xi��)+�2(yi��)(�1 + �2):

Here we have �1 = ��2 = � again. The ET estimator is

�̂ET =

P
i xie

�(xi�yi)P
i e
�(xi�yi)

=

P
i yie

�(xi�yi)P
i e
�(xi�yi)

;

where � is the solution of X
i

(xi � yi)e�(xi�yi) = 0:

Note, that linearization of this system gives the same result as in EL case.
Since ET estimators are asymptotically equivalent to EL estimators (the proof of this fact is
trivial: the �rst-order Taylor expansion of the ET system gives the same result as that of the
EL system), there is no need to calculate the asymptotic variances, they are the same as in
part 1.

16.2 Kullback�Leibler Information Criterion

1. Minimization of

KLIC(e : �) = Ee
h
log

e

�

i
=
X
i

1

n
log

1

n�i

is equivalent to maximization of
P

i log �i which gives the EL estimator.

2. Minimization of
KLIC(� : e) = E�

h
log

�

e

i
=
X
i

�i log
�i
1=n

gives the ET estimator.

3. The knowledge of probabilities pi gives the following modi�cation of EL problem:X
i

pi log
pi
�i
! min

�i;�
s.t.

X
�i = 1;

X
�im(zi; �) = 0:

The solution of this problem satis�es the following system:

�i =
pi

1 + �0m(zi; �)
;

0 =
X
i

pi
1 + �0m(zi; �)

m(zi; �);

0 =
X
i

pi
1 + �0m(zi; �)

�
@m(zi; �)

@�0

�0
�:

The knowledge of probabilities pi gives the following modi�cation of ET problemX
i

�i log
�i
pi
! min

�i;�
s.t.

X
�i = 1;

X
�im(zi; �) = 0:
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The solution of this problem satis�es the following system

�i =
pie

�0m(zi;�)P
j pje

�0m(zj ;�)
;

0 =
X
i

pie
�0m(zi;�)m(zi; �);

0 =
X
i

pie
�0m(zi;�)

�
@m(zi; �)

@�0

�0
�:

4. The problem

KLIC(e : f) = Ee
�
log

e

f

�
=
X
i

1

n
log

1=n

f(zi; �)
! min

�

is equivalent to X
i

log f(zi; �)! max
�
;

which gives the Maximum Likelihood estimator.

16.3 Empirical likelihood as IV estimation

The e¢ cient GMM estimator is

�GMM =
�
Z 0GMMX

��1Z 0GMMY;

where ZGMM contains implied GMM instruments

ZGMM = X 0Z
�
Z 0
̂Z

��1
Z 0;

and 
̂ contains squared residuals on the main diagonal.
The FOC to the EL problem are

0 =
1

n

X
i

zi (yi � x0i�EL)
1 + �0ELzi (yi � x0i�EL)

�
X
i

�izi
�
yi � x0i�EL

�
;

0 =
1

n

X
i

1

1 + �0ELzi (yi � x0i�EL)
�
�zix0i

�0
�EL � �

X
i

�ixiz
0
i�EL:

From the �rst equation after premultiplication by
P

i �ixiz
0
i

�
Z 0
̂Z

��1
it follows that

�EL =
�
Z 0ELX

��1Z 0ELY;
where ZEL contains nonfeasible (because they depend on yet unknown parameters �EL and �EL)
EL instruments

ZEL = X 0�̂Z
�
Z 0
̂Z

��1
Z 0�̂;

where �̂ � diag (�1; : : : ; �n) :
If we compare the expressions for �GMM and �EL; we see that in the construction of �EL some

expectations are estimated using EL probability weights rather than the empirical distribution.
Using probability weights yields more e¢ cient estimates, hence �EL is expected to exhibit better
�nite sample properties than �GMM .
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17. ADVANCED ASYMPTOTIC THEORY

17.1 Maximum likelihood and asymptotic bias

(a) The ML estimator is �̂ = �y�1T for which the second order expansion is

�̂ =
1

E [y]
�
1 + (E [y])�1 1T

PT
t=1 (yt � E [y])

�
= �

0@1� � 1p
T

1p
T

TX
t=1

�
yt � ��1

�
+ �2

1

T

 
1p
T

TX
t=1

�
yt � ��1

�!2
+ op

�
1

T

�1A :

Therefore, the second order bias of �̂ is

B2
�
�̂
�
=
1

T
�3V [y] =

1

T
�:

(b) We can use the general formula for the second order bias of extremum estimators. For the
ML, 	(y; �) = log f(y; �) = log �� �y; so

E

"�
@	

@�

�2#
= ��2; E

�
@2	

@�2

�
= ���2; E

�
@3	

@�3

�
= 2��3; E

�
@2	

@�2
@	

@�

�
= 0;

so the second order bias of �̂ is

B2
�
�̂
�
=
1

T

��
��2

��2 � 0 + 1
2

�
��2

��3 � 2��3 � ��2� = 1

T
�:

The bias corrected ML estimator of � is

�̂
�
= �̂� 1

T
�̂ =

T � 1
T

1

�yT
:

17.2 Empirical likelihood and asymptotic bias

Solving the standard EL problem, we end up with the system in a most convenient form

�̂EL =
1

n

nX
i=1

xi

1 + �̂(xi � yi)
;

0 =
1

n

nX
i=1

xi � yi
1 + �̂(xi � yi)

;
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where �̂ is one of original Largrange multiplies (the other equals ��̂). From the �rst equation, the
second order expansion for �̂EL is

�̂EL =
1

n

nX
i=1

xi(1� �̂(xi � yi) + �̂
2
(xi � yi)2) + op

�
1

n

�

= � +
1p
n

1p
n

nX
i=1

(xi � �)�
1

n

p
n�̂

1p
n

nX
i=1

xi(xi � yi)

+
1

n
(
p
n�̂)2E

�
x(x� y)2

�
+ op

�
1

n

�
:

We need a �rst order expansion for �̂, which from the second equation is

p
n�̂ =

1p
n

Pn
i=1(xi � yi)

n�1
Pn

i=1(xi � yi)2
+ op (1) =

1

E [(x� y)2]
1p
n

nX
i=1

(xi � yi) + op (1) :

Then, continuing,

�̂EL = � +
1p
n

1p
n

nX
i=1

(xi � �)�
1

n

 
1

E [(x� y)2]
1p
n

nX
i=1

(xi � yi)
!

1p
n

nX
i=1

xi(xi � yi)

+
1

n

 
1

E [(x� y)2]
1p
n

nX
i=1

(xi � yi)
!2
E
�
x(x� y)2

�
+ op

�
1

n

�
:

The second order bias of �̂EL then is

B2
�
�̂EL

�
=

1

n
E

"
� 1

E [(x� y)2]
1p
n

nX
i=1

(xi � yi)
1p
n

nX
i=1

xi(xi � yi)

+

 
1

E [(x� y)2]
1p
n

nX
i=1

(xi � yi)
!2
E
�
x(x� y)2

�35
=

1

n

 
�
E
�
x(x� y)2

�
E [(x� y)2] +

E
�
(x� y)2

�
E
�
x(x� y)2

�
(E [(x� y)2])2

!
= 0:

17.3 Asymptotically irrelevant instruments

1. The formula for the 2SLS estimator is

�̂2SLS = � +

P
i xiz

0
i (
P

i ziz
0
i)
�1P

i zieiP
i xiz

0
i (
P

i ziz
0
i)
�1P

i xizi
:

According to the LLN, n�1
P

i ziz
0
i
p! Qzz = E [zz0] : According to the CLT,

1p
n

X
i

�
zixi
ziei

�
p!
�
�

�

�
� N

��
0

0

�
;

�
�2x ���x
���x �2

�

Qzz

�
;
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where �2x = E
�
x2
�
and �2 = E

�
e2
�
(it is additionally assumed that there is convergence in

probability). Hence, we have

�̂2SLS = � +

�
n�1=2

P
i xiz

0
i

� �
n�1

P
i ziz

0
i

��1 �
n�1=2

P
i ziei

��
n�1=2

P
i xiz

0
i

�
(n�1

P
i ziz

0
i)
�1 �n�1=2Pi xizi

� p! � +
�0Q�1zz �

�0Q�1zz �
:

2. Under weak instruments,

�̂2SLS
p! � +

(Qzzc+  zv)
0Q�1zz  zu

(Qzzc+  zv)
0Q�1zz (Qzzc+  zv)

;

where c is a constant in the weak instrument assumption. If c = 0; this formula coincides
with the previous one, with  zv = � and  zu = �.

3. The expected value of the probability limit of the 2SLS estimator is

E
h
p lim �̂2SLS

i
= � + E

�
�0Q�1zz �

�0Q�1zz �

�
= � + �

�

�x
E
�
�0Q�1zz �

�0Q�1zz �

�
= � +

���x
�2x

= p lim �̂OLS ;

where we use joint normality to deduce that E [�j�] = (��=�x) �:

17.4 Weakly endogenous regressors

The OLS estimator satis�es

�̂ � � =
�
n�1X 0X

��1
n�1X 0E = cp

n
+
�
n�1X 0X

��1
n�1X 0U p! 0;

and
p
n
�
�̂ � �

�
= c+

�
n�1X 0X

��1
n�1=2X 0U p! c+Q�1� � N

�
c; �2uQ

�1� :
The Wald test statistic satis�es

W =
n
�
R�̂ � r

�0 �
R (X 0X )�1R0

��1 �
R�̂ � r

�
�
Y � X �̂

�0 �
Y � X �̂

�
p!
�
c+Q�1�

�0
R0
�
RQ�1R0

��1
R
�
c+Q�1�

�
�2u

� �2q (�) ;

where

� =
c0R0

�
RQ�1R0

��1
Rc

�2u

is the noncentrality parameter.
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17.5 Weakly invalid instruments

1. Consider the projection of e on z:
e = z0! + v;

where v is orthogonal to z: Thus

n�1=2Z 0E = n�1=2Z 0 (Z! + V) =
�
n�1Z 0Z

�
c! + n

�1=2Z 0V:

Let us assume that �
n�1Z 0Z; n�1Z 0X ; n�1=2Z 0V

�
p! (Qzz; Qzx; �) ;

where Qzz � E [zz0] ; Qzx � E [zx0] and � � N
�
0; �2vQzz

�
: The 2SLS estimator satis�es

p
n
�
�̂ � �

�
=

n�1X 0Z
�
n�1Z 0Z

��1
n�1=2Z 0E

n�1X 0Z (n�1Z 0Z)�1 n�1Z 0X
p!
Q0zx

�
c! +Q

�1
zz �
�

Q0zxQ
�1
zz Qzx

� N
�

Q0zxc!

Q0zxQ
�1
zz Qzx

;
�2v

Q0zxQ
�1
zz Qzx

�
:

Since �̂ is consistent,

�̂2e � n�1 bU 0 bU = n�1 (Y � X�)0 (Y � X�)� 2
�
�̂ � �

�
n�1X 0 (Y � X�) +

�
�̂ � �

�2
n�1X 0X

= n�1 (Z! + V)0 (Z! + V)� 2
�
�̂ � �

� �
n�1X 0Z! + n�1X 0V

�
+
�
�̂ � �

�2
n�1X 0X

p! �2v:

Thus the t ratio satis�es

t� �
�̂ � �r

�̂2e

�
X 0Z (Z 0Z)�1Z 0X

��1 p!

Q0zx
�
c! +Q

�1
zz �
�

Q0zxQ
�1
zz Qzxq

�2v
�
Q0zxQ

�1
zz Qzx

��1 � N (�t; 1) ;

where

�t =
Q0zxc!

�v

q
Q0zxQ

�1
zz Qzx

is the noncentrality parameter. Finally note that

n�1=2Z 0 bU = n�1=2Z 0E �
p
n
�
�̂ � �

�
n�1Z 0X

p! Qzz
�
c! +Q

�1
zz �
�
�
Q0zx

�
c! +Q

�1
zz �
�

Q0zxQ
�1
zz Qzx

Qzx

� N
�
Qzzc! �

Q0zxc!Qzx

Q0zxQ
�1
zz Qzx

; �2v

�
Qzz �

QzxQ
0
zx

Q0zxQ
�1
zz Qzx

��
;

so,

J =
n�1=2 bU 0Z(n�1Z 0Z)�1n�1=2Z 0 bU

�̂2e

d! �2`�1 (�J) ;
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where

�J =

�
Qzzc! �

Q0zxc!Qzx

Q0zxQ
�1
zz Qzx

�0 Q�1zz
�2v

�
Qzzc! �

Q0zxc!Qzx

Q0zxQ
�1
zz Qzx

�
=

1

�2v
c0!

�
Qzz �

QzxQ
0
zx

Q0zxQ
�1
zz Qzx

�
c!

is the noncentrality parameter. In particular, when ` = 1,

p
n
�
�̂ � �

�
p! c! +Q

�1
zz �

Q�1zz Qzx
� N

�
Qzz
Qzx

c!;
Qzz
Q2zx

�2v

�
;

t2�
p!
�
c! +Q

�1
zz �
�2

�2u
Qzz � �21

�
Qzz

c2!
�2v

�
;

n�1=2Z 0 bU p! 0 ) J p! 0:

2. Consider also the projection of x on z:

x = z0� + w;

where w is orthogonal to z: Thus

n�1=2Z 0X = n�1=2Z 0 (Z� +W) =
�
n�1Z 0Z

�
c� + n

�1=2Z 0W:

We have �
n�1Z 0Z; n�1=2Z 0W; n�1=2Z 0V

�
p! (Qzz; �; �) ;

where
�
�

�

�
� N

�
0;

�
�2w �wv
�wv �2v

�

Qzz

�
: The 2SLS estimator satis�es

�̂ � � =
n�1=2X 0Z

�
n�1Z 0Z

��1
n�1=2Z 0E

n�1=2X 0Z (n�1Z 0Z)�1 n�1=2Z 0X
p! (Qzzc� + �)

0Q�1zz (Qzzc! + �)

(Qzzc� + �)
0Q�1zz (Qzzc� + �)

� �v
�w

(�� + zw)
0 (�! + zv)

(�� + zw)
0 (�� + zw)

� �v
�w

�2
�1
;

where
�
zw
zv

�
� N

�
0;

�
1 �
� 1

�

 I`

�
and � � �wv

�w�v
: Note that �̂ is inconsistent. Thus,

�̂2e � n�1 bU 0 bU = n�1 (Y � X�)0 (Y � X�)� 2
�
�̂ � �

�
n�1X 0 (Y � X�) +

�
�̂ � �

�2
n�1X 0X

= n�1 (Z! + V)0 (Z! + V)� 2
�
�̂ � �

�
n�1 (Z� +W)0 (Z! + V) +

�
�̂ � �

�2
n�1X 0X

p! �2v � 2
�
�v
�w

�2
�1

�
�wv +

�
�v
�w

�2
�1

�2
�2w = �2v

 
1� 2��2

�1
+

�
�2
�1

�2!
:

Thus the t ratio satis�es

t� �
�̂ � �r

�̂2e

�
X 0Z (Z 0Z)�1Z 0X

��1 p! �2=
p
�1q

1� 2��2=�1 + (�2=�1)2
:
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Finally note that

n�1=2Z 0 bU = n�1=2Z 0E �
�
�̂ � �

�
n�1=2Z 0X

p! Q1=2zz �v (�! + zv)�
�v
�w

�2
�1
Q1=2zz �w (�� + zw)

= �vQ
1=2
zz

�
(�! + zv)�

�2
�1
(�� + zw)

�
�  ;

so,

J =
n�1=2 bU 0Z(n�1Z 0Z)�1n�1=2Z 0 bU

�̂2e

p!

�
(�! + zv)�

�2
�1
(�� + zw)

�0�
(�! + zv)�

�2
�1
(�� + zw)

�
1� 2��2

�1
+

�
�2
�1

�2

=
�3 �

�22
�1

1� 2��2
�1
+

�
�2
�1

�2 ;
where �3 � (�! + zv)0 (�! + zv) : In particular, when ` = 1,

�̂ � � p! �v
�w

�! + zv
�� + zw

;

�̂2e
p! �2v

 
1� 2� �! + zv

�� + zw
+

�
�! + zv
�� + zw

�2!
;

t�
p!

�! + zv
�� + zws

1� 2� �! + zv
�� + zw

+

�
�! + zv
�� + zw

�2 ;

 = 0 ) J p! 0:
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