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Abstract

We consider maximum likelihood estimation of a particular noninvertible ARMA model with
autoregressive conditionally heteroskedastic (ARCH) errors. The model can be seen as an extension
to so-called all-pass models in that it allows for autocorrelation and for more flexible forms of
conditional heteroskedasticity. These features may be attractive especially in economic and financial
applications. Unlike in previous literature on maximum likelihood estimation of noncausal and/or
noninvertible ARMA models and all-pass models, our estimation theory does allow for Gaussian
innovations. We give conditions under which a strongly consistent and asymptotically normally
distributed solution to the likelihood equations exists, and we also provide a consistent estimator
of the limiting covariance matrix.
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1 Introduction

Autoregressive moving average (ARMA) models are commonly used when modelling the conditional

mean of a (strictly) stationary time series. In conventional terminology (see, e.g., Brockwell and

Davis (2006)), an ARMA process is called causal if, at each point in time, its components can be

expressed as a weighted sum of present and past error terms. On the other hand, it is called invertible

if these error terms can be represented as a weighted sum of the present and past components of

the process. Stationarity and invertibility are typically expressed by requiring the autoregressive and

moving average polynomials to have their roots outside the unit circle. If causality (invertibility) does

not hold, the model is called noncausal (noninvertible); see Rosenblatt (2000) or the other references

listed below (in some of these references noncausal and/or noninvertible ARMA models are also called

‘nonminimum phase’).

Much of the literature on ARMA models considers only the conventional stationary and invertible

case. A reason for this is that if the error terms are independent and identically distributed (IID)

with a Gaussian distribution, also the observed process forms a Gaussian sequence, and in this case

a noncausal and/or noninvertible ARMA model will be statistically indistinguishable from a partic-

ular causal and invertible ARMA model (see, e.g., Rosenblatt (2000, pp. 10–11)). Therefore, in the

Gaussian case causality and invertibility are often imposed to ensure identification. However, in many

applications, it seems more reasonable to allow the observed process to be potentially non-Gaussian.

Alternatively, after fitting a causal and invertible ARMA model to an observed time series one may

find that the residuals appear non-Gaussian. In such cases, noncausal and/or noninvertible ARMA

models may be more appropriate and can be distinguished from their conventional causal and invert-

ible counterparts (see op. cit.). Allowing for the possibility of noncausality or noninvertibility can in

such cases also lead to a better fit and increased forecast accuracy (see Breidt and Hsu (2005) and

Lanne, Luoto, and Saikkonen (2010)). Noncausal and/or noninvertible ARMA models have found ap-

plications in various fields. Many of the early applications were in natural sciences or engineering, but

recently there have also been applications to economic and financial time series (for such applications,

see Huang and Pawitan (2000), Breidt, Davis, and Trindade (2001), Breidt and Hsu (2005), Wu and

Davis (2010), and Lanne and Saikkonen (in press)).

Maximum likelihood (ML) estimation in noncausal and/or noninvertible ARMA models has been

studied in a number of papers. Breidt, Davis, Lii, and Rosenblatt (1991) discussed the case of noncausal

AR models, Lii and Rosenblatt (1992) noninvertible MA models, and Lii and Rosenblatt (1996)

noncausal and/or noninvertible ARMA models. Andrews, Davis, and Breidt (2006) consider so called

all-pass models, which are noncausal and/or noninvertible ARMA models in which all the roots of the

autoregressive polynomial are reciprocals of the roots of the moving average polynomial and vice versa.

Estimation of all-pass models based on the least absolute deviation criterion and rank-based methods
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are considered in Breidt, Davis, and Trindade (2001) and Andrews, Davis, and Breidt (2007). Other

relevant references include Huang and Pawitan (2000), Hsu and Breidt (2009), Lanne and Saikkonen

(2009), Wu and Davis (2010), Lanne and Saikkonen (in press), and the monograph Rosenblatt (2000).

All of the above-mentioned literature on noncausal and/or noninvertible ARMA models considers

the case in which the errors are IID. Unlike in the causal and invertible case, the observed process will

nevertheless be conditionally heteroskedastic (for details, see the discussion in Section 2 below). In-

deed, Breidt, Davis, and Trindade (2001) (partially) motivate (linear) all-pass models as alternatives

to nonlinear models with time varying conditional variances, such as Autoregressive Conditionally

Heteroskedastic (ARCH) models. However, they note that “While all-pass models can generate exam-

ples of linear time series with ‘nonlinear’ behavior, their dependence structure is highly constrained,

limiting their ability to compete with ARCH”. It is therefore of interest to consider noncausal and/or

noninvertible ARMA models with errors that are not IID but themselves conditionally heteroskedas-

tic, as such models may be more appropriate in many applications, especially those in economics and

finance. This paper is a first attempt in combining noncausal and/or noninvertible ARMA models

and ARCH-type models.

In this paper, we consider a particular noninvertible ARMA model with errors that are not IID, but

dependent, following a standard ARCH model. As discussed above, such models may be particularly

appealing in economic and financial applications. A typical feature of many financial time series is

that they are only mildly autocorrelated and, quite commonly, they are treated as uncorrelated. The

particular ARMA structure assumed in our model readily accommodates to such cases. With a simple

(linear) parameter restriction the ARMA structure of our model reduces to that assumed in (causal)

all-pass models, extending these models to allow for ARCH errors and thereby also addressing the

above-mentioned statement of Breidt, Davis, and Trindade (2001). However, a special feature of all-

pass models is that they assume uncorrelated data. In this respect, our model is more general and can

allow for (potentially mild) autocorrelation, which may be useful in some applications. On the other

hand, compared to fully general noninvertible (and possibly noncausal) ARMA models our model is

more restricted because, similarly to the previously considered all-pass models, it assumes that all

roots of the moving average polynomial lie inside the unit circle, hence excluding the case with roots

both inside and outside the unit circle.

As a preliminary step for our developments we give conditions for stationarity, ergodicity, and

existence of moments of the data generation process. Theory of ML estimation can then be developed

by extending the ideas put forward in the case of noncausal and noninvertible ARMA models and all-

pass models with IID errors (see Breidt, Davis, Lii, and Rosenblatt (1991), Lii and Rosenblatt (1996),

and Andrews, Davis, and Breidt (2006)). Similarly to Lii and Rosenblatt (1996) we first derive an

infeasible likelihood-like function that assumes knowledge of an infinite number of observations and

thereafter we show how to obtain a feasible approximate likelihood function that only involves observed
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data. The former provides a useful theoretical tool which can be used to obtain results for the latter.

We give conditions under which a strongly consistent and asymptotically normally distributed solution

to the (approximate) likelihood equations exists, and we also provide a consistent estimator of the

limiting covariance matrix. The techniques used in the proofs also resemble those employed in the

estimation theory of conventional (causal and invertible) ARMA–ARCH models (see, e.g., Francq and

Zaköıan (2004) and Meitz and Saikkonen (in press), and also Berkes and Horváth (2004) in which

estimation in ARCH models based on non-Gaussian likelihoods is considered). As already indicated,

our results can be specialized to (causal) all-pass models so that we also extend the work of Andrews,

Davis, and Breidt (2006) by allowing for ARCH type conditional heteroskedasticity.

In addition to allowing for ARCH errors this paper also differs in another important way from

the previous literature on noncausal and/or noninvertible ARMA models. In all previous papers on

ML estimation of noncausal and/or noninvertible ARMA models it has been necessary to constrain

the IID error sequence to be non-Gaussian. This has been due to the above-mentioned fact that

Gaussianity of the errors, or equivalently Gaussianity of the observed time series, makes it impossible

for the likelihood function to distinguish the considered noncausal and/or noninvertible ARMA model

from the corresponding causal and invertible counterpart with the same autocovariance function. A

related consequence is that the (limiting) information matrix will then be singular, and the usual

theory of ML estimation breaks down. In our noninvertible ARMA model the errors are dependent

and follow an ARCH process. The rescaled innovations (i.e., the process obtained by dividing the

errors by their conditional standard deviation) are still assumed to be IID but they are not required

to be non-Gaussian. The reason is that, even if the rescaled innovations are Gaussian, the error terms

will be non-Gaussian (although conditionally Gaussian) and, consequently, the observed noninvertible

ARMA–ARCH process will also be non-Gaussian. Therefore the above-mentioned complications with

Gaussian errors vanish, providing an intuition why conventional results on ML estimation are obtained

even if the rescaled innovations are Gaussian.

The plan of the paper is as follows. Section 2 introduces the model and the basic assumptions

employed. Section 3 first shows how to approximate the likelihood function and then obtains results

for the score vector and the Hessian matrix needed to prove the main results presented at the end of

the section. Section 4 concludes. All proofs along with auxiliary results are presented in Appendices

(further details of the proofs are provided in a Supplementary Appendix that is available from the

authors upon request).

Finally, a few notational conventions. Unless otherwise indicated, all vectors will be treated as

column vectors. For the sake of uncluttered notation, we shall write x = (x1, . . . , xn) for the (column)

vector x where the components xi may be either scalars or vectors (or both). For any scalar, vector, or

matrix x, the Euclidean norm is denoted by |x|. For a random variable (scalar, vector, or matrix), the

Lp–norm is denoted by ‖X‖p = (E[|X|p])1/p, where p > 0 (note that this is a vector norm only when
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p ≥ 1). The indicator function will be denoted 1(·). We use 1 also to signify the vector (1, 0, . . . , 0)

whose dimension will be clear from the context. An identity matrix of order n will be denoted by In.

2 Model

Let yt (t = 0, ±1, ±2, . . . ) be a stochastic process generated by

a0 (B) yt = b0(B−1)εt, (1)

where a0 (B) = 1 − a0,1B − · · · − a0,PB
P , b0(B−1) = 1 − b0,1B−1 − · · · − b0,QB−Q, and εt is a zero

mean error term allowed to be conditionally heteroskedastic with the conditional heteroskedasticity

modeled by a standard stationary ARCH(R) process (see below). Moreover, B is the usual backward

shift operator (e.g., Bkyt = yt−k for k = 0,±1, ...), and the polynomials a0 (z) and b0 (z) have their

zeros outside the unit circle so that

a0 (z) 6= 0 for |z| ≤ 1 and b0 (z) 6= 0 for |z| ≤ 1. (2)

The former condition in (2) is the usual stationarity condition of an ARMA model. It implies that we

have the moving average representation

yt = a0 (B)−1 b0(B−1)εt =

∞∑
j=−Q

ψ0,jεt−j (3)

in terms of εt+Q, εt+Q−1, . . . . In this representation, ψ0,j is the coefficient of zj in the Laurent series

expansion of a0 (z)−1 b0(z−1)
def
= ψ0 (z), which is well defined for |z| ≤ 1 + δa with some positive δa.

Moreover, the coefficients ψ0,j decay to zero at a geometric rate as j →∞. Because the argument of

the polynomial b0 (·) in (1) is B−1 and not B, the moving average representation (3) is not in terms

of past and present εt only but also involves εt+Q, εt+Q−1, . . . , εt+1. For the same reason, the latter

condition in (2) means that the moving average part of the model is not invertible in the conventional

sense. Instead, we have an AR(∞) representation

εt = b0(B−1)−1a0 (B) yt =
∞∑

j=−P
π0,jyt+j (4)

in terms of yt−P , . . . , yt, yt+1, . . . , so that εt is expressed in terms of the future of the process yt. In this

representation, π0,j is the coefficient of zj in the Laurent series expansion of b0(z−1)−1a0 (z)
def
= π0 (z),

which is well defined for |z| ≥ 1− δb with some positive δb, and the coefficients π0,j decay to zero at a

geometric rate as j →∞.

As for the conditionally heteroskedastic error term εt, we assume that

εt = σtηt, (5)
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where ηt is a sequence of continuous IID random variables with zero mean and unit variance and the

square of σt follows a conventional ARCH(R) process. Specifically,

σ2
t = ω0 + α0,1ε

2
t−1 + · · ·+ α0,Rε

2
t−R, (6)

where the parameters are assumed to satisfy the usual conditions ω0 > 0, α0,1, . . . , α0,R ≥ 0. With

suitable further conditions to be discussed shortly the error term εt is stationary with E[ε2
t ] <∞. In

the following discussion this will be assumed.

Consider the relation of this model to those discussed in earlier literature. In the special case

P = Q and a0 (z) = b0 (z) the observed process yt exhibits no autocorrelation (as εt is clearly an

uncorrelated sequence, this follows by observing that in this special case the spectral density of yt

is constant, cf. Breidt, Davis, and Trindade (2001)). In the case of a homoskedastic error term the

model is then similar to the (causal) all-pass model studied by Breidt, Davis, and Trindade (2001) and

Andrews, Davis, and Breidt (2006, 2007). This model in turn is a special case of the general (possibly)

noncausal and noninvertible ARMA model considered by Lii and Rosenblatt (1996) and Wu and Davis

(2010). A slight difference in formulation is, however, that in these previous papers the counterpart

of the operator b0(B−1) in (1) is replaced by b0 (B) and, correspondingly, the inequality in the latter

condition in (2) is reversed. Our formulation is similar to that used in noncausal autoregressive models

by Lanne and Saikkonen (in press) and, in the same way as in that paper, it appears convenient in

terms of statistical inference (see Section 3.1).

It may be worth noting that in our model the squared volatility process σ2
t is, in general, not

the conditional variance of yt given the past history of the process. Using equation (1) and denoting

expectations conditional on the past history of yt’s with Et−1 [·], it is easy to see that

Et−1 [yt] = a0,1yt−1 + · · ·+ a0,P yt−p + Et−1 [εt]− b0,1Et−1 [εt+1]− · · · − b0,QEt−1 [εt+Q] .

As equation (4) makes clear, the error term εt is correlated with lagged and future values of yt and,

therefore, the conditional expectations on the right hand side of this equation are, in general, nonzero

and nonlinear functions of the variables yt−j , j ≥ 1. Thus, the conditional mean of yt, and hence also

its conditional variance, is not obtained in the same way as in previous (invertible) ARMA models

with ARCH errors. Even when the error term εt is homoskedastic, that is, α0,1 = · · · = α0,R, the

conditional mean is, in general, a nonlinear function of past values of the process (see Rosenblatt

(2000), Section 5.4). This implies that even without an ARCH term the model exhibits conditional

heteroskedasticity albeit of a rather limited type, as already mentioned in the introduction. Although

σ2
t does not have an interpretation as the conditional variance of yt, it is still the conditional variance

of the error term εt given the past history of the error terms; in our context homoskedasticity and

conditional heteroskedasticity will refer to properties of the error term εt. Specifying σ2
t as in (6) also

appears to be a natural way to introduce conditionally heteroskedastic errors in the model (1), and it

also agrees with the formulation used in conventional causal and invertible ARMA–ARCH models.
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Forecasting in the context of noncausal and/or noninvertible models has only recently been con-

sidered in Breidt and Hsu (2005) and Lanne, Luoto, and Saikkonen (2010). As their work and the

discussion in the preceding paragraph indicates, obtaining forecasts from our noninvertible ARMA–

ARCH model is not as straightforward as in the conventional invertible case. Even when the errors

are homoskedastic, explicit expressions for the conditional mean and variance of yt appear difficult to

obtain. We leave this for future research.

We now discuss assumptions which, among other things, imply that the preceding infinite sums

are well defined. Of the following three assumptions, the first one presents conditions imposed on

the innovation ηt, the second one specifies the parameter space, and third will ensure the existence of

certain moments.

Assumption 1. The innovation process ηt is a sequence of IID random variables with E [ηt] = 0

and E
[
η2
t

]
= 1. The distribution of ηt is symmetric, and has a (Lebesgue) density fη (x;λ0) which

(possibly) depends on a parameter vector λ0 (d× 1).

The conditions imposed on the density of the innovation in Assumption 1 are fairly mild and similar

to those used by Andrews, Davis, and Breidt (2006) in all-pass models and Lanne and Saikkonen (in

press) in noncausal autoregressive models. Requiring a symmetric distribution is only for simplicity

because otherwise the needed calculations and the expression of the limiting covariance matrix of the

ML estimator would become extremely involved. Further conditions on the density of the innovation

will be imposed later.

Our aim is to estimate the true but unknown parameter value θ0 that characterizes the data

generation process and is assumed lie in the permissible parameter space Θ defined by the following

assumption. Denote a (z) = 1− a1z− · · ·− aP zP and b (z) = 1− b1z− · · ·− bQzQ. Decompose the pa-

rameter vector θ as θ = (θa, θb, θc, θd) where θa = (a1, . . . , aP ), θb = (b1, . . . , bQ), θc = (ω, α1, . . . , αR),

and θd = λ ∈ Rd contain the parameters for the AR-part, MA-part, ARCH-part, and the innovation

density, respectively. Now we can formulate the following assumption.

Assumption 2. The true parameter value θ0 is an interior point of the permissible parameter space

Θ = Θa ×Θb ×Θc ×Θd, where

Θa =
{

(a1, . . . , aP ) ∈ RP : a (z) 6= 0 for |z| ≤ 1
}
,

Θb =
{

(b1, . . . , bQ) ∈ RQ : b (z) 6= 0 for |z| ≤ 1
}
,

Θc =
{

(ω, α1, . . . , αR) ∈ [0,∞)R+1 : ω > ω and
∑R

i=1αi < 1
}

with some ω > 0,

Θd ⊆ Rd.

The assumption that the true parameter value θ0 is an interior point of the parameter space is

standard and required to establish the asymptotic normality of the ML estimator. One particular

7



consequence of this is that the true values of the parameters α1, . . . , αR are all positive, which in turn

implies that we necessarily have conditional heteroskedasticity.1

As will be seen shortly in Lemma 1 below, Assumptions 1 and 2 ensure that the data generation

process is well defined with finite second moments. However, for establishing asymptotic normality

of the ML estimator, finiteness of fourth order moments of the observed process will be needed. To

formulate an assumption ensuring this, we first introduce the matrix

Πt =



α0,1η
2
t α0,2 · · · α0,R−1 α0,R

η2
t 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


. (7)

This matrix can be used to write the ARCH–process (6) in companion form which will be used to

prove our results (see the proof of Lemma 1 in Appendix B). Now we can formulate a condition that

guarantees finiteness of the needed moments.

Assumption 3. The matrix E [Πt ⊗Πt] has spectral radius (i.e., largest absolute eigenvalue) strictly

less than one.

Note that this assumption implies that E
[
η4
t

]
< ∞. Combined with the previous assumptions

it enables us to establish the basic properties of the data generation process needed in subsequent

developments. We denote by Fηt the σ–algebra generated by {ηt−j , j ≥ 0} and state the following

lemma whose proof can be found in Appendix B.

Lemma 1. Suppose Assumptions 1 and 2 hold. Then the process (yt, εt, σt) defined by equations (1),

(5), and (6) is stationary and ergodic with E
[
y2
t

]
, E

[
ε2
t

]
, and E

[
σ2
t

]
finite and σt Fηt−1–measurable,

εt Fηt –measurable, and yt Fηt+Q–measurable. If Assumption 3 also holds, then E
[
y4
t

]
, E

[
ε4
t

]
, and

E
[
σ4
t

]
are finite.

As already indicated, Lemma 1 (together with Lemmas A.1 and A.2 in Appendix A) ensures

that the infinite sums in (3) and (4) are well defined. Stationarity and ergodicity facilitate the use of

conventional limit theorems to prove asymptotic normality of the ML estimator. As already mentioned,

finiteness of second moments that follows from Assumptions 1 and 2 is not sufficient for this. Existence

of finite fourth moments of yt guaranteed by Assumption 3 is required. This, however, is not surprising

because in this respect the situation has been similar in the previous estimation theory of stationary

and invertible ARMA–ARCH models where known proofs also assume finite fourth moments (see

Francq and Zaköıan (2004)).

1Results for the homoskedastic special case could be obtained by dropping the α–parameters from θ and making similar

omissions throughout the paper. The assumptions would also require some adjustments, in particular the distribution

of ηt would need to be assumed to be non-Gaussian. To conserve space, we do not pursue this further.
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3 Parameter estimation and statistical inference

3.1 Approximate likelihood function

Suppose we have an observed time series y1−P , . . . , y0, y1, . . . , yT generated by the process described

in the previous section, and our aim is to estimate the unknown parameter θ0 using these observations.

ML estimation can be carried out by extending the ideas put forward in the case of homoskedastic

noncausal and noninvertible ARMA models and all-pass models; see Breidt, Davis, Lii, and Rosenblatt

(1991), Lii and Rosenblatt (1996), and Andrews, Davis, and Breidt (2006). However, as in these

papers, deriving a likelihood-like function to be used for estimation requires some care (the main

reason for this being that now yt depends on both the future and past of ηt). We will initially discuss

how to derive a likelihood-like function assuming that yt is available for all t, and subsequently provide

an approximation using only the observed data.

First we introduce counterparts of the processes εt and σ2
t defined for θ 6= θ0. In analogue with

(4), set

ut(θ) = b(B−1)−1a (B) yt =

∞∑
j=−P

πjyt+j ,

where πj is the coefficient of zj in the Laurent series expansion of b(z−1)−1a (z)
def
= π (z). Our definition

of the permissible parameter space makes it clear that ut(θ) is well-defined for all θ ∈ Θ. Moreover,

ut(θ0) = εt. To define the counterpart of σ2
t , set

ht(θ) = ω + α1u
2
t−1(θ) + · · ·+ αRu

2
t−R(θ) (8)

and notice that ht(θ0) = σ2
t . (Note also that ut(θ) and ht(θ) require the knowledge of infinite future

of yt’s so that the likelihood we first derive will not be feasible in practice.)

Now, to obtain an approximation of the likelihood, we first derive the joint density of an augmented

data vector using a change of variables argument. To this end, notice that
−a0,P · · · −a0,1 1

. . .
. . .

. . .
. . .

−a0,P · · · −a0,1 1



y1−R−P

...

yT

 =


1 −b0,1 · · · −b0,Q

. . .
. . .

. . .
. . .

1 −b0,1 · · · −b0,Q



ε1−R

...

εT+Q

 ,
which can be obtained by using (1) with t = 1 − R, . . . , T . More briefly, this relation can be written

as

Ma


y1−R−P

...

yT

 = Mb


ε1−R

...

εT+Q


with obvious definitions of the (T + R) × (T + P + R) matrix Ma and the (T + R) × (T + Q + R)
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matrix Mb. With further augmenting we obtain the relation


IP : 0P×(T+R)

Ma

IQ





y1−R−P
...

yT

εT+1

...

εT+Q


=


IP

Mb

0Q×(T+R) : IQ





y1−R−P
...

y−R

ε1−R
...

εT+Q


,

where the (square and (T + P +Q+R)-dimensional) coefficient matrices have determinants equal to

unity.

Using a standard sequential conditioning argument, we can write the joint density function of

(εT+Q, . . . , ε1−R, y−R, . . . , y1−R−P ) as

f(εT+Q, . . . , εT+1 | εT , . . . , ε1−R, y−R, . . . , y1−R−P )

·
T∏
t=1

f(εt | εt−1, . . . , ε1−R, y−R, . . . , y1−R−P ) · f(ε0, . . . , ε1−R, y−R, . . . , y1−R−P ),

where f(·) is a generic notation for a (joint and/or conditional) density function indicated by its

arguments. In the homoskedastic case, the variables εT+Q, . . . , εT+1 in the first factor are independent

of the conditioning information (for sufficiently large T ) but this is no longer the case in the presence

of heteroskedasticity. Instead, the first factor can be written as (again using a sequential conditioning

argument)
T+Q∏
t=T+1

σ−1
t fη(εtσ

−1
t ;λ0) =

T+Q∏
t=T+1

1

h1/2

t (θ0)
fη

(
ut(θ0)

h1/2

t (θ0)
;λ0

)
,

which, among other things, depends on the variables εT , . . . , εT−R+1. Similarly, the middle term in

the preceding expression equals

T∏
t=1

σ−1
t fη(εtσ

−1
t ;λ0) =

T∏
t=1

1

h1/2

t (θ0)
fη

(
ut(θ0)

h1/2

t (θ0)
;λ0

)
.

Using these expressions we can write the logarithm of the joint density function of the augmented

data vector (y1−R−P , . . . , yT , εT+1, . . . , εT+Q) as

T+Q∑
t=T+1

[
log fη

(
ut(θ)

h1/2

t (θ)
;λ

)
− log h

1/2
t (θ)

]

+

T∑
t=1

[
log fη

(
ut(θ)

h1/2

t (θ)
;λ

)
− log h

1/2
t (θ)

]
+ log f(ε0, . . . , ε1−R, y−R, . . . , y1−R−P ).

Using Assumptions 1 and 2 and the assumptions to be imposed in subsequent sections it is not difficult

to see that the first and the third term in the above expression are stochastically bounded and therefore
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asymptotically negligible. This suggests using

LT (θ) = T−1
T∑
t=1

lt(θ) where lt(θ) = log fη

(
ut(θ)

h1/2

t (θ)
;λ

)
− 1

2
log ht(θ)

as an approximation to the log-likelihood of the observed data vector (y1, . . . , yT ) (conditional on

initial values). However, as computing ut(θ) and ht(θ) for t = 1, . . . , T is not feasible in terms of the

available data, a further approximation is needed.

To obtain a likelihood feasible in practice we need approximations to the sequences ut(θ) and

ht(θ) for t = 1, . . . , T that are expressible in terms of the observations y1−P , . . . , y0, y1, . . . , yT and

the parameters. We first define an approximation ũt(θ) to the sequence ut(θ). To this end, set

ũT+1(θ) = · · · = ũT+Q(θ) = 0 and recursively solve for ũT (θ), . . . , ũ1(θ) by using the backward

recursion

ũt(θ) = yt − a1yt−1 − · · · − aP yt−P + b1ũt+1(θ) + · · ·+ bQũt+Q(θ), t = T, . . . , 1.

To obtain an approximation h̃t(θ) to the sequence ht(θ) we set ũ0(θ) = u0, . . . , ũ1−R(θ) = u1−R, where

u0, . . . , u1−R are real-valued constants independent of θ.2 Then we compute h̃1(θ), . . . , h̃T (θ) as

h̃t(θ) = ω + α1ũ
2
t−1(θ) + · · ·+ αRũ

2
t−R(θ), t = 1, . . . , T. (9)

The resulting approximate log-likelihood takes the form

L̃T (θ) = T−1
T∑
t=1

l̃t(θ) where l̃t(θ) = log fη

(
ũt(θ)

h̃1/2

t (θ)
;λ

)
− 1

2
log h̃t(θ).

In practice, estimation is carried out by maximizing L̃T (θ), whereas its infeasible counterpart LT (θ)

is useful in the subsequent theoretical results.

As mentioned in Section 2, our formulation of the model differs slightly from that used in related

previous papers where the counterpart of the operator b0(B−1) in (1) is replaced by b0 (B) and the

inequality in the latter condition in (2) is reversed. When this alternative formulation is used the

approximate log-likelihood function also involves the term log |bQ| (cf. Lii and Rosenblatt (1996) and

Andrews, Davis, and Breidt (2006)). This term is absent from our approximate log-likelihood function

which makes constructing statistical tests for hypotheses on the unknown order of the polynomial b0 (z)

straightforward. Indeed, such hypothesis imply b0,Q = 0 which makes the term log |bQ| undefined.

Dealing with this feature therefore calls for additional explanations (see Andrews, Davis, and Breidt

(2006)) not needed when our formulation is used.

2The choice ũT+1(θ) = · · · = ũT+Q(θ) = 0 for the end values is a counterpart of the common practice of setting initial

values to zero when estimating conventional invertible MA models by conditional maximum likelihood. On the other

hand, when the estimation of conventional ARCH models is considered, it is common to set the required initial values

to some positive constants, and our choice ũ0(θ) = u0, . . . , ũ1−R(θ) = u1−R reflects this. These assumptions could be

relaxed so that these initializations would become dependent on the observed data and θ, but we do not pursue this

further.
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3.2 Score Vector

In this and the following subsection, we first consider the infeasible approximate log-likelihood LT (θ).

Due to stationarity, the function LT (θ) is easier to work with than its feasible counterpart L̃T (θ)

and, using assumptions to be made subsequently, it can be shown that the score vectors obtained

from LT (θ) and L̃T (θ) are asymptotically equivalent and so are the corresponding ML estimators

(see Section 3.4 and Appendix E).

As a first step, we obtain the asymptotic distribution of the score vector associated with LT (θ),

evaluated at the true parameter value θ0. The first partial derivatives of lt(θ) are derived in Appendix

C (an assumption which guarantees the existence of these partial derivatives will be given shortly).

Here we only give the explicit expression of the score evaluated at the true parameter value. First some

notation. It will be convenient to decompose the score vector conformably with the decomposition

of the parameter vector θ as θ = (θa, θb, θc, θd). In what follows, we will use a subscript to signify

a partial derivative indicated by the subscript, for instance lθ,t(θ) = ∂
∂θ lt(θ), fη,x(x;λ) = ∂

∂xfη(x;λ),

and fη,λ(x;λ) = ∂
∂λfη(x;λ). To make the notation lighter, when taking derivatives with respect to the

subvectors θa, θb, θc, or θd, we drop the θ and only write the letter a, b, c or d (for instance, we write

la,t(θ), ha,t(θ) = ∂
∂θa

ht(θ) and uap,t(θ) instead of lθa,t(θ), hθa,t(θ) and ∂
∂ap

ut(θ)).

From Appendix C we find the score vector of a single observation evaluated at the true parameter

value as

lθ,t(θ0) =


ex,t

ua,t(θ0)
σt

− 1
2
ha,t(θ0)

σ2
t

(ex,tηt + 1)

ex,t
ub,t(θ0)
σt

− 1
2
hb,t(θ0)

σ2
t

(ex,tηt + 1)

−1
2
hc,t(θ0)

σ2
t

(ex,tηt + 1)

eλ,t

 ,

where ex,t =
fη,x(ηt;λ0)
fη(ηt;λ0) and eλ,t =

fη,λ(ηt;λ0)
fη(ηt;λ0) , and the components of the vectors ua,t (θ0) and ub,t (θ0)

are given by

uap,t (θ0) = −a0 (B)−1 εt−p (p = 1, . . . , P ),

ubq ,t (θ0) = b0(B−1)−1εt+q (q = 1, . . . , Q),

whereas

ha,t (θ0) = 2
R∑
r=1

α0,rεt−rua,t−r (θ0) , hb,t (θ0) = 2
R∑
r=1

α0,rεt−rub,t−r (θ0) ,

and hc,t (θ0) =
(
1, ε2

t−1, . . . , ε
2
t−R
)
.

We can now formulate an assumption that ensures that the score vector is well defined and asymp-

totically normally distributed. Let Θ0 be a compact convex set contained in the interior of Θ that has

θ0 as an interior point, and partition Θ0 as Θ0 = Θ0a ×Θ0b ×Θ0c ×Θ0d.
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Assumption 4.

(i) For all x ∈ R and λ ∈ Θ0d, fη (x;λ) > 0 and fη (x;λ) is twice continuously differentiable with

respect to (x;λ).

(ii) For all λ ∈ Θ0d,
∫
xfη (x;λ) dx = 0 and

∫
x2fη (x;λ) dx = 1.

(iii) The matrix E[eλ,te
′
λ,t] is positive definite.

(iv) For all x ∈ R, the functions

x4
f2
η,x (x;λ0)

f2
η (x;λ0)

and
f2
η,λi

(x;λ0)

f2
η (x;λ0)

are dominated by d1(1 + |x|d2) with d1, d2 ≥ 0 and
∫
|x|d2 fη (x;λ0) dx <∞.

(v) For all x ∈ R and λ ∈ Θ0d, the function |x2fη,λ (x;λ)| is dominated by a function f (x) such that∫
f (x) dx <∞.

Overall, Assumption 4 requires that the density function fη (x;λ) satisfies regularity conditions

similar to those in Andrews, Davis, and Breidt (2006). Assumption 4(i) imposes a fairly conventional

differentiability condition that ensures the partial derivatives presented above exist for all x ∈ R and

λ ∈ Θ0d. In Assumption 1 we already required the innovations ηt to have a distribution with mean

zero and unit variance for the true parameter value λ0. Assumption 4(ii) extends this requirement to a

neighborhood of λ0. Milder analogues of the dominance conditions assumed in Assumptions 4(iv) and

(v) are also used in Andrews, Davis, and Breidt (2006). Being forced to strengthen these conditions in

the present context is a direct consequence of the necessity to have finite fourth moments not needed

in the homoskedastic case.

Assumption 4(iii) is similar to condition (A6) of Andrews, Davis, and Breidt (2006) and is needed

to show the positive definiteness of the information matrix, that is, the limiting covariance matrix of

the rescaled score vector. It is trivially satisfied by distributions such as the normal distribution which

are free of the parameter λ (for such distributions the following lemma and results based on it need

obvious modifications). Assumption 4(iii) also holds for other commonly used distributions, including

the rescaled t–distribution and weighted averages of the normal distribution (cf. Remarks 4 and 5 of

Andrews, Davis, and Breidt (2006)).

As already discussed in the Introduction, a notable feature of our estimation theory is that, due

to the presence of conditional heteroskedasticity, it also works when the innovation sequence ηt is

Gaussian. Without conditional heteroskedasticity Gaussian innovations have to be excluded, as the

previous work on ML estimation of homoskedastic noninvertible (and noncausal) ARMA models shows.

In the homoskedastic case Gaussian innovations imply Gaussianity of the observed process, and in-

vertible and noninvertible ARMA models become indistinguishable by the autocovariance function

and, hence, the likelihood function. Thus, non-Gaussianity is needed to achieve identifiability and

also a positive definite information matrix (see, e.g., Lii and Rosenblatt (1996) and Andrews, Davis,
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and Breidt (2006)). As our model always contains an ARCH component (see Assumption 2 and the

following discussion), the observed process is not Gaussian even if the innovation sequence ηt is Gaus-

sian. Because the likelihood function is determined by the distribution of the observed process this

explains why we do not need to rule out Gaussian innovations.

To establish the asymptotic distribution of the score vector evaluated at the true parameter

value θ0 we first derive an expression for the limiting covariance matrix of the rescaled score vec-

tor, Cov
[
T 1/2Lθ,T (θ0)

]
, and establish its positive definiteness. This is rather tedious and is given

in the following lemma. For this lemma, we need additional notation. We set cj = 1′Πj1 with

Π = E [Πt] (see (7)), and let ψ
(a)
0,j and ψ

(b)
0,j stand for the coefficients in the power series expansions

a0 (z)−1 =
∑∞

j=0 ψ
(a)
0,j z

j and b0(z−1)−1 =
∑∞

j=0 ψ
(b)
0,jz
−j (these expansions are well defined by Assump-

tion 2; see Appendix A). For j < 0 the conventions ψ
(b)
0,j = ψ

(a)
0,j = 0 and cj = 0 will be assumed.

Lemma 2. If Assumptions 1–4 hold,

Cov
[
T 1/2Lθ,T (θ0)

]
→ I (θ0) as T →∞,

where I (θ0) is finite, positive definite, and can be expressed as

I (θ0) =


A11 A′21 + B′21 0P×(R+1) 0P×d

A21 + B21 A22 + B22 0Q×(R+1) 0Q×d

0(R+1)×P 0(R+1)×Q A33 A′43

0d×P 0d×Q A43 A44


where

A11 = E
[
e2
x,t

]
E

[
ua,t(θ0)

σt

u′a,t(θ0)

σt

]
+

1

4
E[(ex,tηt + 1)2]E

[
ha,t(θ0)

σ2
t

h′a,t(θ0)

σ2
t

]
(P × P )

A21 =
1

4
E

[
(ex,tηt + 1)2 hb,t(θ0)

σ2
t

h′a,t(θ0)

σ2
t

]
− 1

2
E

[
ex,t (ex,tηt + 1)

hb,t(θ0)

σ2
t

u′a,t(θ0)

σt

]
(Q× P )

A22 = E

[
e2
x,t

ub,t(θ0)

σt

u′b,t(θ0)

σt

]
+

1

4
E

[
(ex,tηt + 1)2 hb,t(θ0)

σ2
t

h′b,t(θ0)

σ2
t

]
(Q×Q)

A33 =
1

4
E[(ex,tηt + 1)2]E

[
hc,t(θ0)

σ2
t

h′c,t(θ0)

σ2
t

]
(R×R)

A43 = −1

2
E [ex,tηteλ,t]E

[
h′c,t(θ0)

σ2
t

]
(d×R)

A44 = E[eλ,te
′
λ,t] (d× d)

and typical elements of the matrices B21 (Q× P ) and B22 (Q×Q) are given by

(B21)q,p = −
∞∑
j=0

ψ
(b)
0,j−qψ

(a)
0,j−p (q = 1, . . . , Q, p = 1, . . . , P )

and

(B22)q,q̃ = −4
∞∑
j=0

ψ
(b)
0,j−qψ

(b)
0,j−q̃cj (q, q̃ = 1, . . . , Q).
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The expression for the limiting covariance matrix of the score is rather involved. The matrices Aij

(i, j = 1, ..., 4) are obtained from the contemporaneous covariance matrix Cov [lθ,t(θ0)], whereas the

matrices B21 and B22 are due to the serial correlation in the process lθ,t(θ0).

In the previous literature on noncausal and noninvertible ARMA models, it has been common

to use an approximation argument and reduce the proof of the asymptotic normality of the score

vector to that of a finite-dependent process for which a suitable central limit theorem is available

(see, e.g., Rosenblatt (2000, Ch. 8)). This approach appears tedious in the case with conditional

heteroskedasticity. It is shown in the proof of Lemma 2 (see Appendix C) that E
[
lθ,t(θ0) | Fηt−1

]
= 0

but, as the process lθ,t(θ0) is serially correlated, a martingale central limit theorem is not applicable

(this also follows from the fact that lθ,t(θ0) is not Fηt –measurable the reason for this being that ub,t (θ0)

depends on future innovations ηt+j , j > 0). However, from Lemma 1 and the expression of lθ,t(θ0)

it is readily seen that lθ,t(θ0) is stationary and ergodic and, as the following lemma shows, it is a

mixingale. This will allow us to use a central limit theorem due to Scott (1973). The definition of the

L2–mixingale and its size used in the following lemma can be found in McLeish (1975) or Davidson

(1994, p. 247) (see also the proof of Lemma 3 in Appendix C).

Lemma 3. If Assumptions 1–4 hold, the sequence {a′lθ,t(θ0),Fηt } is an L2–mixingale of size −1 for

all conformable nonrandom vectors a 6= 0.

Using the preceding lemmas and a mixingale central limit theorem based on the aforementioned

theorem of Scott (1973) (see Lemma A.4 in Appendix A) we obtain the asymptotic distribution of the

score vector as follows.

Lemma 4. If Assumptions 1–4 hold,

T 1/2Lθ,T (θ0) = T−1/2
T∑
t=1

lθ,t (θ0)
d→ N (0, I (θ0)) ,

where the positive definite matrix I (θ0) is given in Lemma 2.

3.3 Hessian Matrix

We next consider the Hessian matrix associated with the infeasible approximate log-likelihood function

LT (θ). Expressions for the required second partial derivatives are given in Appendix D. Similarly to

the first partial derivatives we use notations such as lθθ,t(θ) = ∂2

∂θ∂θ′ lt(θ) and fη,xx(x;λ) = ∂2

∂x2
fη(x;λ).

Our first result shows that the expectation of the Hessian evaluated at the true parameter value

coincides with the negative of the information matrix. For this we need the following assumption.

Assumption 5.

(i) For all x ∈ R and all λ ∈ Θ0d, the function |fη,λλ (x;λ)| is dominated by a function f (x) such

that
∫
f (x) dx <∞.
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(ii)
∫
fη,xx (x;λ0) dx = 0

(iii)
∫
x2fη,xx (x;λ0) dx = 2

Assumption 5(i) is similar to Assumption 4(v) and imposes a conventional dominance condition

which ensures that a certain function that appears in the proof of the following lemma can be differ-

entiated under the integral sign. Assumptions 5(ii) and (iii) coincide with assumptions A3 and A4

used by Andrews, Davis, and Breidt (2006) in a similar context.

Lemma 5. If Assumptions 1–5 hold, E [lθθ,t (θ0)] = −I (θ0).

To be able to prove the asymptotic normality of the infeasible approximate ML estimator we need

uniform convergence of the Hessian matrix in some neighborhood of the true parameter value. Our

next assumption is needed to establish this.

Assumption 6. For all x ∈ R and all λ ∈ Θ0d, the functions

x4
f4
η,x (x;λ)

f4
η (x;λ)

,
f4
η,λ (x;λ)

f4
η (x;λ)

, x4
f2
η,xx (x;λ)

f2
η (x;λ)

,
f2
η,λx (x;λ)

f2
η (x;λ)

, and

∣∣∣∣fη,λλ (x;λ)

fη (x;λ)

∣∣∣∣
are dominated by d1(1 + |x|d2) with d1, d2 ≥ 0 and

∫
|x|d2 fη (x;λ0) dx <∞.

These dominance conditions are very similar to those assumed in condition (A7) of Andrews,

Davis, and Breidt (2006). There are some differences, however. As with the moment conditions,

the allowance of conditionally heteroskedastic errors makes some of our dominance conditions more

stringent than their counterparts in Andrews, Davis, and Breidt (2006). Together with our previous

assumptions, Assumption 6 ensures that the Hessian matrix has a finite expectation uniformly over

Θ0. Formally, we can establish the following result.

Lemma 6. If Assumptions 1–6 hold,

sup
θ∈Θ0

|Lθθ,T (θ)− J (θ)| → 0 a.s.,

where J (θ) = E [lθθ,t (θ)] is continuous at θ0.

3.4 Main Results

The preceding Lemmas 4–6 are the key ingredients required in proving that the infeasible approximate

log-likelihood equations Lθ,T (θ) = 0 have consistent and asymptotically normally distributed solutions.

To ensure that these results carry over to the feasible log-likelihood function L̃T (θ), we have to

show that the feasible likelihood is asymptotically ‘close’ to its infeasible counterpart. The following

assumption is sufficient for this.
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Assumption 7. For all x ∈ R, 4x ∈ R, and λ ∈ Θ0d, and for some C <∞ and d1, d2 > 0,

|v(x+4x;λ)− v(x;λ)| ≤ C
(
(1 + |x|d1) |4x|+ |4x|d2

)
for the following choices of the function v(x;λ):

(a) (i) v(x;λ) =
fη,x(x;λ)
fη(x;λ) , (ii) v(x;λ) =

fη,λ(x;λ)
fη(x;λ) .

(b) (i) v(x;λ) =
fη,xx(x;λ)
fη(x;λ) , (ii) v(x;λ) =

fη,λx(x;λ)
fη(x;λ) , (iii) v(x;λ) =

fη,λλ(x;λ)
fη(x;λ) .

Assumption 7 is an analogue of Assumption B in Lii and Rosenblatt (1992, 1996). In these papers,

the innovation density is not allowed to depend on an unknown parameter λ, and for this reason their

conditions only include counterparts of conditions a(i) and b(i). Of the conditions in Assumption 7,

part (a) together with the earlier Assumptions 1–6 will suffice to prove the following result.

Lemma 7. If Assumptions 1–6 and 7(a) hold,

(i) supθ∈Θ0

∣∣LT (θ)− L̃T (θ)
∣∣→ 0 a.s. as T →∞,

(ii) T 1/2 supθ∈Θ0

∣∣Lθ,T (θ)− L̃θ,T (θ)
∣∣→ 0 a.s. as T →∞.

Lemma 7(i) shows that the feasible log-likelihood and its infeasible counterpart converge to each

other uniformly over Θ0. This fact will enable us to deduce the existence of a consistent solution to

L̃θ,T (θ) = 0 from the existence of a consistent solution to Lθ,T (θ) = 0 which is a convenient first step

for the former result. Part (ii) of this Lemma will be used to show that these consistent solutions are

asymptotically equivalent.

We can now state the main result of the paper. Of the conditions presented above, Assumptions

1–6 and 7(a) are enough to ensure the existence of a consistent and asymptotically normal root of the

likelihood equations, whereas the additional Assumption 7(b) is required for consistent estimation of

the limiting covariance matrix.

Theorem 1. If Assumptions 1–6 and 7(a) hold, there exists a sequence of solutions θ̃T to the (feasible)

likelihood equations L̃θ,T (θ) = 0 such that T 1/2(θ̃T − θ0)
d→ N(0, I(θ0)−1) as T → ∞. If Assumption

7(b) also holds, a consistent estimator for the limiting covariance matrix is given by L̃−1
θθ,T (θ̃T ), that

is, L̃−1
θθ,T (θ̃T )→ I(θ0)−1 a.s. as T →∞.

Theorem 1 establishes the usual result on consistency and asymptotic normality of local maximizers

of the feasible approximate log-likelihood L̃T (θ). Without further assumptions one can straightfor-

wardly extend this result to allow for linear restrictions on the parameter vector θ0. In particular, using

the restriction θ0,a = θ0,b we can extend the work of Andrews, Davis, and Breidt (2006) to (causal)

all-pass models with ARCH-errors. The consistent estimator of the limiting covariance matrix makes

possible to apply conventional test procedures for testing hypotheses on the parameter vector θ0. For

instance, it is straightforward to show that Wald tests and likelihood ratio tests based on the feasible

approximate likelihood function have the usual limiting χ2–distribution under the null hypothesis.
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4 Conclusion

In this paper we have developed an asymptotic estimation theory for a particular noninvertible ARMA

model with errors that are dependent and follow a standard ARCH model. We give conditions under

which a strongly consistent and asymptotically normally distributed solution to the (approximate)

likelihood equations exists, and for statistical inference we also provide a consistent estimator of

the limiting covariance matrix. The assumptions required to obtain these results are similar to those

previously used in ML estimation of noncausal and/or noninvertible ARMA models and all-pass models

with IID errors. An important exception is that we do not need to assume the innovations to be non-

Gaussian.

This paper also extends previous work on causal all-pass models to allow for ARCH-type condi-

tional heteroskedasticity. Although our ARMA specification is more general than that assumed in

all-pass models and allows for autocorrelation, it is still more restricted than in fully general nonin-

vertible (and possibly noncausal) ARMA models because, similarly to previously considered all-pass

models, it assumes that all roots of the moving average polynomial lie inside the unit circle. One

could consider a more general specification in which roots of the moving average polynomial both

inside and outside the unit circle are allowed. Another topic for potential future work is to extend our

results to the case where the errors follow a Generalized ARCH (GARCH) model. Finally, empirical

applications, especially to economic and financial time series, are of interest and will be considered in

future work.

18



Appendix A: Auxiliary Results

This appendix contains four auxiliary lemmas that will be used to prove our main results. Their proofs

are given in the Supplementary Appendix. The first of these lemmas makes precise in what sense the

Laurent series expansions used in this paper are well-defined and satisfy the conditions mentioned in

the text.

Lemma A.1. (i) Suppose the polynomial a (z; θa) = 1−a1 (θa) z−· · ·−aP (θa) z
P satisfies a (z; θa) 6= 0

for |z| ≤ 1 and θa ∈ Θa and that the functions aj (θa) (j = 1, . . . , P ) are continuous. Then, for each

θ•a ∈ Θa there exists a neighborhood N (θ•a) of θ•a such that for all θa ∈ N (θ•a), a (z; θa) has an inverse

a (z; θa)
−1 =

∑∞
j=0 ψ

(a)
j (θa) z

j defined by a Laurent series expansion that is absolutely convergent

for |z| ≤ 1 + δ (θ•a) with some positive δ (θ•a). Moreover, the coefficients in this expansion satisfy

supθa∈N(θ•a)|ψ
(a)
j (θa)| ≤ Cρja, j = 0, 1, 2, . . . , with some C <∞ and ρa < 1 (that both depend on θ•a).

(ii) Suppose the polynomial b (z; θb) = 1 − b1 (θb) z − · · · − bQ (θb) z
Q satisfies b (z; θb) 6= 0 for

|z| ≤ 1 and θb ∈ Θb and that the functions bj (θb) (j = 1, . . . , Q) are continuous. Then, for each

θ•b ∈ Θb there exists a neighborhood N (θ•b ) of θ•b such that for all θb ∈ N (θ•b ), b(z
−1; θb) has an inverse

b(z−1; θb)
−1 =

∑∞
j=0 ψ

(b)
j (θb) z

−j defined by a Laurent series expansion that is absolutely convergent

for 1 − δ (θ•b ) ≤ |z| with some positive δ (θ•b ). Moreover, the coefficients in this expansion satisfy

supθb∈N(θ•b )|ψ
(b)
j (θb)| ≤ Cρjb, j = 0, 1, 2, . . . , with some C <∞ and ρb < 1 (that both depend on θ•b ).

This result makes clear that the Laurent series expansions considered in this paper for functions of

the type a (z; θa)
−1, b

(
z−1; θb

)−1
, a (z; θa)

−1 b
(
z−1; θb

)
, a (z; θa) b

(
z−1; θb

)−1
, etc., are well-defined (at

least) in some annulus 1− δ (θ•b ) ≤ |z| ≤ 1 + δ (θ•a) containing the unit circle and that the coefficients,

say ψj (θa, θb), in those expansions always satisfy sup(θa,θb)∈N(θ•a,θ
•
b )|ψj (θa, θb)| ≤ Cρ|j|, j = 0, ±1, ±2,

. . . , with some C <∞ and ρ < 1 and some neighborhood N (θ•a, θ
•
b ) of a point of interest (θ•a, θ

•
b ).

The next lemma shows that random processes defined via suitable convergent series expansions

(e.g., yt =
∑∞

j=−Q ψ0,jεt−j in (3)) are well-defined, and also gives conditions for existence of moments.

Lemma A.2. Consider a stationary process Xt (φ) depending on a parameter φ, φ ∈ Φ, and satis-

fying
∥∥supφ∈Φ |Xt (φ)|

∥∥
r
< ∞ with some r > 0. Moreover, let the sequence of constants κj (φ), also

depending on φ, satisfy supφ∈Φ |κj (φ)| ≤ Cρ|j|, j = 0,±1,±2, . . ., with some C <∞ and ρ < 1. Then

for each φ ∈ Φ, the series
∑∞

j=−∞ κj (φ)Xt−j (φ) converges with probability one, and if one defines

Yt (φ) =
∑∞

j=−∞ κj (φ)Xt−j (φ), the process Yt (φ) satisfies
∥∥supφ∈Φ |Yt (φ)|

∥∥
r
<∞.

Our third auxiliary lemma, which is similar to Lemma 4.1 of Francq and Zaköıan (2004), concerns

the expectations of transformations of symmetric random variables, and will be used repeatedly to

prove the main results of the paper.

Lemma A.3. Let {Zi}∞i=−∞ be a sequence of independent and identically distributed symmetric ran-

dom variables and let Y = h(. . . , Zi−1, Zi, Zi+1, . . .) with a measurable function h(. . . , zi−1, zi, zi+1, . . .).
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Suppose the function h(. . . , zi−1, zi, zi+1, . . .) is an odd function of zi, that is, h(. . . , zi−1, zi, zi+1, . . .) =

−h(. . . , zi−1,−zi, zi+1, . . .), and that E [|Y |] <∞. Then E [Y ] = 0.

The final lemma of this appendix presents a mixingale central limit theorem that can be applied

to establish asymptotic normality of the score vector. The definition of an L2–mixingale and its size

can be found in McLeish (1975) or Davidson (1994, p. 247).

Lemma A.4. Let (Ω,F , P ) be a probability space, (Zt)
∞
t=−∞ and (εt)

∞
t=−∞ two doubly-infinite se-

quences of stationary ergodic random variables defined on (Ω,F , P ), and F εt , t ∈ Z, an increasing

sequence of sigma-algebras with F εt = σ (εt, εt−1, . . .) the sigma-algebra generated by present and past

random variables εt. Suppose E[Zt] = 0, E[Z2
t ] < ∞, and that {Zt,F εt } is an L2–mixingale with

size −1. Denote Sn =
∑n

t=1 Zt. Then V ar
(
n−1/2Sn

)
→ σ2 with 0 ≤ σ2 < ∞, and if 0 < σ2, then

n−1/2Sn
d→ N(0, σ2).

Appendix B: Data Generating Process

Proof of Lemma 1. Using the definition of the matrix Πt in (7) we can write the ARCH(R) model

in companion form as Xt = Πt−1Xt−1 + $, where the R–dimensional vectors Xt and $ are defined

as Xt =
(
σ2
t , ε

2
t−1, ..., ε

2
t−R+1

)
and $ = (ω0, 0, ..., 0). (In the case R = 1, define them as the scalars

Xt = σ2
t and $ = ω0.) Also define

Π = E[Πt] =


α0,1 · · · α0,R−1 α0,R

1 · · · 0 0
...

. . .
...

...

0 · · · 1 0

 .

By the constraints imposed on Θc in Assumption 2, we have
∑R

i=1α0,i < 1 or, equivalently, the spectral

radius of the matrix Π is strictly less than one (see, e.g., Proposition 1 in Francq and Zaköıan (2004)).

Now, proceeding in the same way as in the proof of Lemma 2.1 of Chen and An (1998) we can conclude

that the process σ2
t is stationary and ergodic with the almost sure representation

σ2
t = 1′

(
IR +

∞∑
k=1

k∏
l=1

Πt−l

)
$.

(The companion form used by Chen and An (1998) is slightly different from ours, but this has no

impact on the employed arguments.) Moreover, E
[
σ2
t

]
< ∞ and σt is Fηt−1–measurable. By (5)

and Assumption 1, E
[
ε2
t

]
< ∞ and εt is Fηt –measurable. The results concerning yt follow from the

representation (3) and Lemmas A.1 and A.2. If Assumption 3 also holds, we can repeat the arguments

used in the proof of Theorem 3.1(i) of Chen and An (1998) by using our companion form and conclude

that finiteness of the fourth moments mentioned in the lemma follow.
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We next present a lemma concerning expectations containing the process σ2
t that will repeatedly

be used in subsequent proofs. Recall the notation cj = 1′Πj1 for j ≥ 0, and cj = 0 for j < 0.

Lemma B.1. Suppose Assumptions 1–3 hold. Let g(·) be a (measurable) function such that E [|g(ηt)|] <
∞ and E

[
|g(ηt)| η2

t

]
<∞, and let Ht−1 be an Fηt−1–measurable random variable with E [|Ht−1|] <∞

and E [|Ht−1Xt|] <∞. Let a be a nonnegative integer. Then the expectation E
[
Ht−1g(ηt)

σ2
t+a

σ2
t
η2
t+a

]
is

finite and equals caE [Ht−1]E
[
g(ηt)η

2
t

]
if E [g(ηt)] = 0 whereas in general it equals

ω0

a−1∑
k=0

ckE

[
Ht−1

σ2
t

]
E [g(ηt)] + caE [Ht−1]E

[
g(ηt)η

2
t

]
+ E [g(ηt)]

(
1′ΠaE

[
Ht−1Xt

σ2
t

]
− caE [Ht−1]

)
.

The proof of this lemma is given in the Supplementary Appendix. For later purposes we also note

that the constants cj satisfy the difference equation

cj =
R∑
r=1

α0,jcj−r, j > 0. (10)

This can be justified as follows. Consider the stationary autoregressive process xt = α0,1xt−1 + · · ·+
α0,Rxt−R+ξt where ξt is a white noise sequence. Define α (z) = 1−α0,1z−· · ·−α0,Rz

R and write xt in

the moving average form xt = α (B)−1 ξt. Observing that Π is the coefficient matrix of the companion

form of the process xt we also have xt =
∑∞

j=0 1
′Πj1ξt−j =

∑∞
j=0 cjξt−j . Thus, α (z)−1 =

∑∞
j=0 cjz

j

from which equation (10) can be deduced.

Appendix C: Score Vector

Expression for the score vector. As in Section 3.2, we use a subscript to denote a partial derivative

indicated by the subscript. For notational brevity, denote

ex,t(θ) =
fη,x(h

−1/2
t (θ)ut(θ);λ)

fη(h
−1/2
t (θ)ut(θ);λ)

and eλ,t(θ) =
fη,λ(h

−1/2
t (θ)ut(θ);λ)

fη(h
−1/2
t (θ)ut(θ);λ)

.

Then, with straightforward differentiation one obtains

lθ,t(θ) =



ex,t(θ)
ua,t(θ)

h
1/2
t (θ)

− 1
2
ha,t(θ)
ht(θ)

(
ex,t(θ)

ut(θ)

h
1/2
t (θ)

+ 1
)

ex,t(θ)
ub,t(θ)

h
1/2
t (θ)

− 1
2
hb,t(θ)
ht(θ)

(
ex,t(θ)

ut(θ)

h
1/2
t (θ)

+ 1
)

−1
2
hc,t(θ)
ht(θ)

(
ex,t(θ)

ut(θ)

h
1/2
t (θ)

+ 1
)

eλ,t(θ)


.

Expressions for the partial derivatives of ut (θ) and ht (θ). Next, we derive expressions for

the quantities ha,t(θ), hb,t(θ), hc,t(θ), ua,t(θ), and ub,t(θ) that appear in the score vector. As ht(θ) =

ω + α1u
2
t−1(θ) + · · ·+ αRu

2
t−R(θ), straightforward computation gives

ha,t (θ) = 2

R∑
r=1

αrut−r (θ)ua,t−r (θ) , hb,t (θ) = 2

R∑
r=1

αrut−r (θ)ub,t−r (θ) ,
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and hc,t (θ) =
(
1, u2

t−1 (θ) , . . . , u2
t−R (θ)

)
. As for the partial derivatives of ut(θ), using the representa-

tion ut(θ) = b(B−1)−1a (B) yt and noting that ∂
∂ap

a (B) yt = −yt−p gives

uap,t(θ) = −b
(
B−1

)−1
yt−p = −a (B)−1 ut−p (θ) (p = 1, . . . , P ).

Next note that ∂
∂bq
b(B−1)ut(θ) = −B−qut(θ) + b(B−1)ubq ,t(θ). From the relation b(B−1)ut(θ) =

a (B) yt it follows that the left hand side is zero, and hence

ubq ,t(θ) = b
(
B−1

)−1
ut+q(θ) (q = 1, . . . , Q).

This completes the derivation of the score vector.

An auxiliary lemma. The following lemma contains results needed in subsequent derivations.

Its proof is straightforward and is given in the Supplementary Appendix.

Lemma C.1. If Assumptions 1–4 hold, then (i) E[e2
x,tη

4
t ] < ∞, (ii) E[e2

x,t] < ∞, (iii) E[e2
x,tη

2
t ] <

∞, (iv) E[
∣∣ex,tη3

t

∣∣] < ∞, (v) E[eλ,te
′
λ,t] < ∞, (vi) E [|eλ,tex,tηt|] < ∞, (vii) E [ex,t] = 0, (viii)

E [ex,tηt + 1] = 0, (ix) E
[
ex,tη

2
t

]
= 0, (x) E

[
ex,tη

3
t

]
= −3, (xi) E [eλ,t] = 0, (xii) E

[
η2
t eλ,t

]
= 0.

Proof of Lemma 2. We present the long proof in several steps. In Step 1, we show that

E
[
lθ,t (θ0) | Fηt−1

]
= 0, and hence also that E [lθ,t (θ0)] = 0. In Step 2, we derive the expressions

of the matrices Aij and Bij , whereas in Step 3 we establish that these matrices are finite. Step 4

shows that I (θ0) is positive definite. In what follows, we will repeatedly make use of the following

expansions for the components of ua,t(θ0), ub,t(θ0), ha,t(θ0), and hb,t(θ0) (as before, p will range over

the values 1, . . . , P , and q over the values 1, . . . , Q):

uap,t(θ0) = −a0 (B)−1 [σt−pηt−p] = −
∞∑
i=0

ψ
(a)
0,i σt−p−iηt−p−i (11a)

ubq ,t(θ0) = b0
(
B−1

)−1
[σt+qηt+q] =

∞∑
j=0

ψ
(b)
0,jσt+q+jηt+q+j (11b)

hap,t(θ0) = 2
R∑
r=1

α0,rεt−ruap,t−r(θ0) = −2
R∑
r=1

∞∑
i=0

α0,rψ
(a)
0,i σt−rηt−rσt−r−p−iηt−r−p−i (11c)

hbq ,t(θ0) = 2
R∑
r=1

α0,rεt−rubq ,t−r(θ0) = 2
R∑
r=1

∞∑
j=0

α0,rψ
(b)
0,jσt−rηt−rσt−r+q+jηt−r+q+j (11d)

Step 1. First note that E [ex,t] = 0, E [ex,tηt + 1] = 0, E
[
ex,tη

2
t

]
= 0, and E [eλ,t] = 0 (see Lemma

C.1), and that ex,t is independent of Fηt−1. Also note that ua,t(θ0), ha,t(θ0), hc,t(θ0), and σt are all

Fηt−1–measurable. Therefore, E
[
lθ,t (θ0) | Fηt−1

]
= 0 clearly holds for the components corresponding

to the sub-vectors la,t (θ0), lc,t (θ0), and ld,t (θ0). Now consider the sub-vector lb,t (θ0) = ex,t
ub,t(θ0)
σt

−
1
2
hb,t(θ0)

σ2
t

(ex,tηt + 1), where the terms ub,t(θ0) and hb,t(θ0) are not Fηt−1–measurable. As σt is Fηt−1–

measurable, it suffices to establish that E
[
ex,tub,t(θ0) | Fηt−1

]
= 0 and E

[
(ex,tηt + 1)hb,t(θ0) | Fηt−1

]
=
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0. The former result is obtained straightforwardly by using the expansion of ubq ,t(θ0) in (11b) and

the law of iterated expectations conditioning on Fηt+q+j−1. For the latter result, note that in the

expansion of hbq ,t(θ0) in (11d) the terms σt−r and ηt−r are Fηt−1–measurable. Therefore it suffices to

show that E
[
(ex,tηt + 1)σt−r+q+jηt−r+q+j | Fηt−1

]
= 0 for all r = 1, . . . , R, j ≥ 0, and q = 1, . . . , Q.

If t − r + q + j < t, this follows from the Fηt−1–measurability of σt−r+q+jηt−r+q+j and the fact that

(ex,tηt + 1) is independent of Fηt−1 and has expectation zero. If t − r + q + j > t, one can apply the

law of iterated expectations conditioning on Fηt−r+q+j−1, and again show that the expectation is zero

making use of the fact that σt−r+q+j is Fηt−r+q+j−1–measurable. Finally, if t − r + q + j = t, we

need to show that E
[
(ex,tηt + 1)σtηt | Fηt−1

]
= σtE

[
(ex,tηt + 1) ηt | Fηt−1

]
= 0 which follows because

E
[
ex,tη

2
t

]
= E [ηt] = 0. This completes the proof of Step 1.

Step 2. Our next task is to derive the limit of Cov
[
T 1/2Lθ,T (θ0)

]
as T → ∞. To this end, first

note that lθ,t (θ0) forms a stationary and ergodic process (this holds because it can be expressed in

terms of convergent power series expansions of stationary and ergodic processes). Moreover, as was

shown in Step 1, E [lθ,t (θ0)] = 0. Thus, as Lθ,T (θ0) = T−1
∑T

t=1 lθ,t (θ0),

Cov
[
T 1/2Lθ,T (θ0)

]
= E

[
lθ,t (θ0) l′θ,t (θ0)

]
+
T−1∑
i=1

T − i
T

{
E
[
lθ,t (θ0) l′θ,t−i (θ0)

]
+ E

[
lθ,t (θ0) l′θ,t+i (θ0)

]}
so that, given that the expectations and limits exist,

Cov
[
T 1/2Lθ,T (θ0)

]
→

∞∑
s=−∞

E
[
lθ,t (θ0) l′θ,s (θ0)

]
as T →∞.

Thus, our aim is to compute
∑∞

s=−∞E
[
lθ,t (θ0) l′θ,s (θ0)

]
.

We will show that (i) the off-diagonal block consisting of E
[
lc,t(θ0)l′a,s(θ0)

]
, E
[
ld,t(θ0)l′a,s(θ0)

]
,

E
[
lc,t(θ0)l′b,s(θ0)

]
, and E

[
ld,t(θ0)l′b,s(θ0)

]
is zero for all t and s, (ii) the block in the lower-right-hand

corner consisting of E
[
lc,t(θ0)l′c,s(θ0)

]
, E
[
ld,t(θ0)l′c,s(θ0)

]
, and E

[
ld,t(θ0)l′d,s(θ0)

]
has the form shown in

Lemma 2, (iii) the blocks consisting of E
[
la,t(θ0)l′a,s(θ0)

]
and E

[
lb,t(θ0)l′a,s(θ0)

]
yield the terms in A11,

A21, and B21, and (iv) the block consisting of E
[
lb,t(θ0)l′b,s(θ0)

]
yields the terms in A22 and B22.

Step 2(i). Because (la,t(θ0), lc,t(θ0), ld,t(θ0);Fηt ) forms a martingale difference sequence, both

E
[
lc,t(θ0)l′a,t(θ0)

]
and E

[
ld,t(θ0)l′a,t(θ0)

]
are zero for t 6= s. To see that the same holds for t = s, write

E
[
lc,t(θ0)l′a,t(θ0)

]
= E

[
−1

2
ex,t (ex,tηt + 1)

hc,t(θ0)

σ2
t

u′a,t(θ0)

σt
+

1

4
(ex,tηt + 1)2 hc,t(θ0)

σ2
t

h′a,t(θ0)

σ2
t

]
=

1

4
E[(ex,tηt + 1)2]E

[
hc,t(θ0)

σ2
t

h′a,t(θ0)

σ2
t

]
,

where the latter equality holds because ha,t(θ0), hc,t(θ0), ua,t(θ0), and σt are Fηt−1–measurable and

E[ex,t] = E[e2
x,tηt] = 0 (see Lemma C.1). To see that the latter expectation in the last expression is

zero, note that the terms hc,t(θ0) and σt are even functions of ητ for all τ , and conclude from the expan-

sion of hap,t(θ0) in (11c) that each summand therein is an odd function of ηt−r. Therefore, it follows
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from Lemma A.3 that the expectation E[σ−4
t hc,t(θ0)h′a,t(θ0)] is zero, and hence E

[
lc,t(θ0)l′a,t(θ0)

]
= 0.

Similar arguments show that E
[
ld,t(θ0)l′a,t(θ0)

]
= 0; details are given in the Supplementary Appendix.

Now consider the expectations E
[
lc,t(θ0)l′b,s(θ0)

]
and E

[
ld,t(θ0)l′b,s(θ0)

]
. By direct calculation,

lc,t(θ0)l′b,s(θ0) = −1

2
ex,s (ex,tηt + 1)

hc,t(θ0)

σ2
t

u′b,s(θ0)

σs
+

1

4
(ex,tηt + 1) (ex,sηs + 1)

hc,t(θ0)

σ2
t

h′b,s(θ0)

σ2
s

,

ld,t(θ0)l′b,s(θ0) = ex,seλ,t
u′b,s(θ0)

σs
− 1

2
(ex,sηs + 1) eλ,t

h′b,s(θ0)

σ2
s

,

and we show that each of the four terms appearing on the right hand sides of these equations has

expectation zero for all t and s. For the first term of lc,t(θ0)l′b,s(θ0), use the expansion of ubq ,s(θ0) in

(11b) and conclude that we need to show that the Q expressions

−1

2

hc,t(θ0)

σ2
t σs

∞∑
j=0

ψ
(b)
0,jσs+q+jηs+q+jex,s (ex,tηt + 1) , q = 1, ..., Q,

have expectation zero for all t and s. Here we can consider each term in the summation separately

and omit constant multipliers. Thus, it suffices to consider terms of the form

hc,t(θ0)σs+q+j
σ2
t σs

ηs+q+jex,s (ex,tηt + 1) .

If t 6= s+ q+ j, the expression is an odd function of ηs+q+j , and hence by Lemma A.3 its expectation

is zero. If t = s + q + j, the variable ηt (ex,tηt + 1) is independent of the other variables and has

expectation zero by Lemma C.1. Hence, the first term in the preceding expression of lc,t(θ0)l′b,s(θ0)

has expectation zero. Similar arguments show that also the second term of lc,t(θ0)l′b,s(θ0) and the two

terms of ld,t(θ0)l′b,s(θ0) have expectation zero; details are given in the Supplementary Appendix.

Step 2(ii). Because (lc,t(θ0), ld,t(θ0);Fηt ) forms a martingale difference sequence, E
[
lc,t(θ0)l′c,s(θ0)

]
,

E
[
ld,t(θ0)l′c,s(θ0)

]
, and E

[
ld,t(θ0)l′d,s(θ0)

]
are all zero when t 6= s. When t = s, simple calculations

making use of the Fηt−1–measurability of hc,t(θ0) and σt and Lemma C.1 show that these expectations

yield the expressions of A33, A43, and A44 in Lemma 2.

Step 2(iii). Now consider the blocks involving E
[
la,t(θ0)l′a,s(θ0)

]
and E

[
lb,t(θ0)l′a,s(θ0)

]
. For the

former one, note that (la,t(θ0);Fηt ) forms a martingale difference sequence so that E
[
la,t(θ0)l′a,s(θ0)

]
=

0 for all t 6= s. When t = s, simple calculations making use of the Fηt−1–measurability of ha,t(θ0),

ua,t(θ0), and σt and Lemma C.1 show that E
[
la,t(θ0)l′a,t(θ0)

]
equals the expression of A11 in Lemma

2. As for E
[
lb,t(θ0)l′a,s(θ0)

]
, arguments very similar to those already used in Step 2(i) can be used to

obtain the expressions of A21 and B21 in Lemma 2; details are given in the Supplementary Appendix.

Step 2(iv). Finally, consider the block consisting of E
[
lb,t(θ0)l′b,s(θ0)

]
. To this end, write

lb,t(θ0)l′b,s(θ0) = ex,tex,s
ub,t(θ0)

σt

u′b,s(θ0)

σs
+

1

4
(ex,tηt + 1) (ex,sηs + 1)

hb,t(θ0)

σ2
t

h′b,s(θ0)

σ2
s

−1

2
ex,t (ex,sηs + 1)

ub,t(θ0)

σt

h′b,s(θ0)

σ2
s

− 1

2
ex,s (ex,tηt + 1)

hb,t(θ0)

σ2
t

u′b,s(θ0)

σs
.
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We begin with the first two terms of lb,t(θ0)l′b,s(θ0). For t = s, these two terms have non-zero expecta-

tions that yield the expression of A22 in Lemma 2. When t 6= s, they have zero expectation. To show

this, we proceed as in Step 2(i) and conclude from the expansions of ubq ,t(θ0) and hbq ,t(θ0) in (11b)

and (11d) that it suffices to show that the two expressions

σt+q+jσs+q̃+j̃
σtσs

ηt+q+jηs+q̃+j̃ex,tex,s

σt−rσt−r+q+jσs−r̃σs−r̃+q̃+j̃
σ2
t σ

2
s

ηt−rηt−r+q+jηs−r̃ηs−r̃+q̃+j̃ (ex,tηt + 1) (ex,sηs + 1)

have expectation zero whenever t 6= s. In the first expression, as t 6= s, the only possibility for a

non-odd expression is t = s + q̃ + j̃ and s = t + q + j, but these cannot hold at the same time. As

for the second expression, assume that s > t (it is clear from the expression that the case s < t can

be treated in a completely analogous manner). Then the largest index can be any of the three indices

s, t − r + q + j, or s − r̃ + q̃ + j̃. If any of these three indices is alone the largest, the expression

will have expectation zero (with similar reasoning as before). The same holds if one of the indices

t − r + q + j and s − r̃ + q̃ + j̃ is equal to s and the other is smaller than s (in this case the term

ηs (ex,sηs + 1) has expectation zero and is independent of the other terms). Thus, we must have

t− r + q + j = s− r̃ + q̃ + j̃
def
= s+ a ≥ s in order to have a (possibly) non-zero expectation. In this

case we must also have t− r = s− r̃ in order to avoid an odd expression as a function of ηt−r. With

these restrictions, the considered expression simplifies to

σ2
s−r̃σ

2
s+a

σ2
t σ

2
s

η2
s−r̃ (ex,tηt + 1) (ex,sηs + 1) η2

s+a.

Making use of Lemma B.1 and the fact E
[
(ex,tηt + 1) η2

s−r̃σ
2
s−r̃/σ

2
t

]
= E [ex,tηt + 1]E

[
η2
s−r̃σ

2
s−r̃/σ

2
t

]
=

0 we conclude that this expression has expectation zero.

Now consider the two last terms in lb,t(θ0)l′b,s(θ0). Note that due to stationarity, the expectation

of the former with any s = t+ x equals the transpose of the expectation of the latter with s = t− x.

Therefore, if these expectations are summed over all s 6= t, the sum of the expectations of the latter

terms will simply be the transpose of the sum of the expectations of the former terms. Moreover, as

the derivations below will demonstrate, this sum will be symmetric. Thus, it suffices to consider the

third term in lb,t(θ0)l′b,s(θ0) only, and multiply the result with 2. Making use of (11b) and (11d), the

element (q, q̃) of this term can be expressed as

−
R∑
r=1

∞∑
j=0

∞∑
j̃=0

α0,rψ
(b)
0,jψ

(b)

0,j̃

σt+q+jσs−rσs−r+q̃+j̃
σtσ2

s

ηt+q+jηs−rηs−r+q̃+j̃ex,t (ex,sηs + 1) .

In order to see which terms in this summation have non-zero expectation, note that the largest time

index in the summands is either t + q + j, s, or s − r + q̃ + j̃. If any of these three indices is alone

the largest, the term will have zero expectation. If s equals one of the other two indices while the
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other is smaller, then the summand contains the variable ηs (ex,sηs + 1) that is independent of the

other variables involved and has zero expectation. Thus, in order to have nonzero expectation, we

must have t + q + j = s − r + q̃ + j̃
def
= s + a ≥ s. In this case, we must also have t = s − r (< s) to

avoid an odd expression as a function of ηs−r. Thus, we can assume these restrictions under which

the considered expression simplifies to

−
R∑
r=1

∞∑
j=0

∞∑
j̃=0

α0,rψ
(b)
0,jψ

(b)

0,j̃

σ2
s+a

σ2
s

ηs−rex,s−r (ex,sηs + 1) η2
s+a.

Making use of Lemma B.1 and the facts E
[
(ex,sηs + 1) η2

s

]
= −2 and E[ηs−rex,s−r] = −1 (see Lemma

C.1), the expression has expectation equal to

−2

R∑
r=1

∞∑
j=0

∞∑
j̃=0

α0,rψ
(b)
0,jψ

(b)

0,j̃
ca1

(
q + j − r = q̃ + j̃ − r = a ≥ 0

)
.

As ca = 0 for a < 0, we may equally well consider the sum without the restriction a ≥ 0. Also note

that this expression is symmetric in q and q̃, and thus (as was noted above) the matrix B22 is obtained

by multiplying the above expression with 2, yielding

−4

R∑
r=1

∞∑
j=0

∞∑
j̃=0

α0,rψ
(b)
0,jψ

(b)

0,j̃
ca1

(
q + j − r = q̃ + j̃ − r = a

)
.

As the expression is symmetric, it suffices to consider the case q ≥ q̃. Solving for j̃ and a as j̃ = j+q−q̃
and a = q + j − r and substituting to the preceding expression yields

−4
R∑
r=1

∞∑
j=0

α0,rψ
(b)
0,jψ

(b)
0,j+q−q̃cq+j−r = −4

∞∑
j=0

ψ
(b)
0,j−qψ

(b)
0,j−q̃cj ,

where the equality follows from (10) and the convention ψ
(b)
0,j = 0, j < 0. The last expression equals

that given for (B22)q,q̃ in Lemma 2. Thus, we have established (iv), completing the proof of Step 2.

Step 3. We now show that our assumptions guarantee that the expression derived for I (θ0) is

finite, thereby also guaranteeing the validity of the employed arguments. As the elements of B21 and

B22 are defined through convergent series, their finiteness is immediate. Hence it suffices to show that

the matrix A = E
[
lθ,t(θ0)l′θ,t(θ0)

]
is finite. First consider the blocks A11, A33, A43, and A44 and note

that σ2
t ≥ ω0 > 0 (see equation (6) and Assumption 2). Making use of the Cauchy-Schwarz inequality

it is therefore easy to see that these blocks are finite if

E[e2
x,tη

2
t ], E

[
e2
x,t

]
, E [|eλ,tex,tηt|] , E[eλ,te

′
λ,t], ‖ua,t(θ0)‖2 , ‖ha,t(θ0)‖2 , ‖hc,t(θ0)‖2

are all finite. The four first terms are finite by Lemma C.1. As for the fifth term, making use of the

expansion (11a) and Lemmas A.1 and A.2 it is seen that even ‖ua,t(θ0)‖4 is finite because E
[
ε4
t

]
<∞
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by Lemma 1. That ‖ha,t(θ0)‖2 < ∞ holds can now be seen by using the expansion (11c) and the

Cauchy-Schwarz inequality whereas the finiteness of ‖hc,t(θ0)‖2 follows from the fact that E
[
ε4
t

]
<∞.

The finiteness of the blocks A21 and A22 requires a somewhat more detailed investigation. (A

direct application of Hölder’s inequality would lead to unnecessarily strong conditions.) Consider the

first of the four expectations appearing in the expressions of A21 and A22. Using the expansions in

(11c) and (11d) it is seen that we need to consider the expectations of (p = 1, .., P , q = 1, ..., Q)

hbq ,t(θ0)

σ2
t

h′ap,t(θ0)

σ2
t

(ex,tηt + 1)2

= −4

R∑
r=1

R∑
r̃=1

∞∑
j=0

∞∑
i=0

α0,rα0,r̃ψ
(b)
0,jψ

(a)
0,i

σt−rσt−r+q+jσt−r̃σt−r̃−p−i
σ4
t

ηt−rηt−r+q+jηt−r̃ηt−r̃−p−i (ex,tηt + 1)2 .

The only terms in this summation that have nonzero expectation are those in which t−r = t− r̃−p−i
and t− r̃ = t− r + q + j. Therefore it suffices to consider these index combinations and show that

σ2
t−rσ

2
t−r+q+j
σ4
t

η2
t−rη

2
t−r+q+j (ex,tηt + 1)2

has an expectation bounded by a finite constant (independent of the indices). As the indices satisfy

t−r < t−r+q+j < t, arguments already used in similar previous calculations and the Cauchy-Schwarz

inequality give

E

[
σ2
t−rσ

2
t−r+q+j
σ4
t

η2
t−rη

2
t−r+q+j (ex,tηt + 1)2

]
≤ C

(
E[ε4

t−r]E[σ4
t−r+q+j ]

)1/2
E[η2

t−r+q+j ]E
[
(ex,tηt + 1)2

]
for some finite C. The expectations on the dominant side are finite by Lemma 1 and Lemma C.1.

The other three expectations appearing in the expressions of A21 and A22 can be handled in a

similar manner making use of the expansions (11). Details are given in the Supplementary Appendix.

Step 4. As the matrix I (θ0) is block diagonal, what needs to be shown is that the blocks

I1 (θ0)
def
=

 A11 A′21 + B′21

A21 + B21 A22 + B22

 and I2 (θ0)
def
=

A33 A′43

A43 A44


are positive definite. We begin with the latter. Note that I2 (θ0) is the covariance matrix of the vector(
−1

2(ex,tηt + 1)
hc,t(θ0)

σ2
t

, eλ,t

)
. Therefore, what needs to be proven is that

a′
(
−1

2
(ex,tηt + 1)

hc,t(θ0)

σ2
t

)
+ b′eλ,t = 0 a.s. (12)

only if a = 0 and b = 0 (a ∈ RR+1, b ∈ Rd). Multiplying (12) with σ2
t η

2
t and taking expectations

conditional on Fηt−1 yields (by Lemma C.1(xii), E
[
η2
t eλ,t

]
= 0) a′hc,t(θ0) = 0 or, written out, a1 +

a2σ
2
t−1η

2
t−1 + · · · + aR+1σ

2
t−Rη

2
t−R = 0. If a2 6= 0, we obtain a contradiction, hence a2 = 0. Similarly,

a3 = · · · = aR+1 = 0, and thus also a1 = 0. Therefore, (12) becomes b′eλ,t = 0. By Assumption 4(iii),

E[eλ,te
′
λ,t] is positive definite, and hence necessarily b = 0. Thus I2 (θ0) is positive definite.
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To prove that I1 (θ0) is positive definite, define the processes xa,t = xa,1,t + xa,2,t (P × 1) and

xb,t = xb,1,t + xb,2,t + xb,3,t (Q × 1), where the vectors on the right-hand sides have the components

(p = 1, . . . , P , q = 1, . . . , Q)

xap,1,t = −
∞∑
i=0

ψ
(a)
0,i σt−p−iηt−p−i

ex,t
σt
,

xap,2,t =
R∑
r=1

∞∑
i=0

α0,rψ
(a)
0,i σt−rηt−rσt−r−p−iηt−r−p−i

ex,tηt + 1

σ2
t

,

xbq ,1,t =
∞∑
j=0

ψ
(b)
0,j

ex,t−q−j
σt−q−j

σtηt,

xbq ,2,t = −
R∑
r=1

∞∑
j=0

α0,rψ
(b)
0,jσt−rηt−rσt−r+q+jηt−r+q+j

ex,tηt + 1

σ2
t

1 (q + j < r) ,

xbq ,3,t = −
R∑
r=1

∞∑
j=0

α0,rψ
(b)
0,jσt−q−jηt−q−j

ex,t+r−q−jηt+r−q−j + 1

σ2
t+r−q−j

σtηt1 (q + j ≥ r) .

It can now be shown that the process xt = (xa,t, xb,t) has the covariance matrix Cov[xt] = I1 (θ0). The

lengthy arguments required to establish this are similar to those already used in Step 2 of the proof

and rely on the expansions (11a)–(11d). The details are available in the Supplementary Appendix.

Making use of the way xt is constructed we now show that Cov[xt] is positive definite. First

decompose xt as xt = (xa,1,t, xb,1,t + xb,3,t) + (xa,2,t, xb,2,t)
def
= z1,t + z2,t where, according to the

calculations given in the Supplementary Appendix, z1,t and z2,t are uncorrelated. To show that

Cov [xt] is positive definite, it thus suffices to show that Cov [z1,t] is positive definite. To do this, we

further decompose z1,t into a sum of two uncorrelated components. To this end, define the processes

ζ
(a)
t,j = −σt−jηt−j

ex,t
σt
, j ≥ 1

ζ
(b1)
t,j =

(
ex,t−j
σt−j

−
R∑
r=1

α0,r
(ex,t+r−jηt+r−j + 1)

σ2
t+r−j

σt−jηt−j1 (j > r)

)
σtηt, j ≥ 1

ζ
(b2)
t,j =

 −α0,jσt−jηt−j
(ex,tηt + 1)ηt

σt
, j = 1, . . . , R

0, j > R.

Note that these three series are serially uncorrelated (E[ζ
(a)
t,j ζ

(a)

t,j̃
] = E[ζ

(b1)
t,j ζ

(b1)

t,j̃
] = E[ζ

(b2)
t,j ζ

(b2)

t,j̃
] = 0

for j 6= j̃). Moreover, non-contemporaneous elements of the different series also have zero correla-

tion (E[ζ
(a)
t,j ζ

(b1)

t,j̃
] = E[ζ

(b1)
t,j ζ

(b2)

t,j̃
] = E[ζ

(b2)
t,j ζ

(a)

t,j̃
] = 0 for j 6= j̃). Now write z1,t = (za,1,t, zb,1,t) =

(xa,1,t, xb,1,t + xb,3,t). The components of z1,t can be expressed as

zap,1,t = xap,1,t =

∞∑
i=0

ψ
(a)
0,i ζ

(a)
t,i+p

zbq ,1,t = xbq ,1,t + xbq ,3,t =

∞∑
j=0

ψ
(b)
0,j

(
ζ

(b1)
t,j+q + ζ

(b2)
t,j+q

)
.
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To decompose z1,t into two uncorrelated vectors, define K = max {P,Q}, and write

zap,1,t =

K−p∑
i=0

ψ
(a)
0,i ζ

(a)
t,i+p +

∞∑
i=K−p+1

ψ
(a)
0,i ζ

(a)
t,i+p = z

(1)
ap,1,t

+ z
(2)
ap,1,t

zbq ,1,t =

K−q∑
j=0

ψ
(b)
0,j

(
ζ

(b1)
t,j+q + ζ

(b2)
t,j+q

)
+

∞∑
j=K−q+1

ψ
(b)
0,j

(
ζ

(b1)
t,j+q + ζ

(b2)
t,j+q

)
= z

(1)
bq ,1,t

+ z
(2)
bq ,1,t

,

where the latter equalities define the vectors z
(1)
1,t = (z

(1)
a,1,t, z

(1)
b,1,t) and z

(2)
1,t = (z

(2)
a,1,t, z

(2)
b,1,t) that satisfy

z1,t = z
(1)
1,t + z

(2)
1,t . Note that z

(1)
1,t depends on ζ

(a)
t,j , ζ

(b1)
t,j , and ζ

(b2)
t,j only for j = 1, . . . ,K, whereas z

(2)
1,t

depends on these processes only for j > K. Therefore z
(1)
1,t and z

(2)
1,t are uncorrelated, and thus it

suffices to prove that Cov[z
(1)
1,t ] is positive definite.

To show this, denote ζ = (ζ
(a)
t,1 , . . . , ζ

(a)
t,K , ζ

(b1)
t,1 + ζ

(b2)
t,1 , . . . , ζ

(b1)
t,K + ζ

(b2)
t,K ), and note that z

(1)
1,t can be

written as z
(1)
1,t = Ψζ, where the (P+Q)×2K constant matrix Ψ has full row rank and whose expression

is given in the Supplementary Appendix. To prove that Cov[z
(1)
1,t ] is positive definite, it thus suffices

to prove that Cov[ζ] is positive definite. Equivalently, we can show that the covariance matrix of the

vector (ζ
(a)
t,1 , ζ

(b1)
t,1 + ζ

(b2)
t,1 , . . . , ζ

(a)
t,K , ζ

(b1)
t,K + ζ

(b2)
t,K ) is positive definite. This vector has a block-diagonal

covariance matrix with the 2-by-2 diagonal blocks given by the expectations of (k = 1, . . . ,K) ζ
(a)2
t,k ζ

(a)
t,k

(
ζ

(b1)
t,k + ζ

(b2)
t,k

)
ζ

(a)
t,k

(
ζ

(b1)
t,k + ζ

(b2)
t,k

) (
ζ

(b1)
t,k + ζ

(b2)
t,k

)2

 (k = 1, . . . ,K).

It thus suffices to show that the covariance matrices of the vectors (ζ
(a)
t,k , ζ

(b1)
t,k + ζ

(b2)
t,k ), k = 1, . . . ,K,

are positive definite. This requires a careful argument, and for clarity, we consider the two cases

1 ≤ k ≤ R and k > R separately.

In the latter case, ζ
(b2)
t,k = 0, and what needs to be proven is that the equality a1ζ

(a)
t,k + a2ζ

(b1)
t,k = 0

(a.s.) (k > R) implies a1 = a2 = 0. Slightly reorganizing, this equality can be written as (note that

1 (k > r) can be omitted in this case)

a1ηt−kex,t = a2

(
ex,t−k
σ2
t−k
−

R∑
r=1

α0,r
(ex,t+r−kηt+r−k + 1)

σ2
t+r−k

ηt−k

)
σ2
t ηt. (13)

Squaring and taking expectations conditional on Fηt−1 yields

a2
1η

2
t−kE

[
e2
x,t

]
= a2

2

(
ex,t−k
σ2
t−k
−

R∑
r=1

α0,r
(ex,t+r−kηt+r−k + 1)

σ2
t+r−k

ηt−k

)2

σ4
t .

As α0,r > 0 for all r = 1, ..., R (see Assumption 2) the difference in parentheses on the right-hand side

cannot be equal to zero a.s. (if it were, its expectation conditional on Fηt−k would also equal zero a.s.,

but this expectation equals ex,t−k/σ
2
t−k). Therefore, if a1 = 0, then a2 = 0, and vice versa.

On the other hand, if a1 6= 0 6= a2 (and k > R) multiply (13) with ηt−k(ex,t+ηt), divide by a1 6= 0,

and take expectations conditional on Fηt−1 to obtain η2
t−k
(
E[e2

x,t]− 1
)

= 0. In the non-Gaussian case,
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E[e2
x,t] > 1 (see Remark 2 in Andrews, Davis, and Breidt (2006)), giving a contradiction. However, in

the Gaussian case ex,t = −ηt so that E[e2
x,t] = 1 and we need to use a different argument.

Multiplying (13) with ηt−kηt, dividing by a2σ
2
t 6= 0, taking expectations conditional on Fηt−1,

substituting ex,t = −ηt, and reorganizing yields (note that α0,R > 0 by Assumption 2)

(1− η2
t+R−k)η

2
t−k =

σ2
t+R−k
α0,R

(
a1

a2

η2
t−k
σ2
t

−
η2
t−k
σ2
t−k

+

R−1∑
r=1

α0,r

(η2
t+r−k − 1)

σ2
t+r−k

η2
t−k

)
. (14)

Next consider the event

|ηt+R−k| > M1, 1 ≤ |ηt−k| ≤ 2, σ2
t+R−k ≤M2, |ητ | ≤ 1 for τ = t− k + 1, . . . , t− k +R− 1,

which has positive probability for any fixed positive M1 and M2 (where M2 is large enough). (To see

this, it suffices to note that ηt has an everywhere positive density, and that σ2
t is stationary with finite

mean.) On this event (for any fixed M1 and M2), the right-hand side of (14) is bounded in absolute

value by a constant independent of M1, say C (note that σ−2
t is bounded). On the other, by choosing

M1 large enough, the left-hand side of (14) will only attain values that are smaller than −C. Thus,

we have a contradiction.

Now consider the case 1 ≤ k ≤ R. We need to show that the equality a1ζ
(a)
t,k + a2(ζ

(b1)
t,k + ζ

(b2)
t,k ) = 0

(a.s.) (1 ≤ k ≤ R) implies a1 = a2 = 0. If a2 = 0, we clearly have a1 = 0 also. Now suppose a1 = 0,

but a2 6= 0. In this case, ζ
(b1)
t,k + ζ

(b2)
t,k = 0 (a.s.) must hold (1 ≤ k ≤ R), so that(

ex,t−k
σt−k

−
k−1∑
r=1

α0,r
(ex,t+r−kηt+r−k + 1)

σ2
t+r−k

σt−kηt−k

)
σtηt − α0,kσt−kηt−k

(ex,tηt + 1)ηt
σt

= 0. (15)

Multiplying (15) with σtηt−kηt, dividing by σt−k 6= 0, taking expectations conditional on Fηt−1 (recall

that E
[
(ex,tηt + 1)η2

t

]
= −2), and reorganizing yields

ex,t−kηt−k
σ2
t

σ2
t−k
−
k−1∑
r=1

α0,r
σ2
t

σ2
t+r−k

(ex,t+r−kηt+r−k + 1)η2
t−k + 2α0,kη

2
t−k = 0. (16)

Adding and subtracting σ2
t /σ

2
t−k, taking expectations, and using Lemma B.1 we obtain

−2ck − E
[
σ2
t /σ

2
t−k
]

+ 2
k−1∑
r=1

α0,rck−r + 2α0,k = 0.

Because c0 = 1 and cj = 0 for j < 0, the identity (10) leads to the contradiction E
[
σ2
t /σ

2
t−k
]

= 0 (this

holds even in the Gaussian case which requires no special treatment).

Now consider the case a1 6= 0 6= a2 whereupon the equality a1ζ
(a)
t,k + a2(ζ

(b1)
t,k + ζ

(b2)
t,k ) = 0 (a.s.)

(1 ≤ k ≤ R), multiplied by σt and divided by σt−ka2 6= 0, becomes

−a1

a2
ηt−kex,t +

(
ex,t−k

σ2
t

σ2
t−k
−
k−1∑
r=1

α0,r(ex,t+r−kηt+r−k + 1)ηt−k
σ2
t

σ2
t+r−k

)
ηt−α0,kηt−k(ex,tηt + 1)ηt = 0.
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For brevity, denote the difference in parentheses in the middle term by κt−1. Next, let b1 and b2 be

constants such that the variables (ex,tηt+1)ηt−b1ηt−b2(ex,t+ηt) and (ηt, (ex,t + ηt)) are uncorrelated.

The constants b1 and b2 are determined by the linear regression of (ex,tηt + 1)ηt on the (uncorrelated)

regressors ηt and (ex,t + ηt). In the Gaussian case ex,t = −ηt so that b1 = −2 and b2 is undefined.

In the non-Gaussian case, b1 = −2 and b2 = (E[e2
x,tη

2
t ] − 3)/(E[e2

x,t] − 1) (E[e2
x,t] > 1). Defining

κ1,t−1 = (−a1
a2
−α0,kb2)ηt−k, κ2,t−1 = κt−1 + a1

a2
ηt−k−α0,kb1ηt−k, and κ3,t−1 = −α0,kηt−k, the preceding

equation can be written as

κ1,t−1(ex,t + ηt) + κ2,t−1ηt + κ3,t−1[(ex,tηt + 1)ηt − b1ηt − b2(ex,t + ηt)] = 0.

By construction, the variables ηt, (ex,t + ηt), and (ex,tηt + 1) ηt − b1ηt − b2(ex,t + ηt) are uncorrelated

and κi,t−1 (i = 1, 2, 3) are Fηt−1–measurable. Squaring and taking expectations conditional on Fηt−1,

κ2
1,t−1(E

[
e2
x,t

]
− 1) + κ2

2,t−1 + κ2
3,t−1E[((ex,tηt + 1)ηt − b1ηt − b2(ex,t + ηt))

2] = 0. (17)

Each one of the three terms on the left hand side must be zero (a.s.). As κ3,t−1 = −α0,kηt−k 6= 0

(a.s.), the expectation in the third term is zero and therefore

(ex,tηt + 1)ηt − b1ηt − b2(ex,t + ηt) = 0 (a.s.). (18)

If ηt is Gaussian we have ex,t = −ηt and this equality becomes −η3
t + (1− b1) ηt = 0. This is clearly a

contradiction so that we can continue by assuming that ηt is non-Gaussian and that (18) holds.

In the non-Gaussian case E[e2
x,t]− 1 > 0 and on the left hand side of (17) we must have κ2

1,t−1 =

(−a1
a2
− α0,kb2)2η2

t−k = 0 (a.s.). This implies a1
a2

= −α0,kb2, and hence κ2,t−1 = κt−1 − α0,kb2ηt−k −
α0,kb1ηt−k = 0 can be written as

ex,t−k
σ2
t

σ2
t−k
−
k−1∑
r=1

α0,r(ex,t+r−kηt+r−k + 1)ηt−k
σ2
t

σ2
t+r−k

− α0,k (b2 + b1) ηt−k = 0 (a.s.). (19)

Multiplying with ηt−k and taking expectations yields (cf. the steps following equation (16))

−E
[
σ2
t /σ

2
t−k
]
− 2α0,k − α0,k (b2 + b1) = 0

and as b1 = −2, a contradiction is obtained unless b2 < 0 (in which case E[e2
x,tη

2
t ] < 3).

Now consider equation (18). Substituting the definition of ex,t and b1 = −2 and rearranging

equation (18) can be written as

fη,x (ηt;λ0)

fη (ηt;λ0)
=

(b2 − 3)ηt
η2
t − b2

= −ηt
(

b2
b2 − 3

− 1

b2 − 3
η2
t

)−1

.

By definition, the density functions satisfying this differential equation (with b2 < 0) are members of

the Pearson type VII distribution family (see Johnson, Kotz, and Balakrishnan (1994, Sec. 12.4.1)).

31



Given that we also assume that E[ηt] = 0, E[η2
t ] = 1, and E[η4

t ] < ∞, the only distribution not

contradicting (18) is the rescaled t–distribution with density

fη (x;λ0) = C(λ0)

(
1 +

x2

λ0 − 2

)−(λ0+1)/2

, C(λ0) = (π(λ0 − 2))−1/2 Γ

(
λ0 + 1

2

)/
Γ

(
λ0

2

)
,

where the parameter λ0 > 4 and Γ (·) signifies the Gamma function. If we can show that rescaled

t–densities violate equation (19) the proof is complete.

To this end, note that for the rescaled t–distribution ex,t = − (λ0+1)ηt
η2t+λ0−2

so that b2 = 2 − λ0, and

hence b2 + b1 = −λ0. Equation (19) can now be slightly rewritten as

ex,t−k
σ2
t

σ2
t−k
−
k−1∑
r=1

α0,r(ex,t+r−kηt+r−k + 1)ηt−k
σ2
t

σ2
t+r−k

+ α0,kλ0ηt−k = 0 (a.s.). (20)

We now proceed iteratively. First suppose that k = 1. Then (20) becomes

ex,t−1σ
2
t /σ

2
t−1 + α0,1λ0ηt−1 = 0. (21)

Substituting ex,t−1 = − (λ0+1)ηt−1

η2t−1+λ0−2
, σ2

t = α0,1σ
2
t−1η

2
t−1 + υt−2, where υt−2 = ω0 + α0,2σ

2
t−2η

2
t−2 + · · · +

α0,Rσ
2
t−Rη

2
t−R is Fηt−2–measurable, multiplying by σ2

t−1(η2
t−1 + λ0 − 2), and reorganizing results in[

−α0,1σ
2
t−1

]
η3
t−1 +

[
−(λ0 + 1)υt−2 + α0,1λ0σ

2
t−1 (λ0 − 2)

]
ηt−1 = 0.

The coefficients in square brackets are Fηt−2–measurable and independent of ηt−1 that follows a rescaled

t–distribution, and thus the only way to avoid a contradiction is that the coefficients are zero a.s. (if

they were not, the polynomial could be solved and ηt−1 expressed as a Fηt−2–measurable function).

However, the coefficient of η3
t−1 is −α0,1σ

2
t−1 which is nonzero, a contradiction.

Now suppose that k > 1. Reorganizing, (20) can be written as

−α0,k−1(ex,t−1ηt−1 +1)ηt−k
σ2
t

σ2
t−1

+

(
ex,t−k
σ2
t−k
−
k−2∑
r=1

α0,r(ex,t+r−kηt+r−k + 1)
ηt−k
σ2
t+r−k

)
σ2
t +α0,kλ0ηt−k = 0

or, with obvious definitions of the Fηt−2–measurable variables µ1,t−2 and ν1,t−2, as

−α0,k−1ηt−k
σ2
t

σ2
t−1

(ex,t−1ηt−1 + 1) + µ1,t−2σ
2
t + ν1,t−2 = 0.

Substituting ex,t−1 = − (λ0+1)ηt−1

η2t−1+λ0−2
and σ2

t = α0,1σ
2
t−1η

2
t−1 + υt−2, multiplying with σ2

t−1(η2
t−1 + λ0− 2),

and reorganizing we get[
α0,k−1ηt−kα0,1σ

2
t−1λ0 + µ1,t−2α0,1σ

4
t−1

]
η4
t−1 + κ4,t−2η

2
t−1 + κ5,t−2 = 0

where the coefficients κ4,t−2 and κ5,t−2 are Fηt−2–measurable (we omit their exact expressions for

brevity). As above, this equation can be seen as a polynomial in ηt−1 with coefficients that are Fηt−2–

measurable and independent of ηt−1 (which follows a rescaled t–distribution). Thus the only way to
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avoid a contradiction is that the coefficients are zero. In particular, the coefficient of η4
t−1 needs to be

zero so that (dividing with α0,1σ
2
t−1 6= 0) α0,k−1ηt−kλ0 + µ1,t−2σ

2
t−1 = 0. Substituting the definition

of µ1,t−2 into this expression and reorganizing yields

ex,t−k
σ2
t−1

σ2
t−k
−
k−2∑
r=1

α0,r(ex,t+r−kηt+r−k + 1)ηt−k
σ2
t−1

σ2
t+r−k

+ α0,k−1ηt−kλ0 = 0. (22)

Note that this is very close to equation (20). If k = 2, we get ex,t−2σ
2
t−1/σ

2
t−2 +α0,1ηt−2λ0 = 0, which

is exactly the same as equation (21) obtained above in the case k = 1 except for a shift in the time

index. Hence, we can derive a contradiction.

For 2 < k ≤ R, the proof proceeds iteratively using arguments analogous to those used in the two

previous paragraphs. For such values of k we arrive at a contradiction similarly as above. All the

details are available in the Supplementary Appendix.

Proof of Lemma 3. Let lθ,i,t(θ0) i = 1, . . . , P +Q+R+d+ 1, denote the components of the vector

lθ,t(θ0). To establish the result, we need to show that the following conditions hold for all i = 1, . . . , P+

Q+R+ d+ 1 (cf. Davidson 1994, Definition 16.1): i) E [|lθ,i,t(θ0)|] <∞, ii) ‖E [lθ,i,t(θ0) | Fηt ]‖2 <∞,

iii) E
[
lθ,i,t(θ0) | Fηt−1

]
= 0, and iv)

∥∥lθ,i,t(θ0)− E
[
lθ,i,t(θ0) | Fηt+m

]∥∥
2
≤ cρm+1 for all m ≥ 0 with some

c < ∞ and ρ < 1. Conditions i) and ii) hold because E
[
lθ,t(θ0)l′θ,t(θ0)

]
< ∞, as shown in Step 3 of

the proof of Lemma 2 whereas condition iii) was shown in Step 1 of the same proof .

Condition iv) clearly holds for the components of the sub-vectors la,t(θ0), lc,t(θ0), and ld,t(θ0)

because they are Fηt –measurable. Concerning the sub-vector lb,t(θ0) = ex,t
ub,t(θ0)
σt
− 1

2
hb,t(θ0)

σ2
t

(ex,tηt + 1),

note that ex,t, σt, and ηt are Fηt+m–measurable for all m ≥ 0 so that

lb,t(θ0)− E
[
lb,t(θ0) | Fηt+m

]
=

ex,t
σt

{
ub,t(θ0)− E

[
ub,t(θ0) | Fηt+m

]}
−1

2

ex,tηt + 1

σ2
t

{
hb,t(θ0)− E

[
hb,t(θ0) | Fηt+m

]}
.

Recalling the expansions of ubq ,t(θ0) and hbq ,t(θ0) in (11), we obtain (q = 1, . . . , Q)

E
[
ubq ,t(θ0) | Fηt+m

]
=

m−q∑
j=0

ψ
(b)
0,jσt+q+jηt+q+j

E
[
hbq ,t(θ0) | Fηt+m

]
= 2

R∑
r=1

m−q+r∑
j=0

α0,rψ
(b)
0,jσt−rηt−rσt−r+q+jηt−r+q+j .

Therefore, to establish iv), it suffices to show that

∞∑
j=max{0,m−q+1}

∣∣ψ(b)
0,j

∣∣ ∥∥∥∥ex,tσt σt+q+jηt+q+j
∥∥∥∥

2

≤ cρm+1

and
R∑
r=1

∞∑
j=max{0,m−q+r+1}

α0,r

∣∣ψ(b)
0,j

∣∣ ∥∥∥∥ex,tηt + 1

σ2
t

σt−rηt−rσt−r+q+jηt−r+q+j

∥∥∥∥
2

≤ cρm+1
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for all q = 1, ..., Q and m ≥ 0 for some c <∞ and ρ < 1.

In light of Lemma A.1, all that is required is to show that

E

[
e2
x,t

σ2
t+q+j

σ2
t

η2
t+q+j

]
and E

[
σ2
t−rη

2
t−r

σ2
t

(ex,tηt + 1)2 σ
2
t−r+q+j
σ2
t

η2
t−r+q+j

]

are dominated by a finite constant (independent of q, j, and r). For the former this is an immediate

consequence of Lemma B.1 and Lemma C.1. Concerning the latter, if −r+q+j ≥ 0 the desired result

is obtained from Lemma B.1 and Lemma C.1. If −r+ q+ j < 0, the term (ex,tηt + 1)2 is independent

of the other terms involved and has finite expectation. Thus, using also the bound σ2
t ≥ ω0 > 0 we

can find a finite constant C such that

E

[
σ2
t−rη

2
t−r

σ2
t

(ex,tηt + 1)2 σ
2
t−r+q+j
σ2
t

η2
t−r+q+j

]
≤ CE

[
σ2
t−rη

2
t−rσ

2
t−r+q+j

]
E
[
η2
t−r+q+j

]
≤ CE

[
ε4
t−r
]1/2

E
[
σ4
t−r+q+j

]1/2
E
[
η2
t−r+q+j

]
.

Here the latter bound is based on the Cauchy-Schwarz inequality and the expectations therein are

finite by Lemma 1.

Proof of Lemma 4. As was noted in the beginning of Step 2 in the proof of Lemma 2, lθ,t(θ0) forms

a stationary and ergodic process with E [lθ,t(θ0)] = 0. In Step 3 of the same proof it was shown that

E
[
lθ,t(θ0)l′θ,t(θ0)

]
<∞, and hence E

[
|lθ,t(θ0)l′θ,t(θ0)|

]
<∞. By Lemma 3, the sequence {a′lθ,t(θ0),Fηt }

is an L2–mixingale of size −1 for all conformable fixed vectors a 6= 0. By Lemma 2, the matrix

I (θ0) is positive definite and an application of Lemma A.4 yields the result T−1/2
∑T

t=1 a
′lθ,t(θ0)

d→
N (0, a′I (θ0) a). The stated result follows from this by the Cramér-Wold device.

Appendix D: Hessian Matrix

Expression for the Hessian matrix. In accordance with the partition of θ as θ = (θa, θb, θc, θd),

we will denote the 16 blocks of the Hessian matrix with laa,t(θ) = ∂2lt(θ)
∂θa∂θ′a

, lba,t(θ) = ∂2lt(θ)
∂θb∂θ′a

, etc. In

what follows, we will also denote θabc = (θa, θb, θc).

Let us summarize what form the 16 blocks of the Hessian lθθ,t(θ) take. To simplify notation, define

exx,t(θ) =
fη,xx(h−1/2

t (θ)ut(θ);λ)

fη(h
−1/2

t (θ)ut(θ);λ)
−
(
fη,x(h−1/2

t (θ)ut(θ);λ)

fη(h
−1/2

t (θ)ut(θ);λ)

)2

eλx,t(θ) =
fη,λx(h−1/2

t (θ)ut(θ);λ)

fη(h
−1/2

t (θ)ut(θ);λ)
−
fη,λ(h−1/2

t (θ)ut(θ);λ)

fη(h
−1/2

t (θ)ut(θ);λ)

fη,x(h−1/2

t (θ)ut(θ);λ)

fη(h
−1/2

t (θ)ut(θ);λ)

eλλ,t(θ) =
fη,λλ(h−1/2

t (θ)ut(θ);λ)

fη(h
−1/2

t (θ)ut(θ);λ)
−
fη,λ(h−1/2

t (θ)ut(θ);λ)

fη(h
−1/2

t (θ)ut(θ);λ)

f ′η,λ(h−1/2

t (θ)ut(θ);λ)

fη(h
−1/2

t (θ)ut(θ);λ)
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and also

E1,t(θ) =
1

2

(
1

2
exx,t(θ)

u2
t (θ)

ht(θ)
+

3

2
ex,t(θ)

ut(θ)

h1/2

t (θ)
+ 1

)
E2,t(θ) = −1

2

(
exx,t(θ)

ut(θ)

h1/2

t (θ)
+ ex,t(θ)

)
E3,t(θ) = −1

2

(
ex,t(θ)

ut(θ)

h1/2

t (θ)
+ 1

)
.

Now, straightforward differentiation yields the different blocks of lθθ,t(θ) as

laa,t(θ) = exx,t(θ)
ua,t(θ)

h1/2

t (θ)

u′a,t(θ)

h1/2

t (θ)
+ E1,t(θ)

ha,t(θ)

ht(θ)

h′a,t(θ)

ht(θ)

+E2,t(θ)

(
ua,t(θ)

h1/2

t (θ)

h′a,t(θ)

ht(θ)
+
ha,t(θ)

ht(θ)

u′a,t(θ)

h1/2

t (θ)

)
+ ex,t(θ)

uaa,t(θ)

h1/2

t (θ)
+ E3,t(θ)

haa,t(θ)

ht(θ)
,

lba,t(θ) = exx,t(θ)
ub,t(θ)

h1/2

t (θ)

u′a,t(θ)

h1/2

t (θ)
+ E1,t(θ)

hb,t(θ)

ht(θ)

h′a,t(θ)

ht(θ)

+E2,t(θ)

(
ub,t(θ)

h1/2

t (θ)

h′a,t(θ)

ht(θ)
+
hb,t(θ)

ht(θ)

u′a,t(θ)

h1/2

t (θ)

)
+ ex,t(θ)

uba,t(θ)

h1/2

t (θ)
+ E3,t(θ)

hba,t(θ)

ht(θ)
,

lbb,t(θ) = exx,t(θ)
ub,t(θ)

h1/2

t (θ)

u′b,t(θ)

h1/2

t (θ)
+ E1,t(θ)

hb,t(θ)

ht(θ)

h′b,t(θ)

ht(θ)

+E2,t(θ)

(
ub,t(θ)

h1/2

t (θ)

h′b,t(θ)

ht(θ)
+
hb,t(θ)

ht(θ)

u′b,t(θ)

h1/2

t (θ)

)
+ ex,t(θ)

ubb,t(θ)

h1/2

t (θ)
+ E3,t(θ)

hbb,t(θ)

ht(θ)
,

lca,t(θ) = E1,t(θ)
hc,t(θ)

ht(θ)

h′a,t(θ)

ht(θ)
+ E2,t(θ)

hc,t(θ)

ht(θ)

u′a,t(θ)

h1/2

t (θ)
+ E3,t(θ)

hca,t(θ)

ht(θ)
,

lcb,t(θ) = E1,t(θ)
hc,t(θ)

ht(θ)

h′b,t(θ)

ht(θ)
+ E2,t(θ)

hc,t(θ)

ht(θ)

u′b,t(θ)

h1/2

t (θ)
+ E3,t(θ)

hcb,t(θ)

ht(θ)
,

lcc,t(θ) = E1,t(θ)
hc,t(θ)

ht(θ)

h′c,t(θ)

ht(θ)
+ E3,t(θ)

hcc,t(θ)

ht(θ)
,

lda,t(θ) = eλx,t(θ)

(
u′a,t(θ)

h1/2

t (θ)
− 1

2

ut(θ)

h1/2

t (θ)

h′a,t(θ)

ht(θ)

)
, ldb,t(θ) = eλx,t(θ)

(
u′b,t(θ)

h1/2

t (θ)
− 1

2

ut(θ)

h1/2

t (θ)

h′b,t(θ)

ht(θ)

)
,

ldc,t(θ) = eλx,t(θ)

(
−1

2

ut(θ)

h1/2

t (θ)

h′c,t(θ)

ht(θ)

)
, ldd,t(θ) = eλλ,t(θ).

Expressions for the second partial derivatives of ut (θ) and ht (θ). To complete the deriva-

tion of the Hessian, we need expressions for uaa,t(θ), uba,t(θ), ubb,t(θ), and hθabcθabc,t(θ). Concerning
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hθabcθabc,t(θ), with straightforward differentiation we obtain

haa,t(θ) = 2

R∑
r=1

αr
(
ua,t−r(θ)u

′
a,t−r(θ) + ut−r(θ)uaa,t−r(θ)

)
hba,t(θ) = 2

R∑
r=1

αr
(
ub,t−r(θ)u

′
a,t−r(θ) + ut−r(θ)uba,t−r(θ)

)
hbb,t(θ) = 2

R∑
r=1

αr
(
ub,t−r(θ)u

′
b,t−r(θ) + ut−r(θ)ubb,t−r(θ)

)

hca,t(θ) =


0

2ut−1(θ)u′a,t−1(θ)
...

2ut−R(θ)u′a,t−R(θ)

 , hcb,t(θ) =


0

2ut−1(θ)u′b,t−1(θ)
...

2ut−R(θ)u′b,t−R(θ)


whereas hcc,t(θ) is a matrix of zeros. What remains is to compute uaa,t(θ), uba,t(θ), and ubb,t(θ).

Because uap,t(θ) = −b(B−1)−1yt−p (p = 1, . . . , P ), we have uaa,t(θ) = 0. For the remaining two terms,

recall that from the relation b(B−1)ut(θ) = a (B) yt we obtain ∂b(B−1)ut(θ)
∂bq

= 0 for q = 1, . . . , Q. On

the other hand,

0 =
∂b(B−1)ut(θ)

∂bq
= −B−qut(θ) + b(B−1)

∂ut(θ)

∂bq
.

Taking partial derivatives with respect to ap (p = 1, . . . , P ) or bq̃ (q̃ = 1, . . . , Q) yields

0 =
∂2b(B−1)ut(θ)

∂bq∂ap
= −B−q ∂ut(θ)

∂ap
+ b(B−1)

∂2ut(θ)

∂bq∂ap

0 =
∂2b(B−1)ut(θ)

∂bq∂bq̃
= −B−q ∂ut(θ)

∂bq̃
−B−q̃ ∂ut(θ)

∂bq
+ b(B−1)

∂2ut(θ)

∂bq∂bq̃

so that

∂2ut(θ)

∂bq∂ap
= b(B−1)−1∂ut+q(θ)

∂ap
= −b(B−1)−2yt+q−p = −b(B−1)−1a(B)−1ut+q−p(θ)

∂2ut(θ)

∂bq∂bq̃
= b(B−1)−1

(
∂ut+q(θ)

∂bq̃
+
∂ut+q̃(θ)

∂bq

)
= 2b(B−1)−2ut+q+q̃(θ)

This completes the calculation of the Hessian.

Proof of Lemma 5. The arguments used in the proof are analogous to those used in the proof of

Lemma 2, Step 2. For the sake of brevity, we only present a short outline of the required steps. All

the details are given in the Supplementary Appendix. There we first present an explicit expression

for the Hessian matrix evaluated at the true parameter value, lθθ,t(θ0). Then we show that the four

blocks in the lower left-hand corner of this matrix (lca,t(θ0), lcb,t(θ0), lda,t(θ0), and ldb,t(θ0)) all have

expectation zero. Finally, a tedious argument shows that the remaining blocks have expectations that

equal −1 times the corresponding term in the covariance matrix of the score.
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Proof of Lemma 6. From Lemma 1 and the expressions of the components of lθθ,t(θ) at the

beginning of this Appendix it follows that lθθ,t(θ) forms a stationary ergodic sequence of random

variables that are continuous in θ over Θ0. The desired result thus follows from Theorem 2.7 in

Straumann and Mikosch (2006) if we establish that E
[
supθ∈Θ0

|lθθ,t(θ)|
]

is finite. In light of the

expression of lθθ,t(θ), definition of Θc in Assumption 2 (ensuring ht(θ) ≥ ω), and Hölder’s inequality,

it suffices to show that∥∥∥∥ sup
θ∈Θ0

|ex,t(θ)|
∥∥∥∥

2

,

∥∥∥∥ sup
θ∈Θ0

|exx,t(θ)|
∥∥∥∥

2

,

∥∥∥∥ sup
θ∈Θ0

|eλx,t(θ)|
∥∥∥∥

2

,

∥∥∥∥ sup
θ∈Θ0

|eλλ,t(θ)|
∥∥∥∥

1

,∥∥∥∥ sup
θ∈Θ0

|E1,t(θ)|
∥∥∥∥

2

,

∥∥∥∥ sup
θ∈Θ0

|E2,t(θ)|
∥∥∥∥

2

,

∥∥∥∥ sup
θ∈Θ0

|E3,t(θ)|
∥∥∥∥

2

,∥∥∥∥ sup
θ∈Θ0

|ua,t(θ)|
∥∥∥∥

4

,

∥∥∥∥ sup
θ∈Θ0

|ub,t(θ)|
∥∥∥∥

4

,

∥∥∥∥ sup
θ∈Θ0

|uaa,t(θ)|
∥∥∥∥

2

,

∥∥∥∥ sup
θ∈Θ0

|uba,t(θ)|
∥∥∥∥

2

,

∥∥∥∥ sup
θ∈Θ0

|ubb,t(θ)|
∥∥∥∥

2

,∥∥∥∥ sup
θ∈Θ0

∣∣∣∣hθabc,t(θ)ht(θ)

∣∣∣∣∥∥∥∥
4

,

∥∥∥∥ sup
θ∈Θ0

∣∣∣∣hθabcθabc,t(θ)ht(θ)

∣∣∣∣∥∥∥∥
2

are all finite. Recalling the definitions of the terms appearing in the first seven expressions, it is

straightforward to see that the first seven norms are finite by Assumptions 1–6.

Now consider the moment conditions required for the derivatives of ut (θ). Recall from Appendix C

the expressions uap,t(θ) = −a(B)−1ut−p(θ) and ubq ,t(θ) = b(B−1)−1ut+q(θ), and from the beginning of

this appendix the expressions uaa,t(θ) = 0, ubqap,t(θ) = −b(B−1)−1a(B)−1ut+q−p(θ), and ubqbq̃ ,t(θ) =

2b(B−1)−2ut+q+q̃(θ). In light of these and of Lemmas A.1 and A.2, the required moment conditions

are satisfied as long as
∥∥supθ∈Θ0

|ut(θ)|
∥∥

4
is finite. Recalling that ut(θ) = b(B−1)−1a (B) yt, this in

turn follows (due to Lemmas A.1 and A.2) because E[y4
t ] <∞ by Lemma 1.

To establish the moment conditions required for the derivatives of ht(θ), we first consider the

components of ha,t(θ). Making use of the expression of ha,t (θ) (see Appendix C), the Cauchy-Schwarz

inequality, and the facts that ω > 0 and 0 < αr < 1 (see Assumption 2), we obtain (p = 1, . . . , P )

hap,t(θ) ≤ 2

(
ω +

R∑
r=1

αru
2
t−r(θ)

)1/2( R∑
r=1

αru
2
ap,t−r(θ)

)1/2

= 2h
1/2
t (θ)

(
R∑
r=1

αru
2
ap,t−r(θ)

)1/2

.

Therefore, as ht(θ) ≥ ω ≥ ω > 0 for all θ ∈ Θ0,

sup
θ∈Θ0

∣∣∣∣hap,t(θ)ht(θ)

∣∣∣∣ ≤ C sup
θ∈Θ0

(
R∑
r=1

αru
2
ap,t−r(θ)

)1/2

for some finite C. Thus, it follows that
∥∥∥supθ∈Θ0

∣∣∣hap,t(θ)ht(θ)

∣∣∣∥∥∥
4

is finite if
∥∥supθ∈Θ0

∣∣uap,t(θ)∣∣∥∥4
is finite

– but this has already been shown. With analogous reasoning,
∥∥∥supθ∈Θ0

∣∣∣hbq,t(θ)ht(θ)

∣∣∣∥∥∥
4

is finite for q =

1, . . . , Q (for the expressions of hbq ,t(θ) and the components of hc,t(θ), see Appendix C). Concerning

the vector hc,t(θ), the required moment condition is clearly satisfied for the first component. For the

remaining components, notice that αru
2
t−r(θ) ≤ ht(θ) (r = 1, . . . , R), so that the components of hc,t(θ)
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satisfy
hcr,t(θ)
ht(θ)

≤ 1
αr

. The definition of the set Θ0 implies that αr is bounded away from zero on Θ0,

and thus the required moment condition holds.

Finally, we show the moment conditions required for the second partial derivatives of ht(θ), and

start with haa,t(θ) (for the expressions of these derivatives, see the beginning of this appendix). From

the expression of haa,t(θ) and the already shown fact that
∥∥supθ∈Θ0

|ua,t(θ)|
∥∥

4
is finite, it follows that

it suffices to consider the sum
∑R

r=1 αrut−r(θ)uaa,t−r(θ). Using the Cauchy-Schwarz inequality and

the fact that ht(θ) ≥ ω ≥ ω > 0 for all θ ∈ Θ0 it is seen that each element of this matrix satisfies

(p = 1, . . . , P , p̃ = 1, . . . , P )

R∑
r=1

αrut−r(θ)uapap̃,t−r(θ) ≤

(
ω +

R∑
r=1

αru
2
t−r(θ)

)1/2( R∑
r=1

αru
2
apap̃,t−r(θ)

)1/2

,

and hence

sup
θ∈Θ0

∣∣∣∣∣ 1

ht(θ)

R∑
r=1

αrut−r(θ)uapap̃,t−r(θ)

∣∣∣∣∣ ≤ C sup
θ∈Θ0

(
R∑
r=1

αru
2
apap̃,t−r(θ)

)1/2

.

As we have already shown that
∥∥supθ∈Θ0

|uaa,t(θ)|
∥∥

2
is finite, we can conclude that

∥∥∥supθ∈Θ0

∣∣∣haa,t(θ)ht(θ)

∣∣∣∥∥∥
2

is finite. With similar reasoning the corresponding result for hba,t(θ) and hbb,t(θ) is obtained. Finally,

the moment results for the terms involving hca,t(θ) and hcb,t(θ) follow from the results
∥∥supθ∈Θ0

|ut(θ)|
∥∥

4
<

∞,
∥∥supθ∈Θ0

|ua,t(θ)|
∥∥

4
<∞, and

∥∥supθ∈Θ0
|ub,t(θ)|

∥∥
4
<∞ that have already been proven. This com-

pletes the proof of the moment conditions.

Appendix E: Main Results

Expressions for the feasible log-likelihood l̃t(θ) and the score vector l̃θ,t(θ). Recall that for

each fixed T , the quantities ũt(θ) were defined through the initial and end conditions ũT+1(θ) = · · · =
ũT+Q(θ) = 0 and ũ0(θ) = u0, . . . , ũ1−R(θ) = u1−R, and the backward recursion a(B)yt = b(B−1)ũt(θ)

for t = T, . . . , 1. In other words, for t = T, . . . , 1, the ũt(θ) can be solved from the equations

a(B)yT = ũT (θ)

a(B)yT−1 = ũT−1(θ)− b1ũT (θ)
...

a(B)yT−Q = ũT−Q(θ)− b1ũT−Q+1(θ)− · · · − bQũT (θ) = b(B−1)ũT−Q(θ)

...

a(B)y1 = b(B−1)ũ1(θ)

from which the ũt(θ) can be solved recursively and are seen to satisfy the relation

ũt(θ) =
T−t∑
j=0

ψ
(b)
j a(B)yt+j , t = T, . . . , 1, (23)
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cf. Andrews, Davis, and Breidt (2006, p. 1656). In contrast, from the relation a(B)yt = b(B−1)ut(θ)

one obtains the counterpart

ut(θ) =

∞∑
j=0

ψ
(b)
j a(B)yt+j . (24)

Once the quantities ũt(θ) are available, we can form h̃t(θ), t = 1, ..., T , by using equation (9) and,

furthermore, the feasible log-likelihood l̃t(θ).

It is clear from (23) that ũt(θ) also depends on the sample size T , although we suppress this

dependence from the notation. Consequently, the feasible log-likelihood l̃t(θ) and its components and

derivatives also depend on T . As a convention, relations involving variables associated with the feasible

log-likelihood (ũt(θ), h̃t(θ), etc.) are understood to hold only for t = 1, . . . , T unless otherwise stated.

Now we can derive the score vector. Exactly the same calculations that lead to the infeasible score

vector give

l̃θ,t(θ) =



ẽx,t(θ)
ũa,t(θ)

h̃
1/2
t (θ)

− 1
2
h̃a,t(θ)

h̃t(θ)

(
ẽx,t(θ)

ũt(θ)

h̃
1/2
t (θ)

+ 1
)

ẽx,t(θ)
ũb,t(θ)

h̃
1/2
t (θ)

− 1
2
h̃b,t(θ)

h̃t(θ)

(
ẽx,t(θ)

ũt(θ)

h̃
1/2
t (θ)

+ 1
)

−1
2
h̃c,t(θ)

h̃t(θ)

(
ẽx,t(θ)

ũt(θ)

h̃
1/2
t (θ)

+ 1
)

ẽλ,t(θ)


,

where

ẽx,t(θ) =
fη,x(h̃−1/2

t (θ)ũt(θ);λ)

fη(h̃
−1/2

t (θ)ũt(θ);λ)
and ẽλ,t(θ) =

fη,λ(h̃−1/2

t (θ)ũt(θ);λ)

fη(h̃
−1/2

t (θ)ũt(θ);λ)
,

and ũa,t(θ), ũb,t(θ), h̃a,t(θ), h̃b,t(θ), and h̃c,t(θ) are obtained next.

Expressions for the partial derivatives of ũt (θ) and h̃t (θ). From (9) we immediately find that

h̃a,t(θ) = 2α1ũt−1(θ)ũa,t−1(θ) + · · ·+ 2αRũt−R(θ)ũa,t−R(θ)

h̃b,t(θ) = 2α1ũt−1(θ)ũb,t−1(θ) + · · ·+ 2αRũt−R(θ)ũb,t−R(θ)

h̃c,t(θ) =
(
1, ũ2

t−1(θ), . . . , ũ2
t−R(θ)

)
.

Now consider the partial derivatives ũa,t(θ) and ũb,t(θ) which, due to the initializations ũT+1(θ) = · · · =
ũT+Q(θ) = 0 and ũ0(θ) = u0, . . . , ũ1−R(θ) = u1−R, are zero for t = 0, . . . , 1−R and t = T+1, . . . , T+Q.

For t = 1, . . . , T , from (23) the partial derivatives with respect to ap (p = 1, . . . , P ) are obtained as

ũap,t(θ) = −
T−t∑
j=0

ψ
(b)
j yt−p+j . (25)

To derive the partial derivatives with respect to bq (q = 1, . . . , Q), first note that the relation

a(B)yt = b(B−1)ũt(θ) implies ∂b(B−1)ũt(θ)/∂bq = 0. On the other hand, ∂b(B−1)ũt(θ)/∂bq =

−B−qũt(θ) + b(B−1)∂ũt(θ)/∂bq, so that one obtains the relation b(B−1)∂ũt(θ)/∂bq = ũt+q(θ). Due to

the initialization (not satisfying this relation) the recursive argument used for ũt(θ) yields

ũbq ,t(θ) =
T−t∑
j=0

ψ
(b)
j ũt+q+j(θ). (26)
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In contrast, the corresponding partial derivatives of ut(θ) with respect to ap and bq were given by

uap,t(θ) = −
∞∑
j=0

ψ
(b)
j yt−p+j and ubq ,t(θ) =

∞∑
j=0

ψ
(b)
j ut+q+j(θ). (27)

This completes the computation of the derivatives of l̃t(θ).

An auxiliary lemma. The following lemma whose proof is given in the Supplementary Appendix

concerns differences between various feasible and infeasible quantities needed later. Denote

et(θ) = log fη

(
ut(θ)

h1/2

t (θ)
;λ

)
and ẽt(θ) = log fη

(
ũt(θ)

h̃1/2

t (θ)
;λ

)
.

To express the results in a reasonably compact form, we also define the following sequences of constants.

For t = 1, . . . , T , let U1,t = ρT+1−t,

U2,t =

 1, t = 1, . . . , R

ρT+1−t, t = R+ 1, . . . , T
and U3,t =

 1 + (T + 1− t) ρT+1−t, t = 1, . . . , R

(T + 1− t) ρT+1−t, t = R+ 1, . . . , T

where ρ ∈ (0, 1) (cf. the discussion after Lemma A.1).

Lemma E.1. If Assumptions 1–6 and 7(a) hold, then, for t = 1, . . . , T ,

(i)
∥∥supθ∈Θ0

|ut(θ)− ũt(θ)|
∥∥

4
≤ CU1,t, (ii)

∥∥supθ∈Θ0

∣∣u2
t (θ)− ũ2

t (θ)
∣∣∥∥

2
≤ CU1,t,

(iii)
∥∥∥supθ∈Θ0

|ht(θ)− h̃t(θ)|
∥∥∥

2
≤ CU2,t, (iv)

∥∥∥supθ∈Θ0
|log ht(θ)− log h̃t(θ)|

∥∥∥
2
≤ CU2,t,

(v)

∥∥∥∥supθ∈Θ0

∣∣∣∣ ut(θ)h
1/2
t (θ)

− ũt(θ)

h̃
1/2
t (θ)

∣∣∣∣∥∥∥∥
4/3

≤ CU2,t, (vi)

∥∥∥∥supθ∈Θ0

∣∣∣∣ ua,t(θ)h
1/2
t (θ)

− ũa,t(θ)

h̃
1/2
t (θ)

∣∣∣∣∥∥∥∥
4/3

≤ CU2,t,

(vii)
∥∥∥supθ∈Θ0

∣∣∣ha,t(θ)ht(θ)
− h̃a,t(θ)

h̃t(θ)

∣∣∣∥∥∥
1
≤ CU2,t, (viii)

∥∥∥∥supθ∈Θ0

∣∣∣∣ ub,t(θ)h
1/2
t (θ)

− ũb,t(θ)

h̃
1/2
t (θ)

∣∣∣∣∥∥∥∥
4/3

≤ CU3,t,

(ix)
∥∥∥supθ∈Θ0

∣∣∣hb,t(θ)ht(θ)
− h̃b,t(θ)

h̃t(θ)

∣∣∣∥∥∥
1
≤ CU3,t, (x)

∥∥∥supθ∈Θ0

∣∣∣hc,t(θ)ht(θ)
− h̃c,t(θ)

h̃t(θ)

∣∣∣∥∥∥
1
≤ CU2,t,

(xi)
∥∥supθ∈Θ0

|ex,t(θ)− ẽx,t(θ)|
∥∥
r1
≤ CU2,t, (xii)

∥∥supθ∈Θ0
|eλ,t(θ)− ẽλ,t(θ)|

∥∥
r2
≤ CU2,t,

(xiii)
∥∥supθ∈Θ0

|et(θ)− ẽt(θ)|
∥∥
r3
≤ CU2,t,

where the constant C < ∞ varies from part to part (but is independent of t, T , and θ), and where

parts (xi)–(xiii) hold for some r1, r2, r3 > 0.

Note that due to the initializations for t = 0, . . . , 1−R and t = T + 1, . . . , T +Q, the differences in

Lemma E.1 are non-negligible for t ‘close’ to 1 and T , and diminish as T increases for ‘intermediate’

values of t.

Proof of Lemma 7. (i) Note that |LT (θ)− L̃T (θ)| ≤ T−1
∑T

t=1|lt(θ)− l̃t(θ)|, where |lt(θ)− l̃t(θ)| ≤
|et(θ) − ẽt(θ)| + 1

2 |log ht(θ) − log h̃t(θ)|, because lt(θ) = et(θ) − 1
2 log ht(θ) and similarly for l̃t(θ). By

Loève’s cr–inequality (see Davidson (1994), p. 140) and Lemma E.1(iv) and (xiii) we thus obtain
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∥∥supθ∈Θ0
|lt(θ) − l̃t(θ)|

∥∥
p
≤ CU2,t for some finite constant C and a small enough positive exponent p

(the exact value of it does not matter). Using this result we can justify (in a moment) that

lim
T→∞

T∑
t=1

sup
θ∈Θ0

|lt(θ)− l̃t(θ)| <∞ a.s., (28)

which implies supθ∈Θ0
|LT (θ)− L̃T (θ)| ≤ T−1

∑T
t=1 supθ∈Θ0

|lt(θ)− l̃t(θ)| → 0 a.s. as T →∞, proving

the desired result.

To justify (28), denote l•t = supθ∈Θ0
|lt(θ)− l̃t(θ)| for t = 1, . . . , T , and for every fixed (sufficiently

large) T define l••t = l•t for t = 1, . . . , R and l••t = l•T−(t−(R+1)) for t = R + 1, . . . , T . Obviously∑T
t=1 l

••
t =

∑T
t=1 l

•
t , so that proving limT→∞

∑T
t=1 l

••
t <∞ a.s. will establish (28). To this end, notice

that, for t = R+ 1, . . . , T ,

‖l••t ‖p =

∥∥∥∥ sup
θ∈Θ0

∣∣lT−(t−(R+1))(θ)− l̃T−(t−(R+1))(θ)
∣∣∥∥∥∥
p

≤ CρT+1−(T−(t−(R+1))) = Cρt−R

so that for a suitably defined new C we have ‖l••t ‖p ≤ Cρt for all t = 1, . . . , T . The result limT→∞
∑T

t=1 l
••
t <

∞ a.s. now follows from Lemma A.2 of Meitz and Saikkonen (in press), and proof of part (i) is complete.

(ii) Proof of part (ii) is similar and is given in the Supplementary Appendix.

Proof of Theorem 1. The proof makes use of standard arguments, and hence we only present an

outline of the required steps (additional details are available in the Supplementary Appendix).

Existence of a consistent root. We first show that there exists a sequence of solutions θ̂T to

the infeasible likelihood equations Lθ,T (θ) = 0 that are strongly consistent for θ0, and then that the

same holds for the solutions θ̃T to the feasible likelihood equations L̃θ,T (θ) = 0. To this end, choose

a small fixed ε > 0 such that the sphere Θε = {θ : |θ − θ0| = ε} is contained in Θ0. We will compare

the values attained by LT (θ) on this sphere with LT (θ0). For an arbitrary point θ ∈ Θε, using a

second-order Taylor expansion around θ0 and adding and subtracting terms yields

LT (θ)− LT (θ0) = (θ − θ0)′ Lθ,T (θ0) +
1

2
(θ − θ0)′ [Lθθ,T (θ•)− J (θ•)] (θ − θ0)

+
1

2
(θ − θ0)′ [J (θ•)− J (θ0)] (θ − θ0) +

1

2
(θ − θ0)′ J (θ0) (θ − θ0)

= S1 + S2 + S3 + S4,

where θ• lies on the line segment between θ and θ0, and the latter equality defines the terms Si,

i = 1, . . . , 4. We show in the Supplementary Appendix that (a) for any sufficiently small fixed ε,

supθ∈Θε (S1 + S2) → 0 a.s. as T → ∞. The terms S3 and S4 do not depend on T , and we show in

the Supplementary Appendix that (b) there exists a positive δ such that for each sufficiently small ε,

supθ∈Θε (S3 + S4) < −δε2. Therefore, for each sufficiently small ε,

sup
θ∈Θε

LT (θ) < LT (θ0) a.s. as T →∞. (29)
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As a consequence, for each fixed sufficiently small ε, and for all T sufficiently large, LT (θ) must have

a local maximum, and hence a root of the likelihood equation Lθ,T (θ) = 0, in the interior of Θε with

probability one. Having established this, the existence of a sequence θ̂T , independent of ε, such that

the θ̂T are solutions of the likelihood equations Lθ,T (θ) = 0 for all sufficiently large T and that θ̂T → θ0

a.s. as T →∞ can be shown as in Serfling (1980, pp. 147–148).

Now consider the feasible likelihood, and first note that

sup
θ∈Θε

[
L̃T (θ)− L̃T (θ0)

]
≤ sup

θ∈Θε

∣∣L̃T (θ)− LT (θ)
∣∣+ sup

θ∈Θε

[
LT (θ)− LT (θ0)

]
+
∣∣LT (θ0)− L̃T (θ0)

∣∣
≤ 2 sup

θ∈Θ0

∣∣LT (θ)− L̃T (θ)
∣∣+ sup

θ∈Θε

[
LT (θ)− LT (θ0)

]
.

By Lemma 7, the first term on the majorant side converges to zero a.s. as T →∞, whereas by (29),

for each sufficiently small ε, supθ∈Θε LT (θ) < LT (θ0) a.s. as T → ∞. Therefore, for each sufficiently

small ε, supθ∈Θε L̃T (θ) < L̃T (θ0) a.s. as T →∞. The existence of a sequence θ̃T such that the θ̃T are

solutions of the feasible likelihood equations L̃θ,T (θ) = 0 for all sufficiently large T and θ̃T → θ0 a.s.

as T →∞ can be deduced as in the case of the infeasible likelihood.

Asymptotic Normality. Using Lemmas 4–6 in conjunction with standard arguments it can be

shown that T 1/2(θ̂T − θ0)→ N(0, I(θ0)−1) as T →∞ (see, e.g., Lemma D.4 in Meitz and Saikkonen

(in press)). Moreover, exactly as in the proof of Lemma D.6 in Meitz and Saikkonen (in press) it can

be shown that T 1/2(θ̂T − θ̃T )→ 0 a.s. as T →∞, from which the desired result follows.

Consistent estimation of the limiting covariance matrix. In light of the strong consistency

of θ̃T , the uniform convergence of Lθθ,T (θ) (Lemma 6), and the fact that E[lθθ,t (θ0)] = −I(θ0) with

I(θ0) positive definite (Lemmas 2 and 5), it is immediate that L−1
θθ,T (θ̃T ) → I(θ0)−1 a.s. as T → ∞

(cf. Lemma A.1 of Pötscher and Prucha (1991)). For the same conclusion to hold for L̃−1
θθ,T (θ̃T ) we

need to show that supθ∈Θ0

∣∣Lθθ,T (θ) − L̃θθ,T (θ)
∣∣ → 0 a.s. as T → ∞. That this holds under the

additional Assumption 7(b) is shown in the Supplementary Appendix.
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